jueves, 15 de mayo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Observando el movimiento combinado de núcleos y electrones

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Física

Resultado de imagen de Observar el movimiento combinado de núcleos y electrones

 … IMDEA Nanociencia y el Instituto Politécnico de Zurich han logrado observar por primera vez el movimiento correlacionado de electrones y núcleos …

Gracias a los espectaculares avances que la tecnología láser ha experimentado en la última década, hoy es posible visualizar el movimiento de los electrones en el interior de átomos y moléculas. Para esto se utilizan pulsos de luz ultravioleta o de rayos X con una duración de tan sólo unos pocos cientos de atto-segundos (10 -18 segundos), que es la escala de tiempo en la que se mueven los electrones de forma natural.

Cómo observar el movimiento combinado de núcleos y electronesUna 'cámara de electrones' fotografía los núcleos de las moléculas

 

Para esto se utilizan pulsos de luz ultravioleta o de rayos X con una duración de tan sólo unos pocos cientos de attosegundos, que es la escala de tiempo en la que se mueven los electrones de forma natural. En una molécula, además de los electrones, también se mueven los núcleos atómicos que la componen.

En una molécula, además de los electrones, también se mueven los núcleos atómicos que la componen. En un reciente trabajo publicado en la revista Nature Physics, investigadores de la Universidad Autónoma de Madrid (UAM) (España), IMDEA Nanociencia e Instituto Politécnico de Zurich observaron por primera vez el movimiento combinado de electrones y núcleos en la molécula de hidrógeno (H2), demostrando explícitamente que existe una enorme interdependencia entre ellos.

Clase digital 5. Enlaces químicos - Recursos Educativos Abiertos

 

Como electrones y núcleos son los responsables de la formación de enlaces químicos en las moléculas (desde el H2 al ADN), estos resultados abren la puerta a manipular las propiedades de estos enlaces actuando indistintamente sobre electrones o núcleos en intervalos de tiempos del orden de los atto-segundos.

Observando el movimiento combinado de núcleos y electrones

 

Resultat d'imatges de Las reacciones químicas son consecuencia de la ruptura y formación de enlaces entre núcleos atómicos

Las reacciones químicas son consecuencia de la rotura y formación de enlaces entre núcleos atómicos en una molécula, lo que conduce a la formación de otras moléculas distintas. El que los enlaces se formen o se rompan se debe principalmente al movimiento de los electrones, que con su carga eléctrica negativa apantallan la repulsión entre los núcleos de carga eléctrica positiva.

Sin embargo, estos últimos también se mueven, con lo que la reactividad química es en realidad un proceso dinámico que resulta del movimiento combinado de electrones y núcleos. En general, el movimiento de los núcleos es mucho más lento que el de los electrones, porque los primeros son mucho más pesados que los segundos.

 

OC] Nubes de electrones de hidrógeno en 2D : r/dataisbeautifulMicroscopia de fotoionización para observar orbitales átomicos - La Ciencia  de la Mula Francis

 

La figura muestra que el tiempo que tarda el electrón en abandonar la molécula de hidrógeno depende fuertemente de la energía del protón y viceversa, demostrando el alto grado de correlación que existe entre ambos tipos de movimiento. (Foto: UAM)

Por ejemplo, el núcleo más ligero que existe, el del átomo de hidrógeno (protón, p+), es aproximadamente 1.800 veces más pesado que un electrón (e-). Sin embargo, cuando una molécula absorbe energía de una fuente externa, por ejemplo la luz, los núcleos pueden llegar a moverse casi tan rápido como los electrones (dependiendo de cómo se repartan la energía entre ellos).

 

Resultat d'imatges de cabe esperar que el movimiento de núcleos y electrones está correlacionado, es decir, que el movimiento de unos condicione el movimiento de los otros

  La mecánica cuántica nos mostró un “mundo” asombroso

En estos casos, cabe esperar que el movimiento de núcleos y electrones esté correlacionado, es decir, que el movimiento de unos condicione el movimiento de los otros. Como muchas de las reacciones químicas se inician irradiando las moléculas con luz externa, visualizar este movimiento correlacionado en tiempo real es de enorme importancia para entender cómo se producen tales reacciones.

“En nuestro grupo ya habíamos demostrado anteriormente que la combinación de pulsos de luz de attosegundos y femtosegundos con el denominado esquema bombeo-sonda, donde uno de los pulsos induce una cierta dinámica en un átomo o molécula y el otro toma ‘fotografías’ de la misma en distintos instantes, permitiendo visualizar el movimiento de uno o varios electrones, incluso cuando estos últimos se mueven de forma concertada”, afirma Fernando Martín, investigador de la UAM y director del trabajo.

