lunes, 10 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




AGUJEROS NEGROS GIGANTES I

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.

Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).

Vista cerca de un agujero negro image

Crédito: NASA. Es probable que en el centro de un remolino giratorio de gas caliente se encuentre una bestia que no se ha visto nunca directamente: un agujero negro .

En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas. (Creo que llegará un día en el que tengamos latecnología necesaria para poder aprovechar estas fuentes de energías presentes en los discos de acreción delosagujeros negros).

El descubrimiento del mejor cadidato a agujero negro de tamaño estelar en un sistema binario de estrellas compacto. Durante décadas se ha buscado la evidencia inequívoca de la existencia de agujeros negros de tamaño estelar en nuestra galaxia. La fuente de rayos X Cyg X–1 era un buen candidato pero la gran masa de su compañero estelar hacía difícil poner un límite inferior de 3 masas solares al objeto compacto, necesario para concluir la existencia de un agujero negro. Para determinar la función de masas del sistema Cyg X–1 se obtuvieron más de 70 espectros con los telescopios William Herschel e Isaac Newton en 1992. Fue entonces posible establecer un límite inferior para la masa del objeto compacto: 6.26 masas solares. Por lo tanto, se trataba de la primera detección de un agujero negro de dimensiones estelares en nuestra galaxia.

Un disco de acrecimiento o disco de acreción es una estructura en forma de disco alrededor de un objeto central masivo. El

En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.

Leer más

Fuerzas Fundamentales, Estrellas Masivas y Agujeros Negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el Universo existen y están presentes una serie de interacciones que, de manera general, denominamos:

Fuerzas Fundamentales:

Como pueden haber deducido, me estoy refiriendo a cualquiera de los cuatro tipos diferentes de interacciones que pueden ocurrir entre los cuerpos.  Estas interacciones pueden tener lugar incluso cuando los cuerpos no están en contacto físico y juntas pueden explicar todas las fuerzas que se observan en el Universo.

Viene de lejos el deseo de muchos físicos que han tratado de unificar, en una teoría o modelo, a las cuatro fuerzas, que pudieran expresarse mediante un conjunto de ecuaciones.  Einstein se pasó los últimos años de su vida intentándolo, pero igual que otros, antes y después de él, aún no se ha conseguido dicha teoría unificadora de los cuatro interacciones fundamentales del Universo.  Se han hecho progresos en la unificación de interacciones electromagnéticas y débiles. Incluso, a partir de la Relatividad Geneneral, saltaron a las noticias la posibilidad de realizar viajes en el Tiempo a través de Aguejeros de gusano, aunque después, se han ideado otras maneras que, seguramente, serán más factibles en el futuro.

Un nuevo prototipo de máquina del tiempo que, en vez de objetos masivos, utiliza energía luminosa en forma de rayos láser para curvar el tiempo, ha sido ideada por el físico de la Universidad de Connecticut, Ronald Mallet. Ha utilizado ecuaciones basadas en las teorías de la relatividad de Einstein para observar la curvatura del tiempo a través de un rayo de luz circulante obtenido por medio de una disposición de espejos e instrumentos ópticos. Aunque su equipo aún necesita fondos para el proyecto, Mallett calcula que este método permitirá que el ser humano viaje en el tiempo quizá antes de un siglo. (Por Mario Toboso)

La relatividad general, dejó claro el concepto de la fuerza Gravitatoria, unas 1040 veces más débil que la fuerza electromagnética, es la más débil de todas las fuerzas y sólo actúa entre los cuerpos que tienen masa, es siempre atractiva y pierde intensidad a medida que las distancias entre los cuerpos se agrandan.  Como ya se ha dicho, su cuanto de gravitación, el gravitón, es también un concepto útil en algunos contextos.  En la escala atómica, esta fuerza es despreciablemente débil, pero a escala cosmológica, donde las masas son enormes, es inmensamente importante para mantener a los componentes del Universo juntos.  De hecho, sin esta fuerza, no existiría el Sistema Solar, ni las galaxias, y seguramente, ni nosotros tampoco estaríamos aquí. Es la fuerza que tira de nuestros pies y los mantiene firmemente asentados a la superficie del planeta. Aunque la teoría clasica de la Gravedad fue la que nos dejó Isaac Newton, la teoría macroscópica bien definida y sin fisuras de la gravitación universal, es la relatividad general de Einstein, mucho más completa y profunda.

