Jul
11
Espín o momento Angular
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (5)
No pocas veces, cuando habeis oido hablar de temas de Física, la palabra espín habrá surgido con cierta frecuencia y, algunos de ustedes os habréis preguntado (seguramente), ¿qué es eso del espín? y, aunque sea de pasada, dejaré aquí una explicación sencilla del mismo.
Una curiosa propiedad de las partículas pequeñas que se recoge en el Modelo Estándar divididas en tres familias, es que pueden totar alrededor de un eje mediante el mecanismo que llamamos espín. El Espín (o, com más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planck dividido por 2π. Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partículas -aunque no la dirección del mismo- es fijo.
Si nos referimos al electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses. Samuel Goudsmit y George Uhlenbeck, que escribieron sus tesis conjuntamente sobre dicho problema allá por el año 1972. Fue una idea audaz que partículas tan pequeñas como los electrones pudieran tener espín y, de hecho, bastante grande. Claro que, al principio, la idea fue recibida con excepticimos porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz. Hoy en día, tales objeciones son simplemente ignoradas porque no existe tal superficie en el electrón.
De todas las cantidades físicas la conocida como espín se suele considerar como la más “mecano-cuántica”. La palabra espín viene del inglés “spin”, que significa giro o girar, y se refiere a una propiedad física de las partículas subatómicas, por la cual toda partícula elemental tienen un momento angular intrínseco de valor fijo. Es una característica propia de la partícula como lo es la masa o la carga eléctrica, y una magnitud que se conserva como lo hace la energía o el momento lineal.
De todas las cantidades físicas la conocida como espín se suele considerar como la más “mecano-cuántica”. La palabra espín viene del inglés “spin”, que significa giro o girar, y se refiere a una propiedad física de las partículas subatómicas, por la cual toda partícula elemental tiene un momento angular intrínseco de valor fijo. Es una característica propia de la partícula como lo es la masa o la carga eléctrica, y una magnitud que se conserva como lo hace la energía o el momento lineal.

Para un electrón, protón o neutron la cantidad de espín es siempre 1/2 del valor mínimo de momento permitido (ħ). Precisamente por eso esta cantidad de momento angular no estaría permitida para un objeto compuesto por cierto número de partículas orbitando sin que ninguna de ellas estuviese girando sobre sí misma. El espín sólo puede aparecer debido a que es una propiedad intrínseca de la propia partícula, es decir, que no surge del movimiento orbital de sus partes en torno a su centro.
Para un electrón, protón o neutron la cantidad de espín es siempre 1/2 del valor mínimo de momento permitido (ħ). Precisamente por eso esta cantidad de momento angular no estaría permitida para un objeto compuesto por cierto número de partículas orbitando sin que ninguna de ellas estuviese girando sobre sí misma. El espín sólo puede aparecer debido a que es una propiedad intrínseca de la propia partícula, es decir, que no surge del movimiento orbital de sus partes en torno a su centro.
Una partícula que, como el electrón, tiene un espín múltiplo impar de ħ/2 (ħ/2, 3ħ/3, 5ħ/2, etc) se llama fermión, y presenta una curiosa rareza: una rotación completa de 360º transforma su vector de estado no en sí mismo sino en el valor negativo de sí mismo; necesitaría por tanto de un giro de 720º para quedarse igual que antes del giro. La mayoría de las partículas de la Naturaleza son fermiones, las partículas restantes para las que el espín es un múltiplo entero de ħ (ħ, 2ħ, 3ħ, 4ħ, etc) se llaman bosones. Bajo una rotación de 360º el vector de estado de un bosón vuelve a sí mismo, y no a su negativo.
Hablemos de pasada de la esfera de Riemann que juega un papel fundamental en cualquier sistema cuántico de dos estados, describiendo el conjunto de estados cuánticos posibles. Para una partícula de espín 1/2, su papel geométrico es particularmente evidente puesto que los puntos de la esfera corresponden a las posibles direcciones espaciales para el eje de giro. En otras situaciones el papel de la esfera de posibilidades de Riemann está bastante más oculto, con una relación mucho menos clara con la geometría espacial.
El extraño giro de 720º del electrón para quedarse igual es toda una paradoja. En muchas ocasiones nos parece que la mecánica cuántica presenta fenómenos completamente fuera de toda lógica, pero al analizar infinidad de situaciones completamente normales para nosotros a la luz de esta asombrosa teoría observamos que sin ella no tienen explicación. La propia cohesión de la materia, tal como la conocemos, o la existencia de las cuatro fuerzas fundamentalesno tendrían sentido. En este último caso en sus fundamentos, paradojicamente, se encuentra el propio principio de incertidumbre. Un principio “engorroso” que parece que sólo sirve para impedirnos medir con infinita exactitud.
Los fotones y los neutrinos , al ser partículas sin masa, comparten la propierdad de que su eje de rotación es siempre paralelo a la dirección del movimiento , mientras que otras partículas rotan en direcciones arbitrarias.Siempre será difícil describir el espín con palabras sencillas. La mecánica cuántica hace imposible definir con precisión la dirección del eje de rotación, excepto para los dos casos mencionados. Sin embargo, para objetos grandes que rotan con velocidades altas, la dirección de rotación puede tener un significado más preciso (un púlsar por ejemplo).