 

Resultat d'imatges de utilizando un esquema bombeo-sonda en combinación con técnicas de detección de multicoincidencia en las que se mide simultáneamente la energía y el momento de electrones y núcleos, es posible visualizar a la vez el movimiento de ambos tipos de partículas

Observación en tiempo real del movimiento correlacionado de núcleos y electrones

Por su parte, la coautora Alicia Palacios, también investigadora de la UAM, añade: “En este trabajo hemos demostrado que, utilizando un esquema bombeo-sonda en combinación con técnicas de detección de multi-coincidencia en las que se mide simultáneamente la energía y el momento de electrones y núcleos, es posible visualizar a la vez el movimiento de ambos tipos de partículas. Además, este movimiento está en efecto correlacionado”.

 

SBND: un experimento para cazar partículas indetectables

 

Para llegar a esta conclusión, los científicos realizaron un experimento en el que la molécula de hidrógeno se bombardeó con un tren de pulsos ultravioletas de atto-segundos, sincronizado con un pulso infrarrojo de femtosegundos, y variaron el retardo entre ambos tipos de pulsos con una precisión de tan solo unas decenas de atto-segundos.

 

                          Descrita la fragmentación del agua ionizada

Esta secuencia de pulsos produce inevitablemente la ionización y la disociación de la molécula, dando lugar a la emisión de un electrón, un protón y un átomo de hidrógeno. La detección del electrón (e-) y del protón (p+) en coincidencia para todos los retrasos temporales, en combinación con elaborados cálculos mecano-cuánticos, permitió visualizar el movimiento concertado de estas dos partículas en la molécula.

Las gráficas muestran que el tiempo que tarda el electrón en abandonar la molécula de hidrógeno depende fuertemente de la energía del protón y viceversa, demostrando el alto grado de correlación que existe entre ambos tipos de movimiento. (Fuente: UAM)

Facultad de Ciencias

El “mundo” de lo muy pequeño… ¡Es tan extraño!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                 Nube de electrones que rodea al núcleo

Sabemos que los electrones son partículas de la familia de los Leptones, tienen carga negativa, que existen en una nube alrededor del núcleo atómico. Son inimaginablemente pequeños, tan pequeños que se necesita de la mecánica cuántica para explicar su comportamiento peculiar. Sin embargo y a pesar de su pequeñez, son partículas fundamentales del Universo.

Algunas propiedades:

 

El valor del radio del electrón el SI es 2.817 940 322 7 (19) × 1015 m.

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo. Simplemente con que su carga fuera distinta en una pequeña fracción… ¡El mundo que nos rodea sería muy diferente! Y, ni la vida estaría presente en el Universo.

 

   La Ciencia busca, teoriza y experimenta tratando de saber cómo funciona el universo

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

 

TEMA 8. Teoría cuántica | 8.7. Radiación del cuerpo negro

 

Hipótesis cuántica de Planck donde c es la velocidad de la luz en el vacío y k B k B es la constante de Boltzmann, k B = 1,380 × 10 −23 J/K . k B = 1,380 × 10 −23 J/K . La fórmula teórica expresada en la Ecuación 6.11 se denomina ley de radiación de cuerpo negro de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

 

La Física Cuántica! Una maravilla : Blog de Emilio Silvera V.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

 

Efecto Fotoeléctrico. Resumen

 

Einstein realizó importantes descubrimientos en el campo fotoeléctrico. Éstos le hicieron merecedor del Premio Nobel de Física en 1922. El efecto fotoeléctrico afirma que un material es capaz de liberar o hacer circular electrones por un material conductor gracias a la energía recibida por un haz de luz.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.

 

La función de onda, su ecuación y su interpretación. Postulados. – Física  cuántica en la red

La función de onda de Schrödinger nos acercó a ese mundo infinitesimal

La primera es la imagen obtenida por los físicos en el laboratorio y, la segunda es la Imagen ilustrativa de la dualidad onda-partícula, con la cual se quiere significar cómo un mismo fenómeno puede tener dos percepciones distintas. Lo cierto es que, el mundo de lo muy pequeño es extraño y no siempre lo podemos comprender.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)={\hat {H}}\Psi (\mathbf {r} ,t)}

 

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿Qué significan realmente estas ecuaciones?, ¿Qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

 

La Mecánica Cuántica! ¡El Efecto Túnel! Y, ¿cuanto más ...

Teletransporte y efecto túnel

El electrón está situado en una órbita exterior, llega un fotón energético que choca contra él, el electrón desaparece, y, de inmediato aparece en otra órbita más energética cerca del núcleo. ¿Por dónde hizo el viaje?, ¿Cómo se desplazó de una órbita a otra sin recorrer las distancias que les separan?

Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

 

El “universo de las partículas nunca ha sido fácil de comprender y su rica diversidad, nos habla de un vasto “mundo” que se rige por su propias reglas que hemos tenido que ir conociendo y seguimos tratando de saber, el por qué de esos comportamientos extraños y a veces misteriosos. Así, la pregunta anterior, de ¿qué puede significar todo eso?…

 

Teoría Cuántica 3

La pudo contestar Niels Bohr, de forma tal que,  con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

¿Qué es cuantizar?