Leer más

Las cosas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Con frecuencia podemos oír a conferenciantes decir que, una estrella nace, vive, evoluciona y muere hasta que, agota su combustible nuclear de fusión y, dependiendo de la masa inicial, se convierta en otra cosa distinta después de expulsar al espacio interestelar una parte de su masa. El resto (la mayor parte), se contrae debido a que, habiendo desaparecido la fuente de fusión que expandía la estrella y contrarrestaba a la fuerza de Gravedad creando el equilibrio que la mantendría estable durante toda su vida, no podía impedir que la implosión se produjera y, literalmente, quedaba aplastada bajo el peso de su propia masa para convertirse, dependiendo de su masa, en una enana blanca, una estrella de neutrones o un agujero negro.

Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). Esta enana blanca tiene una temperatura en la superficie de 35.500 K.

Así que, según lo anterior podríamos decir que una enana blanca es un objeto estelar compacto que soporta el colapso bajo su propia gravedad por la presión de degeneración de los electrones. Las enanas blancas se forman con los productos finales de la evolución de las estrellas de masa relativamente baja (alrededor de la la del Sol), y, como decimos, estrellas de masa mayor acabarán como estrellas de neutrones o agujeros negros.

Las enanas blancas consisten en núcleos de helio (y núcleos de carbono y oxígeno en los casos más masivos) y un gas degenerado de electrones. La densidad de una enana blanca típica es de 109 kg m-3; las masas y radios de las enanas blancas se aproximan a 0,7 masas solares y 103 km, respectivamente. Hay una masa máxima para las enanas blancas, por encima de la cual son inestables al colapso gravitacional: esta se conoce como el límite de Schandrasekhar, que es el del orden de 1,4 masas solares.

Todos conocemos, por haberla contemplando muchas veces, lo que es una Nebulosa planetaria. Se forma al final de la vida de una estrella como el Sol, y en su fase de gigante roja al final de su vida,  eyecta material al espacio interestelar mientras que la masa de la la estrella se contrae y se convierte en una enana blanca. El núcleo contraído que ha alcanzado un tamaño similar al de la Tierra (es decir, de tener un diámetro de 1 392 530 km., se queda en unos 13 000 km. -de ahí su inmensa densidad-). La enana blanca que nos queda al final, cuando el gas y el polvo eyectados que al principio la envuelve se dispersa, queda expuesta a la vista como un objeto muy compacto y relativamente pequeño si pensamos en sus dimensiones originales. Su densidad que puede llegar a 5 x 108 kg/m3, sólo puede evitar su propio colapso debido a la degeneración de los electrones. Las temperaturas que alcanzan estas estrellas enanas llegan hasta los 10 000 K debido a la temperatura atrapada en su superficie, y liberada por combustiones  nucleares previas y por la contracción gravitacional.

Gradualmente se enfrían, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30% de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades (típicamente 10-3 a 10-4 veces la del Sol pasan inadvertidas. Se han dado /y se seguirán dando/ casos de estrellas enanas que, al tener una compañera cercana, ejerce sobre ella su fuerza de Gravedad e manera tal que, termina robándole masa a la estrella compañera que se va adhiriendo a ella, y, llega el momento en el cual, el incremento de masa la hace sobrepasar un límite que no le permite seguir siendo una estrella enana blanca, así que, se convierte en una de Neutrones.

Las estrellas de neutrones son objetos extremadamente pequeños y densos (para ser estrella) y es creado a partir de una estrella masiva cuando explosiona como Supernova Tipo II. Durante la explosión, el núcleo de la estrella masiva se colapsa bajo su propia Gravedad hasta que, a una densidad de unos 1017 kg/m3, los electrones y los protones están tan juntos, que pueden combinarse para formar neutrones. El objeto resultante, consiste solo en neutrones, se soporta frente a un mayor colapso gravitacional por la presión de degeneración de los neutrones, siempre que su masa no sea mayor que unas dos masas solares (limite de Openhemier-Volkoff). Si el objeto fuese más másivo colapsaría hasta ser un aguejro negro.