Pero hablemos un poco de las partículas que tienebn espín entero, llamamdos “Bosones” y, de las que tienen espín entero más un medio que se llaman”Fermiones”. Cimprobados los valores del espín en una Tabla se puede comprobar que los “Leptones” y los “Bariones” son fermiones, y que mos “mesones y los fotones” son Bosones. En muchos aspectos, los fermiones se comportan de manera diferente de los bosones. Los fermiones tienen la propiedad de que cada uno de ellos requiere su propio espacio: dos fermiones del mismo tipo no pueden estar en el mismo punto, y sus movimientos ewstán regidos por ecuciones tales que se evitan los unos a los otros. De hecho, la fuerza entre fermiones pueden ser atractivas o repulsivas. El fenómeno por el cual cadqa fermión tiene que estar en un “estado” diferente se conoce como Principio de esclusión de Pauli. Cada átomo está rodeado por una nube de electrones, que que son fermiones (espín ½). Si dos átomos se aproximan entre sí, los electrones se mueven de tal manera que las dos nubes se evitan una a otra. dando como resultado una fuerza repulsiva. En nuestras vidas cotidianas tenemos un ejemplo casi a diairio cuando por cualquier circunstancias batidos las palmas de las manos, la capa electrónica ervita que las manos se introduzcan la una dentro de la otra traspasándose, y, de la misma manera ocurre cuando apoyamos con fuerza la palma de la mano en la pared haceindo presión, la capa electrónica de la mano y de la pared, impide que la mano la pueda atravesar.
Es curioso como este fenómeno de los fermiones que llamamos Principio de Exclusión de Pauli, incide de manera directa en el destino de algunas estrellas: Cuando una estrella como nuestro Sol, por ejemplo, llega a su fase final y de gigante roja comienza a contraerse por la fuerza de la gravedad, una vez liberada de la fuerza de repulsión que la mantenía a raya, la gravedad contrae más y más la masa de la estrellas pero, al llegar a cierto punto, los electrones se ven tan juntos que se sienten muy incómodos ya que, al ser fermiones, no pueden ocupar ninguno de ellos el mismo lugar de otro, así que, se degeneran y comienzan a moverse con velocidad alucinantes, y, tal actividad es más que sificiente para que la contracción de la estrella se frene y, de esa manera, queda finalmente constituida como estrella anana blanca. Si la masa de la estrella original es mayor que la del Sol, en el mismo proceso y por las mismas causas, al ser aprisionadas las particulas de la estrella que conforman su materia, es decir, protones y neutrones junto a los electrones, lo primero que ocurre es que, los electrones y los protones se funden y forman neutrones que, al ser presionados a juntarse, se degeneran como antes lo hicieron los electrones, y, frenan la implosión de la estrella que queda constituida como una estrella de Neutrones.
En contraste con el característico individualismo de los fermiones, los bosones sde comportan colectivamente y les gusta colocarse a todos en el mismo lugar. Un láser, por ejemplo, produce un haz de luz en el cual muchísimos fotones llevan la misma longitud de onda y dirección de movimiento. Esto es posible porque los fotones son bosones y tienen espín entero.
Hay otra regla de juego que nuestra familia de partículas elementales debe obedecer: cada partícula tiene su correspondiente antipartículas. Las partículas tienen el mismo espín y exactamente la misma masa que sus antipartículas, pero las cargas eléctricas, igual que los números llamados S, I3, L y B, son todas opuestas.
Aunque pueda parecer sencillo, el lidiar con estas tres familias de partículas que son, enn realidad las que conforman todo lo que existe en el mundo (entendiéndose por el mundo el universo entero), no es fácil y de ellas, surgen muchas implicaciones, algunas que no hemos podido llegar a entender aunque, en honor a la verdad tendremos que decir que, en lo más básico, podemos formular hipótesis y teorías que las implican y que están acordes con la realidad observada en el laboratorio experimental. Sin embargo, muchos son, todavíoa, los secretos que nos esconden y al que nuestro intelecto no ha podido llegar aún. Sin embargo, si nos dan más tiempo, todo llegará.
Y, a todo esto, no debemos olvidar que, aparte de las propiedades que dichas partículas pueden tener de manera indivisual, todas tienen que convivir con las cuatro fuerzas fundamentales de la Naturaleza que, de alguna manera, inciden en ellas de mil maneras diferentes.
Toda la materia del Universo, nosotros también, supeditamos nuestros comportamientos a lo que rige la norma que estable esatas cuatro fuerzas fundamentales del Universo que, junto con las constantes universales, hacen de nuestro universo lo que es y permite, que la vida esté presente para observar todas estas maravillas.
emilio silvera
Jul
11
La Imposibilidad de saberlo todo
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (10)
Está claro que, cuando surgen noticias como aquella que tanto revuelo formó, en relación a los neutrinos que corrían más que la luz, nos siver de toque de atención para que despertemos a la realidad de que en el Universo, existen muchas, muchísimas cosas que no sabemos. Es raro el día que no podemos leer noticias sorprendetes:
“Los astrónomos han descubierto la masa más grande y antigua de agua que se haya detectado en el universo, una gigantesca nube de 12 mil millones de años y que alberga 140 billones de veces más agua que todos los océanos de la Tierra juntos. La nube de vapor de agua rodea a una agujero negro supermasivo llamado cuásar situado a 12 millones de años luz de la Tierra. El descubrimiento muestra que el agua ha sido frecuente en casi toda la existencia del universo.” Dijeron los investigadores.
“Debido a que la luz que vemos ahora de este cuásar de más de 12 mil millones de años, estamos viendo el agua que estaba presente sólo alrededor de 1,6 millones de años después del comienzo del universo”, dijo en un comunicado el coautor del estudio, Alberto Bolatto de la Universidad de Maryland. “Este descubrimiento lleva la detección de agua mil millones años más cerca del Big Bang que cualquier otro encontrado”.