“A principios del siglo XX la física sufrió dos revoluciones que la cambiaron para siempre. La mayor de ellas, la revolución cuántica, nos hizo ver que objetos matemáticos que dábamos por hecho que poseían existencia física, como, por ejemplo, la trayectoria de las partículas, en realidad de forma precisa no existen en la naturaleza. El principio de indeterminación nos dice que las partículas elementales no son ni ondas ni corpúsculos clásicos, sino unos objetos cuánticos que, en su movimiento, no siguen una trayectoria bien definida. En la teoría que describe el comportamiento de estos objetos, la mecánica cuántica, las variables dinámicas como la posición x o la cantidad de movimiento p no son números reales, sino operadores x^p^ en un espacio vectorial cuyos elementos son los estados de la partícula cuántica. El principio de indeterminación da lugar a que estos operadores no conmutan, sino que obedecen a la relación de conmutación [x^,p^]=i.
Todo en la naturaleza es cuántico y, por tanto, obedece a los principios de la mecánica cuántica.”

Incoherencia de la trama y contradicción del personaje (II. Mecánica  cuántica y teoría dramatúrgica) – OVEJAS MUERTAS

Así se estudia y experimenta en los aceleradores de partículas de qué está hecha la materia. El encontronazo y estallido final, nos descubre nuevas partículas. Estamos tratando de saber que puede existir más allá de los Quarks

 

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

 

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

 

Musica Ondas Sonoras GIF - Musica Ondas Sonoras - Descubrir ...Juego de horquilla de afinación RE 417 HZ, horquilla de afinación para  Chakra curativo, terapia de sonido, mantiene el cuerpo, la mente y el  espíritu ...

 

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

 

El espectro electromagnético | Telecomunicaciones | Tomas Marte

Mucho ha sido el camino andado hasta nuestros tratando de conocer los secretos de la naturaleza que, poco a poco, nos van siendo familiares. Sin embargo, es más el camino que nos queda por recorrer. Es mucho lo que no sabemos y, tanto el micro-mundo como en el vasto mundo de muy grande, hay que cosas que aún, no hemos llegado a comprender.

 

International Physics MasterclassesATLAS y CMS presentan los estudios más completos hasta la fecha sobre el  bosón de Higgs | CPAN - Centro Nacional de Física de Partículas,  Astropartículas y Nuclear

    El detector ATLAS funcionó, y rastrearon las partículas subatómicas

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los “trucos” ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿Dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿Dónde está en realidad?, y ¿Cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

     Es cierto que, localizar y saber en qué punto exacto están esas pequeñas partículas… no es fácil

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

 

Teoría de Probabilidades - Operaciones entre eventos y Sucesos.  Definiciones de Probabilidad.

La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

Nobel de Física: un premio de 1935

 

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, para el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

(“El teorema de Bell o desigualdades de Bell se aplica en mecánica cuántica para cuantificar matemáticamente las implicaciones planteadas teóricamente en la paradoja de Einstein-Podolsky-Rosen y permitir así su demostración experimental. Debe su nombre al científico norirlandés John S. Bell, que la presentó en 1964.

 

undefined

Ilustración del test de Bell para partículas de espín 1/2. La fuente produce un par de espín singlete, una partícula se envía a Alicia y otra a Bob. Cada una mide uno de los dos espines posibles.

El teorema de Bell es un meta-teorema que muestra que las predicciones de la mecánica cuántica (MC) no son intuitivas, y afecta a temas filosóficos fundamentales de la física moderna. Es el legado más famoso del físico John S. Bell. El teorema de Bell es un teorema de imposibilidad, que afirma que:

Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica.”)

                ¿Cómo saber el número que saldrá cuando lanzamos los dados?

¡¡La mecánica cuántica!!, o, la perplejidad de nuestros sentidos ante lo que ese “universo cuántico” nos ofrece que, generalmente, se sale de lo que entendemos por sentido común. Ahí, en el “mundo” de los objetos infinitesimales, suceden cosas que no siempre podemos comprender. Y, como todo tiene una razón, no dejamos de buscarla en cada uno de aquellos sorprendentes sucesos que en ese lugar se producen. Podríamos llegar a la conclusión de que, la razón está en todo y solo la encontramos una vez que llegamos a comprender, mientras tanto, todo nos resulta extraño, irrazonable, extramundano y, algunas veces…imposible. Sin embargo, ahí está. Dos elementos actúan de común acuerdo para garantizar que no podamos descorrer el velo del futuro, de lo que será después (podemos predecir aproximaciones, nunca certezas), el principal de esos elementos es la ignorancia nunca podremos saber el resultado final de éste o aquél suceso sin tener la certeza de las condiciones iniciales. En la mayoría de los sistemas físicos son, en mayor o menor medida dada su complejidad, del tipo caótico es tal que, el resultado de las interacciones entre elementos es sumamente sensibles a pequeñísimas variaciones de los estados iniciales que, al ser perturbados mínimamente, hacen que el suceso final sea y esté muy alejado del que se creía al comienzo.

