lunes, 25 de enero del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Neutrinos, electrones, fotones, luz

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

PARTÍCULAS BETA » Qué son, Características, Usos - Cumbre PueblosDesintegración beta - Wikipedia, la enciclopedia libre

Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo.  En realidad, los electrones no eran igualmente deficitarios.  Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado.  Las partículas alfa emitidas por un nucleído particular poseían iguales energías en cantidades inesperadas.  En ese caso, ¿Qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?

Una Nobel no reconocida, Lise Meitner (1878-1968)

Lise Maitner

En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas.  En 1.931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.

Tipos de Emisiones

Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida.  Esa misteriosa segunda partícula tenía propiedades bastante extrañas.  No poseía carga ni masa.  Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía.  A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Partícula beta - Wikipedia, la enciclopedia libre

Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y se liberaba un electrón, que, como en la decadencia beta, portaba insuficientes cantidades de energía.  Enrico Fermi dio a esta partícula putativa el nombre de “neutrino”, palabra italiana que significa “pequeño neutro”.

La Desintegración Radiactiva, Partículas Beta, La Desintegración Beta  imagen png - imagen transparente descarga gratuita

El neutrón dio a los físicos otra prueba palpable de la existencia del neutrino.  Como ya he comentado en otra página de este trabajo, casi todas las partículas describen un movimiento rotatorio. Esta rotación se expresa, más o menos, en múltiples de una mitad según la dirección del giro.  Ahora bien, el protón, el neutrón y el electrón tienen rotación de una mitad. Por tanto, si el neutrón con rotación de una mitad origina un protón y un electrón, cada uno con rotación de una mitad, ¿qué sucede con la ley sobre conservación del momento angular? Aquí hay algún error. El protón y el electrón totalizan una mitad con sus rotaciones (si ambas rotaciones siguen la misma dirección) o cero (si sus rotaciones son opuestas); pero sus rotaciones no pueden sumar jamás una mitad. Sin embargo, por otra parte, el neutrino viene a solventar la cuestión.

Leer más

El núcleo atómico

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El propio Rutherford empezó a vislumbrar la respuesta. Entre 1.906 y 1.908 (hace ahora un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos.

El experimento de Rutherford

En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado. Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido. Rutherford supuso que aquella “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad desviaban los proyectiles que acertaban a chocar contra él. Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica

Las Dimensiones de un Átomo | Imperio de la Ciencia

El núcleo es minúsculo en relación al átomo. Sin embargo, ahí se encuentran los principales mecanismos y objetos que lo conforman, y, además, tiene el 99,99% de la masa del átomo.

Era lógico suponer, pues, que los protones constituían ese núcleo duro. Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo).

En 1.908 se concedió a Rutherford el premio Nobel de Química por su extraordinaria labor de investigación sobre la naturaleza de la materia. Él fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

Leer más

¡Desvelar los Secretos del Universo! ¿Podremos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Física, General    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos.

Leer más

Misterios de la Fisica

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Física    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Metric seal.svgCGKilogram.jpgClock-pendulum.gifAmperemeter hg.jpgLa Nueva Definición para la Unidad de Intensidad Luminosa: la CandelaLuminosity.png

“En las imágenes se representan el metro para la longitud, el kilogramo para la masa, el segundo para el tiempo, el amperio para la intensidad de corriente eléctrica, el kelvin para la temperatura, la candela para la intensidad luminosa y el mol para la cantidad de sustancia.”

“Estas unidades básicas del SI y sus magnitudes físicas son el metro para la longitud, el kilogramo para la masa, el segundo para el tiempo, el amperio para la intensidad de corriente eléctrica, el kelvin para la temperatura, la candela para la intensidad luminosa y el mol para la cantidad de sustancia.”

3ESO T1. Unidades de medida - Física y Química para ESO y Bachillerato

Sabemos referirnos al producto o cociente de las unidades físicas básicas, elevadas a las potencias adecuadas, en una cantidad física derivada.  Las cantidades físicas básicas de un sistema mecánico son habitualmente la masa (M), la longitud (L) y el tiempo (T).  Utilizando estas dimensiones, la velocidad que es una unidad física derivada, tendrá dimensiones L/T y la aceleración tendrá dimensiones L/T2. Como la fuerza es el producto de una masa por una aceleración, la fuerza tiene dimensiones MLT-2.  En electricidad, en unidades SI, la corriente, l, puede ser considerada como dimensionalmente independiente y las dimensiones de los demás unidades eléctricas se pueden calcular a partir de las relaciones estándar.  La carga, por ejemplo, se puede definir como el producto de la corriente por el tiempo.  Por tanto, tiene dimensión IT.  La diferencia de potencia está dada por la relación P=Vl, donde P es la potencia.  Como la potencia es la fuerza x distancia de dividir el tiempo (MLT2 x L x T-1 = ML2T), el voltaje V está dado por V = ML2Tl-1.  Así queda expresado lo que en física se entiende por dimensiones referido al producto o cociente de las cantidades físicas básicas (como dijimos al principio.)

Por primera vez investigadores logran medir fluctuaciones en el vacío

Alguna vez, los físicos, han logrado medir estás fluctuaciones de vacío que explican fenómenos extraños

Primer paso para controlar el vacío cuántico • Tendencias21Fluctuaciones de vacío cuántico - Resumen ilustración Fotografía ...

                       Algunos dicen haber dado el primer paso para controlar el vacío cuántico

Pero volvamos a las fluctuaciones de vacío que, al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio.  El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo momentáneamente de la energía fluctuacional tomada prestada de regiones “vecinas del espacio”, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones vecinas.

Fluctuaciones de vacío! ¡Materia! ¿Universos perdidos? : Blog de ...

                             Fluctuaciones de vacío! ¡Materia! ¿Universos perdidos? : Blog de …

Si hablamos de fluctuaciones electromagnéticas del vacío las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la Gravedad en el vacío, son gravitones virtuales.

Claro que, en realidad, sabemos poco de esas “regiones vecinas” de las que tales fluctuaciones toman la energía.

Leer más

¿Hasta dónde podremos llegar?

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Estructuras fundamentales de la Naturaleza : Blog de Emilio Silvera V.Estructuras fundamentales del Universo : Blog de Emilio Silvera V.Estructura celularBiomoléculas: Clasificación y Funciones Principales - Lifeder

Cual es la estructura de los aminoácidos?Atomo De GIF - Atomo De Bohr - Discover & Share GIFsVibración molecular - Wikipedia, la enciclopedia libreQué es un cúmulo de galaxias? – astroyciencia: Blog de astronomía ...

El Sol se mueve? - VIX

Algunas de las Estructuras fundamentales a las que habría que agregar las que llamamos formas de Vida

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Hubble capta una galaxia a 13.000 millones de años luzHubble capta una pequeña galaxia a 13.000 millones de años luz

            El Hubble capta galaxias situadas a 13.000 millones de años luz del Sistema solar

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Leer más