El descubrimiento se ha hecho observando las inmediaciones del cuásar APM 08279+5255, una gigantesca fuente de energía electromagnética 20 mil millones de veces más grande que nuestro Sol y que es posiblemente la cuna de una nueva galaxia en formación. Gracias a las peculiares circunstancias que se dan en torno a este cuásar ha sido posible la formación de una reserva de agua de tan enmensas proporciones, según afirma Matt Bradford del Jet Propulsion Laboratory.
El vapor de agua en el quásar se distribuye alrededor del agujero negro masivo en una región que abarca cientos de años luz. La nube tiene una temperatura de menos 63 grados Fahrenheit, y 300 billones de veces menos densa que la atmósfera de la Tierra.
Esta cifra puede parecer fría y tenue, pero significa que la nube es cinco veces más caliente y de 10 a 100 veces más densa que lo que es típico de galaxias como la Vía Láctea, dijeron los investigadores.
Además de arrojar luz sobre los inicios del universo, la enorme nube de vapor también revela información importante sobre el cuásar, dijeron los investigadores. Las mediciones de vapor de agua y de otras moléculas, tales como monóxido de carbono, sugieren que hay suficiente gas para alimentar el agujero negro hasta que crezca cerca de seis veces su tamaño. Pero no está claro que esto vaya a pasar, según los investigadores, ya que parte del gas puede terminar condensándose en estrellas o puede ser expulsado del cuásar. El estudio ha sido aceptado para su publicación en el Astrophysical Journal Letters.
Claro que, todo esto, la noticia en sí al igual que otras muchas que diariamente circulan por ahí, no pocas veces son aproximaciones de lo que en realidad es, y, con los datos que se han podido captar los científicos hacen sus propios cálculos y cábalas que los llevan a exponer “lo que ellos piensan” de este o aquel descubrimiento o suceso.
A mí me gustaría saber, a qué se refieren los científicos cuando afirman que ellos “conocen”, por ejemplo, lo que hay dentro del átomo, o, lo que pasó en los primeros tres minutos de la vida del Universo (cosa que nadie puede saber, toda vez que antes de que el tiempo llegara a cumplir el primer minuto de su vida, en lo que llamamos Tiempo de Planck, existe una zona oscura que no hemos podido desvelar y en la que no ha sido posible entrar con la lámpara del saber para descubrir lo que allí pudo pasar en esa primera fracción de tiempo). Y, si eso es así (que lo es), en realidad los científicos se están refiriendo a que tienen un modelo del átomo o del Universo temprano y que este modelo encaja con los resultados hasta ahora obtenidos por la observación y el experimento.
Por ejemplo: La ilustración -arriba- es un modelo que representa la estructura de una célula eucariota animal. Los modelos científicos se caracterizan porque son construcciones de la mente humana, y representan ideas o conceptos que se tienen sobre algún aspecto de la realidad. Los modelos científicos cumplen un papel importante en la construcción del conocimiento y la comprensión de los fenómenos naturales. Ayudan a predecir, describir y explicar fenómenos naturales, objetos y estructuras; y simplifican las observaciones haciendo más fácil trabajar con ellos, especialmente cuando se trata de objetos que no se perciben a simple vista, como una estructura microscópica. ¿Cómo se llega a determinar un modelo de la célula que no solo representa su estructura sino también su función? Sin duda, el desarrollo de instrumentos ópticos cada vez más precisos y de técnicas moleculares de visualización, han desempeñado un papel preponderante en estos logros científicos ya que permitieron conocer lo inalcanzable para el ojo humano.
Para definir sucesos muy lejanos en el Tiempo, y, captar objetos que estaban allí presentes, nos valemos de instrumentos muy sofisticados tecnológicamente hablando, con múltiples funciones que pueden, captar la luz que desde allí fue radiada y, de esa manera podemos construir modelos que nos acerquen a lo que realmente pudo suceder.
este tipo de Modelo científico no es una representación de la cosa real, del mismo modo que un modelo de nave espacial no es, en sí mismo una nave espacial sino, su representación para que nos permita concoer cómo sería esa nave. Otros modelos son representados mediante imágenes mentales que son descritas a través de ecuaciones matemáticas.
Cuando un científico afirma, por ejemplo, que el núcleo de un átomo está compuesto por por partículas denominadas protones y neutrones, lo que en realidad debería decir es que el núcleo del átomo se comporta, bajo determinadas circunstancias, como si estuviera formado por protones y neutrones. Los mejores científicos toman el “como si” como se lee, pero entienden que sus modelos son, efectivamente, sólo modelos; otros “científicos” olvidan a menudo esa diferencia crucial.
Por lo general, la gente cree que los científicos se dedican a efectuar experimentos para probar la exactitud de sus modelos con una precisión cada vez mayor -hacia posiciones con más decimales, más exactas- ¡En absoluto! La principal razón para llevar a cabo experimentos que demuestren predicciones previas no comprobadas es descubrir dónde pueden fallar sus Modelos. Encontrar defectos en sus modelos es la mayor aspiración de los buenos cioentíficos, ya que, de esa manera, saben en qué fallan y los pueden mejorar.
Es cierto que, a través de esos modelos, no pocas veces, hemos podido coger los conductos luminosos que transportan las respuestas a dealgunos de lo ecretos que del Universo queremos desvelar. Se experimento y se conforman modelos por ordenador o matemáticos que nos puedan expresar la realidad de aquellos resultados experimentales.
Recordemos al escocés James Clerk Maxwell que, partiendo del trabajo experimental del londinense Michael Faraday, descubrió el grupo de ecuaciones que describe la electricidad y el magnetismo dentro de la estructura de un único modelo. Son realmente aspectos diferentes de la misma interacción, como las dos caras de una misma moneda.