Lo que nos lleva a confirmar que el futuro es siempre incierto. ¿Es bueno desconocer lo que nos pasará mañana? Bueno, el Universo cree que sí, y, así lo dispuso.

Emilio Silvera Vázquez

El enigma del Neutrón

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Decaimiento β de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón-) y un antineutrino electrónico.

La desintegración Beta del neutrón está mediada por un Bosón W,que transforma uno de sus quarks, y se desintegra en el par electrón-antineutrino. Ahora leamos el reportaje de la Revista “Investigación y Ciencia”, referido a la física de partículas y a unas mediciones efectuadas que no son coincidentes.

“Dos técnicas de precisión arrojan valores distintos para el tiempo que tardan los neutrones en desintegrarse. ¿Se trata de un error experimental, o hay un misterio más profundo?

En síntesis

 

Neutrón libre - Wikipedia, la enciclopedia libre

Un neutrón libre es un neutrón que existe fuera de un núcleo atómico. Mientras que los neutrones pueden ser estables cuando están unidos dentro de los núcleos, los neutrones libres son inestables y se desintegran con una vida media de 886 segundos, unos quince minutos.

Los neutrones libres no son estables: pasados unos 15 minutos, un neutrón se desintegra en un protón, un electrón y un antineutrino. Conocer con exactitud su vida media es clave para abordar varias cuestiones en física y cosmología.

Existen dos métodos para determinar con precisión la vida media de esta partícula. El primero cuenta los neutrones que quedan en un recipiente después de cierto tiempo; el segundo cuenta los protones generados en su desintegración.

Esquemas de los resultados posibles de la desintegración de un neutrón

Hace años que una y otra técnica arrojan valores considerablemente dispares. Se cree que la discrepancia obedece a errores sistemáticos en alguno de los experimentos; sin embargo, hasta ahora nadie ha logrado dar con ellos.

Así hemos podido desvelar el secreto de que como se dice antes y se ve en la imagen, el neutrón al desintegrarse sigue este camino:

 

{\displaystyle {\mbox{n}}\rightarrow {\mbox{p}}^{+}+{\mbox{e}}^{-}+{\bar {\nu }}_{\mbox{e}}}

14 6C → 14 7N + e

Este proceso ocurre espontáneamente en neutrones libres, en el transcurso de 885.7(8) s de vida media.

Neutrón-Estructura de Quarks.png

Un neutrón está formado por dos quarks dowm (abajo) y un quark up (arriba), tiene una vida media de 14,761 minutos, es una partícula de la familia de los hadrones en su vertiente bariónica, interacción: con la Gravedad, la nuclear débil y la nuclear fuerte, su símbolo es n, su antipartícula es el antineutrón, la teorizo Rutherford y la descubrió James Chadwick, su masa es de  1,674 927 29(28)×10−27 K., la carga eléctrica es cero, espín ½. Se conoce cuando forma parte del átomo por nucleón.

Por suerte para la vida en la Tierra, la mayor parte de la materia no es radiactiva. Aunque no solemos darle demasiada importancia, este hecho no deja de resultar sorprendente, ya que el neutrón (uno de los constituyentes, junto con el protón, de los núcleos atómicos) es propenso a desintegrarse. En el interior de un núcleo típico el neutrón puede vivir durante largo tiempo, pero, aislado, se desintegra en otras partículas en unos 15 minutos. Decimos «unos 15 minutos» para ocultar nuestra ignorancia al respecto, ya que, hasta ahora, no hemos sido capaces de medir con exactitud la vida media de esta partícula.

Resultat d'imatges de La vida media del neutrón

El neutrón y el protón forman los núcleos de los átomos; el protón es estable (su vida media es superior a 10³² años, según PDG 2012), pero el neutrón es inestable (vía la interacción electrodébil se desintegra en un protón) y aislado su vida media es de solo 880,1 ± 1,1 segundos (14 minutos y 40,1 segundos).

 

Resultat d'imatges de Los neutrones y sus enigmas

Profundizar hasta el núcleo del átomo… ¡Es llegar a la maravilla! ¿Cómo en una parte de cien mil (que es lo que ocupa el núcleo en el átomo), puede estar el 99 por ciento de la masa del átomo, los nucleones (que son los hadrones de la rama bariónica), que están conformados por tripletes de Quarks, y, conocidos como protones y neutrones. Los Quarks están allí confinados y retenidos por la fuerza nuclear fuerte que es transmitida por partículas de la familia de los Bosones, los gluones. Si Los Quarks tratan de separarse son retenidos por la fuerza nuclear, ya que esta fuerza actúa al revés de las otras tres fuerza de la naturaleza, es decir, aumenta con la distancia. Lo dicho, una maravilla.