Las fuerzas de la Naturaleza
Encontramos, sin embargo, grandes diferencias entre las distintas fuerzas de la Naturaleza. Por ejemplo, podemos contemplar varias diferencias genuinas e importantes entre la interacción gravitacional y la interacción electromagnética. La Gravedad es muchísimo más débil que el electromagnetismo. Toma la fuerza de toda la Tierra para sujetar un alfiler de acero al suelo, por ejmplo, pero un simple imán de juguete de un niño puede fácilmente vencer esta fuerza y elevar el alfiler.
Debido a que los electrones y los núcleos atómicos tienen carga eléctrica, y la fuerza de atracción de un sólo átomo sobre otro es tan profundamente pequeña que se puede ignorar, todas las interacciones significativas entre los átomos son electromagnéticas. De modo que las fuerzas electromagnéticas mantienen nuestro cuerpo unido y hacen trabajar nuestros músculos. Si recogemos una manzana de la mesa, las interacciones electromagnéticas en nuestros músculos están dominando a la interacción gravitacional entre la manzana y toda la Tierra. En un sentido real, somos más poderosos que un planeta, gracias a las interacciones electromagnéticas
La fuerza de Gravedad determina la atracción de los cuerpos
Claro que, aunque la Grqavedad es débil, tiene un largo alcance. La interacción entre el Sol y los planetas mantiene a los planetas en sus órbitas y a la Luna unida a la Tierra por los hilos invisibles de la fuerza gravitatoria. Ambas fuerzas, la Gravedad y el electromagnetismo, tienen el mismo alcance que se ha fijado en ∞ (infinito).
El mismo Sol es parte de un sistema de de miles de millones de estrellas que confroman nuestra Galaxia de un centener de miles de años luz de diámetro y que, a pesar de esa inmensidad, todos esos cuerpos están unidos por la Gravedad.
Pero la diferencia entre estas dos fuerzas es que se presentan en distintas variedades, que se cancelan las unas a las otras. En un átomo, la carga positiva del núcleo se cancela por la carga negativa de los electrones con lo rodean, siendo fuerzas equivalentes la positiva y negativa, el resultado final es cero que consigue la estabilidad del átomo.
Otra diferencia de estos dos fuerzas es que, la Gravedad siempre atrae, mientras que, el magnetismo, lo mismo atrae (fuerzas opuestas) que rechaza (fuerzas iguales). Más sutílmente, podemos ver que no todas las fuerzas afectan a todo del mismo modo. La Gravedad parece ser universal y afecta a todo. Pero las influencias eléctricas y magnéticas sólo afectan a determinados tipos de objetos. esta realidad fue de gran utilidad cuando los físicos empezaron a investigar dentro del núcleo.
Aquí se construyó un Acelerador de partículas como si de una obra de arte se tratara. Es el Fermilab que, ocupa 30 kilómetros cuadrados de campos de cereales reconvertidos, unso ocho kilómetros al este de Batavia. Illinois y situado a una hora de volante de al oeste de Chicago. En la entrada a los terrenos por la Pine Street hay una gigantesca estatua de acero de Robert Wilson, su primer director y el principal responsable de su construcción, un triunfo artístico, arquitectónico y científico. La escultura titulada Simetría rota, consiste en tres arcos que se curvan hacia arriba, como si fueran a cortarse en un punto a más de quince metros del suelo. No lo hacen, al menos no limpiamente. Los tres brazos se tocan, pero casi al azar, como si los hubieran construido diferentes contratistas que no hablasen entre sí. La escultura tiene un aire de un “ay” por que sea así, en lo que no es muy distinta de nuestro universo. Si se camina a su alrededor, la enorme obra de acero aparece desde cada ángulo desapaciblemente asimétrica. pero si uno se tumba de espaldas justo debajo de ella y mira hacia arriba, disfrutará del único punto privilegiado en el que la estructura es imétrica. la obra de arte de Wilson casa de maravilla con el Fermilab, pués ahí el trabajo de los físicos consiste en buscar las pistas de lo que sospechan es una simetría oculta en un universo de apariencia muy asimétrica.
El Edificio está inspirado en la Catedral Francesa que Wilson visitó, la de Beauvais, empezada en el año 1225, La catedral de Beauvais tiene dos torres separadas por el Prebisterio. El Wilson Hall, concluido en 1972, consta de dos torres gemelas (las dos manos en oración) unidas por galerias a distintas alturas y uno de los mayores atrios del mundo. El rascacielos tiene a la entrada un estanque donde se refleja con un alto obelisco en una de sus extremos. El obelisco, con el que terminaron las contribuciones artísticas de Wilson al Laboratorio, se conoce como la última construcción de Wilson.

Sigamos con el trabajo. En lugares como este del Fermilab (también el CERN), se tienen preparadas instalaciones de alta tecnología y de una sofisticación de muy alto nivel, hay aparatos cuya sensibilidad podríamos comparar con lo más depurado en el arte de la finura técnica que el ser humano halla podido alcanzar.

Después de la colisión, hay que desenredar la maraña
![[6+Mecánica+Cuántica_alasombradelasabina.jpg]](http://3.bp.blogspot.com/_PBxd3aSM_Po/SaFol4FcKTI/AAAAAAAABHg/KZbwHwxpYpQ/s1600/6%2BMec%C3%A1nica%2BCu%C3%A1ntica_alasombradelasabina.jpg)

¿Quién sabe los maravillosos mundos que nos podemos encontrar?