Hace años que una y otra técnica arrojan valores considerablemente dispares. Se cree que la discrepancia obedece a errores sistemáticos en alguno de los experimentos; sin embargo, hasta ahora nadie ha logrado dar con ellos.

 

 

Resolver este «rompecabezas de la vida media del neutrón» no solo supone una cuestión de orgullo para nuestro gremio, el de los físicos experimentales, sino que resulta también vital para comprender mejor las leyes físicas. La desintegración del neutrón constituye uno de los procesos más sencillos en los que interviene la interacción débil, una de las cuatro fuerzas fundamentales de la naturaleza. Para entenderla por completo, hemos de saber cuánto tarda un neutrón aislado en desintegrarse. Por otro lado, la vida media del neutrón condicionó cómo se formaron los elementos químicos más ligeros después de la gran explosión que dio origen a nuestro universo. A los cosmólogos les gustaría poder calcular las abundancias esperadas de los distintos elementos y contrastarlas con los datos obtenidos por los astrofísicos. Un acuerdo apuntalaría nuestras teorías cosmológicas, mientras que una discrepancia indicaría la existencia de fenómenos físicos aún por descubrir. Pero, para poder llevar a cabo dicha comparación, hemos de conocer con exactitud cuánto vive un neutrón antes de desintegrarse.

Hace más de diez años, dos grupos experimentales, uno en Francia y otro en EE.UU., intentaron medir con precisión la vida media del neutrón. Uno de nosotros (Geltenbort) pertenecía al primer equipo, mientras que el otro (Greene) trabajaba en el segundo. Con sorpresa y cierta inquietud, comprobamos que nuestros resultados diferían de manera considerable. Algunos teóricos sugirieron que la discrepancia podría deberse a fenómenos físicos exóticos, como que parte de los neutrones se hubiesen desintegrado en partículas nunca antes observadas. Nosotros, sin embargo, achacamos la diferencia a una razón mucho más mundana: uno de los grupos —o ambos— tenía que haber cometido algún error o sobreestimado la precisión de sus resultados.

Hace poco, el equipo estadounidense completó un largo y concienzudo proyecto para estudiar la principal fuente de error que afectaba a sus mediciones. Lejos de zanjar la cuestión, sus esfuerzos solo confirmaron los resultados previos. Al mismo tiempo, otros investigadores verificaron los resultados del grupo de Geltenbort. Esta discrepancia nos ha dejado más perplejos de lo que ya estábamos, pero no hemos abandonado. Por el momento, ambos equipos y otros físicos experimentales seguimos buscando una respuesta.

CRONOMETRAR NEUTRONES

Dibujo20130128 neutron lifetime weighted average - particle data group 2012

El neutrón y el protón forman los núcleos de los átomos; el protón es estable (su vida media es superior a 10³² años, según PDG 2012), pero el neutrón es inestable (vía la interacción electrodébil se desintegra en un protón) y aislado su vida media es de solo 880,1 ± 1,1 segundos (14 minutos y 40,1 segundos)

En teoría, determinar la vida media del neutrón es sencillo. Entendemos bien la física del proceso y disponemos de las herramientas adecuadas para estudiarlo. Sabemos que, siempre que una partícula pueda desintegrarse en otras de menor masa, acabará haciéndolo si en el proceso se conservan ciertas propiedades, como la carga eléctrica o el espín. En la llamada desintegración beta, un neutrón se transforma en un protón, un electrón y un antineutrino. Las masas de estas tres partículas suman algo menos que la masa del neutrón, pero la carga y el espín totales permanecen idénticos. Entre las cantidades conservadas se incluye la suma de masa y energía, por lo que las tres partículas finales incorporan esa pequeña diferencia de masa en forma de energía cinética.”

Nota: El artículo me ha sido enviado por Don José Gómez, un contertulio y visitante de ésta página que, con buen criterio, apunta que en cuanto a esas diferencias, las pruebas deben ser repetidas en distintos lugares y, si es posible, por distintos científicos también, ya que, en física de partícula, los resultados de un experimento, debe coincidir sin fisuras.

¿Una familia de partículas inmortales?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Las interacciones cuánticas convierten a las cuasipartículas en inmortales

Las interacciones cuánticas convierten a las cuasipartículas en inmortales – K. Verresen / TUM

 

Resultado de imagen de Cuasipartículas imágenes GIFs

Por primera vez, un equipo de físicos comprueba que las cuasipartículas renacen de sus cenizas después de desintegrarse

Noticia de Prensa

Si hay algo en lo que todos estamos de acuerdo es que nada dura para siempre. Lo dicen las leyes de la Física, en concreto la segunda ley de la termodinámica, que es la que rige el destino del Universo: toda actividad o proceso incrementa la entropía de un sistema. O lo que es lo mismo, el desorden. Por eso envejecemos, por eso las estrellas se apagan, los átomos se descomponen y por eso, también, los cristales de un vaso que se ha roto jamás volverán a recomponerse.