Con frecuencia nos vemos hablando de fotones y de Gluones que son Bosones, o, de Electrones y Quarks que son fermiones y, a todos ellos los realcionamos con las interacciones y los campos de materia que llenan todo el espacio, haciendo más borrosa la distinción entre “partículas” y “fuerzas”. Pero existen diferencias. La principal diferencia entre estas dos familias es que los Bosones se pueden crear de energía pura sin límite -cada vez que se enciende una luz, billones y billones de fotones recien creados se desbordan por el lugar. Pero el número total de fermiones en el Universo se han mantenido inalterable.
Es increíble lo que supone sumergirse en el “mundo” de los modelos científicos y poder repasar algunos de ellos y lo que en realidad suponen, las consecuencias de los buenos modelos, mirar el resultado de las investigaciones y los experimentos y comparar las coincidencias con el Modelo elaborado para poder perfeccionarlo, esa es la verdadera misión de un buen científico, y, decir: “porque yo se que…” Mire señor, usted sólo sabe que no sabe nada. (Bueno, es una forma de hablar para destacar la enorme ignorancia con la que cargamos).
emilio silvera
Jul
10
¡La evidencia experimental! Será el único camino
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)

¿De qué está hecho el Universo?
¿Qué lo mantiene Unido?
¿Qué es, en realidad la materia?
Muchos han sido los medios que lanzando las campanas al vuelo, se atrevieron decir: “¡Por fín, se encontró la “partícula de Dios!” Cuando lo cierto es que, simplemente se publicó (31/07/2012), en los experimentos ATLAS y CMS del LHC se ha descubieto una partícula, nunca antes vista. Un Bosón con una masa cercana a los 126 GeV que, es la masa que habían pensado tendría el Higgs.
El descubrimiento se enmarca dentro de la búsqueda del Bosón de Higgs del Modelo estándar de las interacciones fundamentales, si bien no es posible afirmar aún si dicha partícula predice las propiedades intuidas por la teoría, y, siendo así (que lo es), no podemos afirmar que sea, el buscado Bosón de Higgs esa partícula observada.
Nos dicen que existen lugares que llaman los Océanos de Higgs, y, por ellos, circula libremente el dichoso Bosón que, también según nos dicen, proporciona la masa al resto de las partículas.
El modelo estándar de la física de partículas es una teoría que describe las relaciones entre las interacciones fundamentales conocidas y las partículas elementales que componen toda la materia. Es una teoría cuántica de campos desarrollada entre 1970 y 1973 que es consistente con la mecánica cuántica y la relatividad especial. Hasta la fecha, casi todas las pruebas experimentales de las tres fuerzas descritas por el modelo estándar están de acuerdo con sus predicciones. Sin embargo, el modelo estándar no alcanza a ser una teoría completa de las interacciones fundamentales debido a que no incluye la gravedad, la cuarta interacción fundamental conocida, y debido también al número elevado de parámetros numéricos (tales como masas y constantes que se juntan) que se deben poner a mano en la teoría (en vez de derivarse a partir de primeros principios).

Todo ese galimatias de más abajo, es, el Modelo estándar y aún más: Veréis…
¿Impresionados? No era mi intención asustar, solo he he puesto la fórmula para que te fijes en un detalle y comprendas por qué se empeñan los científicos en buscar el bosón de Higgs. Vuelve a mirar la ecuación y fíjate en las “H“. Ese valor representado en la fórmula es elbosón de Higgs y, aunque no lo hemos encontrado, es fundamental para que el Universo se comporte como se comporta, ya que cada vez que ponemos en marcha la ecuación, nuestras predicciones funcionan. (fuente fórmula blog inti-illimani).
Se cree que el Higgs guarda , por tanto, una relación íntima con el concepto de unificación de fuerzas y con el origen de la masa. Se trataría además de la primera partícula escalar con caracter fundamental, esto es, que no necesita estar compuesta por entidades más pequeñas. No es por tanto sorprendente que el descubrimiento reciente en el LHC de un nuevo Bosón con una masa de unos 126 GeV, con unas propiedades compatibles con el Bosón de Higgs, tanga de fiesta a toda la comunicad cientñifica del CERN que, de ser cierto el hallazgo, verían de cerca el Nobel que les otorgarían.
Claro que nadie sabe como sería el Bosón de Higgs, qué condiciones físicas debe tener y que masa, las predicciones teóricas no lo dicen en el modelo mH Es natural pensar que sea del mismo orden que la escala caracterísitica de la interacción electrodébil. mH ≈ 100 GeV – 1 TeV, y de hecho, la mayor parte de las predicciones conducen de una forma u otra a este intervalo de masas. La masa debe ser por tanto determinada experimentalmente. Una vez conocida esta, las propiedades de producción y desintegración del Bosón de Higgs están realmente determinadas por la teoría.
Ya veremos si realmente, la experimentación corrobora lo que predice la teoría y, podemos verificar los mecanismos mediante los cuáles, el Bosón de Higgs, puede “dar” masa a las partículas. Claro que, siempre en un escenario cercano al Modelo Estándar, eunbosón de higgs de 126 GeV posee una anchura de desintegración de unos pocos megas electrón voltios. Incluso para los aceleradores de mayor energía, esta anchura es aún suficientemente grande como para que la longitud media de desintegración del Bosón de Higgs sea inferior a una milésima de micra, demasiado pequeña para ser visible en un detector.
El choce de los haces de hadrones, produce una miríada de infinitesimales objetos producto de los protones rotos y que, de entre tanta “basura”, tendremos que localizar la probable partícula llamada Bosón de Higgs, lo cual, no resultará nada fácil.
El Bosón de Higgs debe aparecer por tanto como una partícula que se desintegra inmediatamente en el punto en el que los haces colisionan, además, la medida de su masa no estará condicionada por su anchura de desintegración, sino por la resolcuión energética del detector, que, en general, es al menos del orden de 1 GeV.
El Higgs se produce predominantemente en el LHC a través de un proceso de fusión de gluones: gg→ H. En cuanto se refiere a modos de desintegración, una masa de unos 126 GeV es especialmente interesante porque permite el acceso a varios canales diferentes.
Si bien la desintegración dominante para esta masa es en un par de Quarks b, el fondo enorme de otros procesos con este mismo estado final impide una búsqueda directa a partir del proceso gg→ H. Afortunadamnete existen varios canales alternativos con fracciones de desintegración aceptables, como pares de Bosones W o Z. Por último, el canal de desintegración en dos fotones, H → γγ, a pesar de su baja frecuencia, es extremadamente limpio desde el punto de vista experimental.
En todos los canales citados anteriormente, únicamente H → γγ y H → ZZ, y este último en un estado final con electrones o muones, permiten una medida precisa de mH al nivel de 1 GeV, y por tanto observar al Bosón de Higgs como exceso en el espectro de masas. Las colaboraciones ATLAS y CMS han medido mH = 120.0 ± o,4 GeV y mH = 125.3 ± 0,4 (stat.) ± 0,5 (syst.) GeV , respectivamente.
Está claro que la búsqueda del Bosón de Higgs no está nada clara y que, son muchos los parámetros que nos pueden llevar a tomar, alguna partícula parecida por ese extraño Bosón que se dedica a dar masa a las demás partículas, y, debemos comprobar, si aparece por fin, de qué mecanismo se vale para tal “milagro”, o, mejor maravilla.
Sí, se han hecho los experimentos necesarios para encontrar al dichoso Bosón y, según la masa de alguno, podría ser el que buscamos y que tanto necesita el Modelo Estándar para poder cuadrar sus cuentas… ¡En parte! Ya que otros parámetros metidos mcon calzador también ntendrán que ser justificados.
Los componentes fundamentales de la materia son tres familias de Quarks y otras tres familias de Leptonez, puntuales a 1 am, que interaccionan fuerte y débilmente de acuerdo con el Modelo. Las constantes de acoplo vienen dado por:
GF = (1.166371 ± 0,000006) 10-5 GeV-2
α-1 = 1.37.035999710 ± 0,000000000096
sin2 θW = 0,23149 ± 0,00013
M(Zº) = 91.1876 ± 0.0021
αs(Zº) = 0.1217 ± 0.0017
La constante de estructura fina y la constante de acoplo fuerte dependen de la escala a la que se han medido de acuerdo a las predicciones del grupo de renormalización.
La constante de acoplamiento resulta de gran utilidad en la teoría cuántica de campos. Un papel especial es representado en las teorías cuánticas relativistas por las constantes de acoplamiento que no poseen dimensiones, es decir, son números puros. Un ejemplo es la constante de estructura fina)
(donde e es la carga del electrón, ε0es la permitividad del vacío, es la constante de Planck racionalizada y c es la es la velocidad de la luz) es tal constante de acoplamiento sin dimensiones que determina la intensidad de la fuerza electromagnética sobre un electrón.
Claro que, todo este recorrido nos lleva a pensar que no estamos en posesión de verdad alguna, hemos podido alcanzar algunos conocimientos que nos acercan a ella y, lo cierto es que, esa verdad que buscamos, está en poder de la Naturaleza que, celosamente la esconde hasta que, nos crea preparados para que la podamos desvelar y, mientras tanto, nos deja “jugar” a física para que, nuestra curiosidad, no se sienta frustrada… del todo.
Publica: emilio silvera
Se agradece la aportación realizada por los físicos Juan Alcaráz, Javier Cuevas, Carmen García y Mario Martinez que, con su trabajo publicado en el volumen 26, número 4, de 2012, han ayudado a entender, algo mejor, el complejo tema del Bosón de Higgs.
Jul
10
¡La misteriosa Mecánica cuántica! y, “sus alrededores”
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (5)
Se cuenta que una vez Albert Einstein alagó al actor Charles Chaplin diciéndole: “Lo que siempre he admirado de Usted es que su arte es universal, todo el mundo le comprende a admira”. A esto Chaplin respondió a Einstein: “Lo suyo es mucho más digno de respeto, todo el mundo le admira y prácticamente nadie le comprende”.
Es cierto lo que Chaplin decía, todos admiraban a Einstein y pocos comprendían sus postulados. De hecho, cuando estaba buscando la teoría de Todo, la gente se amontonaban, literalmente, ante los escaparates de la Quinta Avenida para ver las Ecuaciones que pocos entendían…¡Así somos los Humanos! Lo que no comprendemos nos produce temor o admiración, o, las dos cosas a la vez.
Gerad ´t Hooft
Em Noviembre del año pasado, me desplace a Madrid invitado para asistir a una Conferencia que sobre el LHC y el Bosón de Higgs impartía el físico y premio Nobel de Física Gerad ´t Hooft. La charla de ‘t Hooft se inscribía en el ciclo La ciencia y el cosmos, y, entre otras cosas nos decía a los presentes que, La física, en concreto la física de partículas, ha sido siempre su gran pasión. “cuando era joven, la física estaba cambiando el mundo radicalmente: la energía nuclear, la televisión, los ordenadores, las primeras misiones espaciales….yo quería formar parte de todo eso”. Y las partículas elementales “eran el mayor misterio de todos”, añade. “En cierto modo aún lo son, aunque ahora sabemos de ellas muchísimo más que entonces. Hoy los ordenadores siguen siendo emocionantes, la biología y el código del ADN, la astronomía y los vuelos espaciales… Sigue habiendo muchas cosas capaces de estimular la imaginación de jóvenes deseosos de aprender cosas nuevas impulsados por el deseo de estar ahí, en el momento en que se están haciendo los descubrimientos que cambian el mundo”.