Pero un equipo de investigadores de la Universidad Técnica de Munich, en el Instituto Max Planck para la Física de Sistemas Complejos, parece haber hallado una excepción a esta norma universal. De hecho, han descubierto que lo que parece inconcebible en nuestra experiencia cotidiana puede estar sucediendo en el misterioso mundo cuántico. Y que allí, unos extraños entes llamados “cuasipartículas” tienen la propiedad de desintegrarse y volver a renacer después de sus propias cenizas, en una serie de ciclos que no tienen fin y que las convierte, de hecho, en inmortales. El extraordinario hallazgo se acaba de publicar en Nature Physics.

 

Resultado de imagen de Cuasipartículas en el interior de los cuerpos - imagen GIPs

Las cuasipartículas pueden describirse como un extraño fenómeno de “excitación colectiva” que sucede en el interior de los cuerpos sólidos. Cuando, por ejemplo, un electrón se mueve en el interior de un sólido, su movimiento se ve perturbado por las interacciones con otros muchos electrones, o núcleos atómicos, que también se están moviendo. Y eso hace que, a pesar de seguir comportándose como un electón libre, tenga una masa diferente, que recibe el nombre de “cuasipartícula de electrones. Otras cuasipartículas incluyen a los fonones, que son partículas derivadas de las vibraciones de los átomos dentro de un sólido, a los plasmones, que son partículas derivadas de las oscilaciones de un plasma, y a muchas otras, como los famosos fermiones de Majorana, que son a la vez materia y antimateria, los fluxones, los plasmones o los solitones.

 

¿Qué son los Plasmones?Solitones, las ondas solitarias - Matemáticas y sus fronteras

En los grandes aceleradores de partículas podemos observar sus comportamientos y desvelar sus secretos

A pesar de que una cuasipartícula implica a todas las partículas que, con sus movimientos, se afectan unas a otras, pueden ser consideradas como partículas individuales que se mueven en el interior de un sistema, rodeadas por una nube de otras partículas que se apartan de su camino o que son arrastradas por su movimiento. El concepto de cuasipartículas fue acuñado por el físico y ganador del premio Nobel Lev Davidovich Landau. Lo usó para describir estados colectivos de muchas partículas o más bien sus interacciones debido a fuerzas eléctricas o magnéticas. A causa de estas interacciones, varias partículas actúan como una sola.

“Hasta ahora -explica Frank Pollmann, uno de los autores del artículo- se suponía que las cuasipartículas en sistemas cuánticos interactivos decaen después de un cierto tiempo. Pero ahora sabemos que no es así: las interacciones fuertes pueden, incluso, detener la descomposición por completo”.

 

Resultado de imagen de Cuasipartículas en el interior de los cuerpos - imagen GIPs

“Hasta el momento -prosigue el investigador- no se sabía con detalle qué procesos influyen en el destino de esas cuasipartículas en sistemas que interactúan. Pero ahora contamos con métodos numéricos con los que podemos calcular interacciones complejas, y computadoras con un rendimiento lo suficientemente alto como para resolver estas ecuaciones”.

Con estas armas a su disposición, los investigadores llevaron a cabo complejas simulaciones para “espiar” a las cuasipartículas. “Es cierto que se desintegran -explica por su parte Ruben Verresen, autor principal del estudio- pero nuevas entidades de partículas idénticas emergen de los escombros. Si el decaimiento se produce muy rápidamente, después de un cierto tiempo se produce una reacción inversa y los escombros vuelven a converger. Este proceso puede repetirse sin fin, como una oscilación sostenida en el tiempo entre decaimiento y renacimiento”.

Muerte y resurrección

 

Resultado de imagen de Partículas virtuales - imagen GIPS

La mecánica cuántica tiene muchas implicaciones que no llegamos a comprender

Desde el punto de vista de la Física, esa oscilación entre “muerte y resurrección” puede considerarse como una onda que se transforma en materia, en virtud de la dualidad onda-partícula que predice la mecánica cuántica. Por lo tanto, las cuasipartículas inmortales no violan la segunda ley de la termodinámica. Su entropía permanece constante, la decadencia se detiene.

 

Resultado de imagen de Los ratones cuasipartículas

Cada día damos un paso más en el conocimiento de lo muy pequeño

El descubrimiento, además, consigue también explicar una serie de fenómenos que hasta ahora habían desconcertado a los científicos. Los físicos experimentales, por ejemplo, han medido que el compuesto magnético Ba3CoSB2O9 es sorprendentemente estable, cuando no debería serlo. Ahora se sabe que los magnones, un tipo de cuasipartículas magnéticas, son las responsables de ello. Del mismo modo, otras cuasipartículas, los fotones hacen posible que el helio, que en la superficie de la Tierra es un gas, se convierta en un líquido a -273 grados centígrados (el cero absoluto, donde la actividad atómica se detiene) y pueda seguir fluyendo sin restricciones.