Gerard ‘t Hooft explicó lo que significa, en los modelos teóricos, el famoso bosón: “El campo de la partícula de Higgs actúa como una especie de árbitro; proyectado contra otras partículas, este campo determina su comportamiento, si tienen carga o masa y hasta qué punto se diferencian de otras partículas. Si no encontramos el Higgs, si realmente no está, necesitaremos algo más que haga ese papel de árbitro”. Eso significaría, continuaba el Nobel, que “nuestras teorías ya no funcionan, y han funcionado tan bien hasta ahora que eso es difícil de imaginar”.
Sí al LHC se le resiste el Bosón de Higgs…, bueno, si es que anda por ahí
Fue en 199 cuando ‘t Hooft recibió el premio Nobel de Física 1999 (junto con su colega y director de tesis Martinus Veltman), por “dilucidar la estructura cuántica de las interacciones electrodébiles” -según palabras de la Academia sueca- de la física de las partículas elementales.
Acera del Gran Colisionador de Hadrones (el acelerador LHC situado en el Laboratorio Europeo de Física de partículas, CERN, junto a Ginebra), el científico holandés explica que se trata “de una máquina única en el mundo” y continúa: “Esperamos descubrir nuevas cosas con él y poner a prueba teorías que, hasta donde hemos podido comprobar hasta ahora, funcionan muy bien, pero necesitamos ir más allá”.
El descubrimiento de la partícula de Higgs, o bosón de Higgs, es el objetivo número uno del LHC, y tras un largo período de funcionamiento del acelerador, los miles de físicos que trabajan en los detectores, han logrado acotar el terreno de búsqueda, aunque, insisten, seguramente necesitarán tomar muchos más datos para descubrirlo. O tal vez descubrir que no existe, lo que supondría una revolución en la física de partículas, al obligar a replantear el llamado Modelo Estándar, que describe todas las partículas elementales y sus interacciones, y que hasta ahora funciona con altísima precisión aunque, dicen los expertos, está incompleto.
Gerard ‘t Hooft, uno de los grandes físicos teóricos de partículas elementales, considera que será muy difícil desarrollar una teoría del todo, un cuerpo teórico capaz de explicar todas las fuerzas que actúan en la naturaleza aunando la Relatividad General de Einstein y la Mecánica Cuántica, tan eficaces por separado en la descripción del macrocosmos y el microcosmos, respectivamente. “Mi impresión es que esta teoría unificadora, una teoría del todo, aún requerirá el trabajo de muchas nuevas generaciones de investigadores jóvenes y listos”, afirma. “No llegaremos a ella de un momento a otro por la simple razón de que el universo es demasiado complejo para que una única teoría lo abarque todo. Vale, no digo que sea imposible, pero me parece muy improbable. Y mientras llega, queda mucho por descubrir, incluso hallazgos espectaculares”.
Por otra parte, el científico holandés ha señalado que el LHC realiza más actividades que intentar encontrar el bosón de Higgs. En este sentido, ha destacado que se buscan también partículas que podrían construir la materia oscura, un tipo de materia de la que los físicos tienen la certeza de que es cinco veces más abundante que el universo que la materia ‘normal’, pero que no absorbe, refleja ni emite luz, lo que hace muy difícil su detección y, por tanto, estudiar su naturaleza. Del mismo modo, también se está desarrollando una teoría capaz de unificar la teoría de la relatividad general de Einstein y la mecánica cuántica que, según ha explicado Hooft, “permitiría descubrir lo que ocurre dentro de los átomos”.
Recuerdo un pasaje escrito por él al principio de su interesante e instructivo libro “Partículas Elemetales”, que decía:
“Mi intención es narrar los últimos 25 años de investigación sobre las partículas más pequeñas que constituyen la materia. Durante esos 25 años, yo empecé a ver la Naturaleza como un test de inteligencia para toda la humanidad en su conjunto, como un gigantesco puzzle con el que podemos jugar. Una y otra vez, nos tropezamos con nuevas piezas, grandes i pequeñas, que encajan maravillosamente con las que ya tenemos. Yo quiero compartir con ustedes la sensación de triunfo que sentimos en esos momentos.”
Tenía la intención (si se presentaba la oportunidad), de preguntarle sobre “su Principio Holográfico” pero, no pudo ser. Sólo pude saludarlo e intercambiar unas breves palabras junto con Ignacio Cirac presente también en el evento.
Publicó el principio holográfico, el cual explica que la información de una dimensión extra es visible como una curvatura del espacio tiempo con una menos dimensiones. Por ejemplo, los hologramas son imágenes de 3 dimensiones colocadas en una superficie de 2 dimensiones, el cual da a la imagen una curvatura cuando el observador se mueve. Similarmente, en relatividad general, la cuarta dimensión esta manifestada en 3 dimensiones observables como la curvatura de un sendero de un movimiento de partícula (criterio) infinitesimal. Hooft ha especulado que la quinta dimensión es realmente la fábrica del espacio-tiempo.
Acordaos de que, a mediados del año 2,003 apareció la noticia de que la “información sería el componente fundamental de la naturaleza” postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, basadas en el “Principio Holográfico”. Esta teoría, por singular y chocante que pareciese en su momento ha tenido a lo largo de estos siete años una influencia notable tanto en la sociedad científica como en los círculos alternativos.
Personajes tan influyentes como Deepak Chopra sin ir más lejos habla del ámbito cuántico como el campo de información de donde parte todo lo conocido, materia, emociones, pensamientos. El controvertido joven físico Nassam Haramein defiende un universo basado en el holograma. Científicos japoneses -al igual que del resto del mundo- investigan con hologramas creando imágenes 3D o explican el funcionamiento del mundo físico basado en los campos de energía e información. Hay hasta “farmacología holográfica” a cargo de empresas farmaceúticas. El año pasado el físico Craig Hogan tras la detección de un extraño ruido en el detector de ondas gravitacionalesel GEO 600, afirma que podría probar que, efectivamente, vivimos en un holograma.
La información sería el componente fundamental de la naturaleza. Es la que especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. El Big Bang que dio lugar al nacimiento del Universo tendría más que ver con una gigantesca “bajada” de bytes de información por parte de un superordenador, que con una explosión masiva de materia, según una nueva teoría que establece que en su origen la naturaleza está formada únicamente por pequeños paquetes de información pura que son los que especifican el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia.
El ser humano continúa con su carrera particular para descubrir lo que siempre ha querido saber: quiénes somos y de dónde venimos. Esas dos preguntas esenciales son, en realidad, el motor gracias al cual se mueve gran parte de la investigación científica de todos los tiempos.
En esta carrera por buscar certezas, cosas tan inquebrantables para explicar el origen del mundo como son los átomos o los quarks están quedando relegados a segundo término para dar paso a nuevas teorías.
Una de las más interesantes, postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, afirma que en el origen de la naturaleza podría haber únicamente ultrapequeños paquetes de información pura.
Aunque parezca raro la información no viaja en un bloque como lo haría una carta, sino que esta se divide en pequeños paquetes de información, viajando a través de los diferentes canales de la red y llegando todos al mismo punto. Para esto es preciso que todos los ordenadores hablen el mismo idioma, o lo que es decir el Protocolo TCP/IP, (que es el idioma) que en un principio empezó a usarse en 1983 para dirigir el tráfico de los paquetes de información por Arpanet, garantizando así que todos lleguen a su destino.
La @ que parece que nació a partir de internet se utilizaba en la antigüedad, como unidad de peso o incluso para decir a cuanto costaba algo en libros de contabilidad. Sin embargo se puso de moda gracias al ingeniero estadounidense Ray Tomilson, que diseñaba un sistema de correo electrónico para Arpanet, simplemente bajo los ojos al teclado y eligió un signo que no se utilizara en los nombres de usuario.
Según explica al respecto Newsfactor, esta teoría, basada en el “Principio holográfico”, establece que la información (“información” en este caso significa bits fundamentales de materia y las leyes físicas que los gobiernan) especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. La información sería pues, una variable para llegar a una “teoría del todo”.
Y, más allá de las cuerdas…
Según la teoría cuerdas, el espacio está descrito por la vibración, en miles de maneras, de diminutas cuerdas de una dimensión. Una cuerda vibrando arriba y abajo a cierta frecuencia podría crear un átomo de helio o una ola gravitacional, tal y como las cuerdas de una guitarra crean diferentes sonidos a diferentes frecuencias.
Los teóricos de esta teoría han mantenido hace mucho tiempo que estas cuerdas son el componente fundamental de la naturaleza. El “Principio Holográfico”, sin embargo, cambia esta noción y mantiene que, mirando más de cerca una cuerda, se ven bits cuánticos, llamados “baldosas de Planck”, que, engarzados, dicen a las cuerdas como tienen que vibrar.
Estas “baldosas de Planck” son bits cuadrados que delimitan un “área de Planck”, o lo que es lo mismo, un trillón de un trillón, de un trillón de un trillón de un trillón de un trillón de un centímetro cuadrado. Una cuerda de baldosas de Plank sería la versión natural de un byte.
El “Principio Holográfico”, descrito por Gerard t´Hooft y Leonard Susskind y refinado por Bousso, nos permite saber cuántos datos (bits y bytes) son necesarios para decirnos en detalle cada cosa que ocurre en cualquier región del espacio.
¡Por imaginación que no quede!
emilio silvera
Jul
10
El complejo universo de lo muy pequeño
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (5)
En 1970, de las siguientes características de la interacción débil sólo se conocían las tres primeras:
- La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta exclusivamente la interacción débil.
- Comparada con las demás interacciones, ésta tiene un alcance muy corto.
- La interacción es muy débil. Consecuentemente, los choques de partículas en los cuales hay neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinos para poder estudiar tales sucesos.
- Los mediadores de la interacción débil, llamados W+, W– y Z0, no se detectaron hasta la década de 1980. al igual que el fotón, tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por la que el alcance de la interacción es tan corto). El tercer mediador, Z0, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas llamada “corriente neutra”, permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.
A partir de 1970, quedó clara la relación de la interacción débil y la electromagnética (electrodébil de Weinberg-Salam).
La interacción fuerte (como hemos dicho antes) sólo actúa entre las partículas que clasificamos en la familia llamada de los hadrones, a los que proporciona una estructura interna complicada. Hasta 1972 sólo se conocían las reglas de simetría de la interacción fuerte y no fuimos capaces de formular las leyes de la interacción con precisión.
Como apuntamos, el alcance de esta interacción no va más allá del radio de un núcleo atómico ligero (10-13 cm aproximadamente).
La interacción es fuerte. En realidad, la más fuerte de todas.
Bajo la influencia de esta interacción, las partículas que pueden desintegrarse, las “resonancias” lo hacen muy rápidamente. Un ejemplo es la resonancia Δ, con una vida media de 0’6 × 10-23 s. Esta colisión es extremadamente probable cuando dos hadrones se encuentran a una distancia cercana a 10-13 cm.