“Nuestro trabajo es pura investigación básica -enfatiza Pollmann-. Sin embargo, es perfectamente posible que algún día nuestros resultados permitan incluso aplicaciones, por ejemplo, la construcción de memorias de datos duraderas para futuras computadoras cuánticas”.

Noticias

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Los antiguos babilonios tenían conocimientos astronómicos que se  adelantaron 1.400 años a la ciencia contemporánea - Noticias Uruguay,  LARED21 Diario Digital

 

 

Ilustre - Marduk, el dios babilonio Mardul fue la deidad... | Facebookصفحة نوزو - Murdoch Marduk (Marduk o "Nimrod" en árabe),... | Facebook

Intentaremos viajar más allá del Modelo Estándar

 

Para entrar en materia

 

Algún maestro decía:
“Inicialmente, se presenta, de modo simplificado, el Modelo Estándar como una teoría sofisticada que identifica las partículas elementales y sus interacciones. Después, en el ámbito de esa teoría, se enfocan aspectos – el vacuo no es vacío; partículas desnudas y vestidas; materia oscura y viento oscuro; materia y antimateria; el campo y el bosón de Higgs; neutrinos oscilantes – que pueden ser motivadores desde el punto de vista de la enseñanza y del aprendizaje de la Física. Finalmente, se discute la probable superación de esa teoría por otra más completa.”
Los leptones  pueden existir aislados pero los quarks se asocian fundamentalmente en tríos (bariones) o en parejas quark. Los quarks existen solamente dentro de los hadrones. Los quarks, leptones y bariones son todos fermiones sometidos al principio de exclusión de Pauli.
Los leptones sólo interaccionan entre sí mediante fuerzas débiles y/o electromagnéticas. Los quarks, sin embargo, interaccionan por cualquiera de las tres fuerzas indicadas. Y, en todo ésto, la gravedad está ausente y hace que la teoría esté incompleta. De todas las maneras, no debemos quitar mérito a tan compleja construcción de la mente humana que tan buenos resultados nos ha dado.
Gordon Kane, un físico teórico de la Universidad de Michigan nos dice:
“… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones.”
De acuerdo con el Modelo Estándar, leptones y quarks son partículas verdaderamente elementales, en el sentido de que no poseen estructura interna. Las partículas que tienen estructura interna se llaman hadrones; están constituidas por quarks: bariones cuando están formadas por tres quarks o tres antiquarks, o mesones cuando están constituidas por un quark y un antiquark.
Pero ¿cómo se da la interacción? ¿Quién “transmite el mensaje” de la fuerza entre las partículas que interactúan? Eso nos lleva a las partículas mediadoras o partículas de fuerza o, también, partículas virtuales.
Las interacciones fundamentales tienen lugar como si las partículas que interactúan “intercambiasen” otras partículas entre sí. Esas partículas mediadoras serían los fotones en la interacción electromagnética, los gluones en la interacción fuerte, las partículas W y Z en la interacción débil y los gravitones (aún no detectados) en la interacción gravitacional. Es decir, partículas eléctricamente cargadas interactuarían intercambiando fotones, partículas con carga color interactuarían intercambiando gluones, partículas con carga débil intercambiarían partículas W y Z, mientras que partículas con masa intercambiarían gravitones.
Las partículas mediadoras pueden no tener masa, pero tienen energía, o sea, son pulsos de energía. Por eso, se llaman virtuales. De los cuatro tipos de partículas mediadoras8, las del tipo W y Z tienen masa, pero es común que todas sean llamadas partículas virtuales.
¡Pero faltan los campos! Los cuatro campos. Sabemos que un cuerpo con masa crea alrededor de sí un campo gravitacional, un campo de fuerza que ejerce una fuerza sobre otro cuerpo masivo y viceversa. Análogamente, un cuerpo cargado eléctricamente, crea un campo electromagnético (si está en reposo, se percibe sólo su componente eléctrico, si está en movimiento se manifiesta también el componente magnético) y ejerce una fuerza electromagnética sobre otro cuerpo electrizado y viceversa.
El problema en esa bella simetría de cuatro cargas, cuatro interacciones, cuatro fuerzas, cuatro tipos de partículas mediadoras y cuatro campos es que aún no hemos podido detectar ningún gravitón y la gravedad, en sí, no encaja bien en esa teoría llamada Modelo Estándar.
Teoría de Cuerdas, explicación para mi abuela
¿Once dimensiones? ¿Dónde están? Dicen que compactadas en el límite de Planck, lugar inaccesible

La Física actual busca una teoría más amplia que el modelo estándar . Una teoría que dé una descripción completa, unificada y consistente de la estructura fundamental del universo. ¿Será la compleja Teoría de cuerdas,que integra también la interacción gravitaroria?

El modelo estándar es una poderosa herramienta pero no cumple todas las expectativas; no es un modelo perfecto. En primer lugar, podríamos empezar por criticar que el modelo tiene casi veinte constantes que no se pueden calcular. Desde luego, se han sugerido numerosas ideas para explicar el origen de todos estos parámetros o números inexplicables y sus valores, pero el problema de todas estas teorías es que los argumentos que dan nunca han sido enteramente convincentes. ¿Por qué se iba a preocupar la naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero no queremos abandonar todos los demás principios que ya conocemos. Ésos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar. El mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría y, construímos máquinas como el LHC para que nos diga lo que no sabemos.

 

Una regla universal en la física de partículas es que para partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo. El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.

Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables. ¿Dónde está la partícula de Higgs? ¿Cómo se esconde de nosotros el gravitón?

 

 

Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.

Claro que las cosas no son tan sencilla y si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿cómo podemos modificar el modelo estándar de tal manera que el ajuste fino no sea necesario? Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal como está deja de ser válido. El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos datos que antes ignorábamos.

 

 

Más allá del modelo estándar habrá otras respuestas que nos lleven a poder hacer otras preguntas que en este momento, no sabemos ni plantear por falta de conocimientos.  Si no conociéramos que los protones están formados por Quarks, ¿cómo nos podríamos preguntar si habrá algo más allá de los Quarks?

El gobierno de Estados Unidos, después de llevar gastados miles de millones de dólares, suspendió la construcción del supercolisionador superconductor de partículas asestando un duro golpe a la física de altas energías, y se esfumó la oportunidad para obtener nuevos datos de vital importancia para el avance de este modelo, que de momento es lo mejor que tenemos.

Se han estado inventando nuevas ideas, como la supersimetría y el technicolor. Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultradébilmente, los technipiones. Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman materia oscura”.

 

 

Que aparezcan “cosas” nuevas y además, imaginarlas antes, no es fácil. Recordemos cómo Paul Dirac se sintió muy incómodo cuando en 1931 dedujo, a partir de su ecuación del electrón, que debería existir una partícula con carga eléctrica opuesta. Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia: “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡Mi ecuación es más inteligente que su inventor!”. Este último comentario es para poner un ejemplo de cómo los físicos trabajan y buscan caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar. Así pasó también con las ecuaciones de Einstein de la relatividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.

 

File:Evolución Universo WMAP.jpg

 

Se piensa que al principio del comienzo del tiempo, cuando surgió el Big Bang, las energías eran tan altas que allí reinaba la simetría total; sólo había una sola fuerza que todo lo englobaba. Más tarde, a medida que el universo se fue expandiendo y enfriando, surgieron las cuatro fuerzas que ahora conocemos y que todo lo rigen. Tenemos los medios, en los supercolisionadores de partículas, para viajar comenzando por 1.000 MeV, hasta finalizar en cerca de 1019 MeV, que corresponde a una escala de longitudes de aproximadamente 1030 cm. Howard Georgi, Helen Quinn y Steven Weinberg descubrieron que ésta es la región donde las tres constantes de acoplamiento gauge se hacen iguales (U(1), SU(2) y SU(3)); resultan ser lo mismo. ¿Es una coincidencia que las tres se hagan iguales simultáneamente? ¿Es también una coincidencia que esto suceda precisamente en esa escala de longitud? Faltan sólo tres ceros más para alcanzar un punto de retorno. Howard Georgi y Sheldon Glashow descubrieron un modelo genuinamente unificado en el dominio de energías de 1019 MeV tal que, cuando se regresa de allí, espontáneamente surgen las tres fuerzas gauge tal como las conocemos. De hecho, ellos encontraron el modelo; la fórmula sería SU(5), que significa que el multiplote más pequeño debe tener cinco miembros.

 

http://cmcagustinos.files.wordpress.com/2010/10/circulo.jpg

Materia y Energía Oscura… Un Misterio…Sin resolver.

Y, a todo esto, ¿dónde está esa energía oculta? ¿Y donde la materia? Podemos suponer que la primera materia que se creo en el Universo fue la que llamamos (algún nom,bre había que ponerle) “Materia Oscura”, esa clase de Ilem o sustancia primera del Universo que mejor sería llamarla invisible, ya que, de no ser así, difícil sería explicar cómo se pudieron formar las primeras estrellas y galaxias de nuestro Universo, ¿dónde está el origen de la fuerza de Gravedad que lo hizo posible, sino en esa materia escondida?

¡Lo dicho! Necesitamos saber, y, deseo que de una vez por todas, se cumpla lo que dejó dicho Hilbert en su tumba de Gotinga (Alemania): “Tenemos que saber, ¡sabremos!. Pero…

¡Que sea pronto!

Emilio Silvera Vázquez