Una típica estrella de neutrones con una masa poco mayor que la del Sol, tendría un diámetro de unos 20 km o poco más y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la Humanidad. Cuanto mayor es la masa de una estrella de neutrones, menor es su diámetro. Se cree que las estrellas de neutrones tiene un interior de neutrones que se comporta como un fluido de viscosidad cero, rodeado por una corteza sólida de más o menos 1 km de grosos compuesta de elementos como el hierro. Los Púlsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensa que contienen estrellas de neutrones.

Como nunca se ha podido fotografiar un agfujero negro, nos tenemos que conformar con recrearlo (mejor o peror) según los tenemos en nuestras mentes dfe acuerdo a los datos fiuables que de ellos conocemos, y, arriba, aparece una imagen que pretende (no con mucho éxito) hacenros ver uno de estos extraños objetos.

Estamos ya en la Tercera Fase de una estrella que, sólo se produce, cuando esta es muy masiva. La estrella, llegado el final de su historia como objeto brillante, consumido todo su combustible nuclear de fusión, queda a merced de la Gravedad que su propio peso genera. La Gravedad, esa fuerza del Universo presente allí donde residen objetos grandes de mucha masa, y, cuando llega ese momento final de la estrella, ejerce su terrible fuerza y literalmente aplasta y comprime a la estrella que se ve reducida más más, ni la degeneración de electrones (como en la enana blanca)  ni la degeneración de neutrones  (como en la estrella de neutrones), puede frenar la intensa fuerza gravitatoria que continúa más y más contrayendo la masa de la estrella masiva, y, llega hasta tal punto en el que la gravedad es tan intensa que su velocidad de escape supera a la de la luz.

Así, este objeto colapsado, se ha convertido en un agujero negro cuando su radio se hace menor que un tamaño crítico, conocido como radio de Schwarzschild, y la luz ya no puede escapar de él. La superficie que tiene este radio crítico se denomina horizonte de sucesos, y marca la frontera dentro de la cual está atrapada toda la información. De esta forma, los acontecimientos dentro del agujero negro no pueden ser observados desde fuera. La teoría muestra que tanto el espacio como el tiempo se distorsionan dentro del horizonte de sucesos y que los objetos colapsan hacia un único punto: la singularidad situada en el centro del agujero negro.

Sabemos que los agujeros negros pueden tenerr cualqu¡er masa, y, los supermasivos, pueden llegar a tener hastra miles de millones de veces la masa del Sol. Son como monstruos estelares que devoran toda la materia que los circundan. Nadie sabe ni se ha podido explicar hasta el momento en qué se convierte la masa original que formó al agujero negro, toda vez que, los electrones y protones de la estrella original se fundieron para convertirsde en neutrones, y, en las estrella de ese nombre, éstos pudieron frenar a la gravedad. Sin embargo, en los agujeros negros, es tanta la fuerza de Gravedad que nada, puede frenarla y sigue y sigue comprimiendo la materia de la estrella masiva hasta que, literalmente, esta desaparece de nuestra vista, se convierte en singularidad rodeada de un horizonte y, nada queda en este mundo. ¿Dónde estará toda aquella masa? ¿En que se convirtió?

Nos queda mucho por aprender de las estrellas, y, desde luego, no pdoemos quejarnos de lo que hasta hoy hemos podido conseguir. Recuerdo aquel Presidente de una Sociedad de renombre en Londres cuando dijo: “Nunca sabremos de qué están hechas las estrellas”, y, poco después, llegó Franhoufer y desmintió aquel comentario al averiguar por sus expectros la composición de los astros del cielo.

Recuerdo que, parecido a este escrito pero más extenso y con más datos, pude dar una charla en cierta Sociedad Cultural, y, el debate duró un par de horas. Todo el mundo salió satisfecho y, algunos, salieron sabiendo mucho más que cuando entraron.

Ahora que caigo, ¿de dónde habré copiado todo lo anterior? mecachis, resulta que de ninguna parte, son cuestiones muy trilladas. Y, como da la casualidad de que soy el miembro 33 del Grupo Especializado de Astrofísica de la Real Sociedad Española de Física, algo sí que debo saber sobre temas del Universo.

Como sería imposible estar todo el día trabajando en poner aquí trabajos (vivo de otra actividad de la que mantengo a mi familia), suelo coger temas de interés de unos y otros (además de alguno mío) y, con ello, vamos nutriendo la página que, según parecde y salvo algunos disidentes, no está funcionando mal y, sobre todo, lo mque en verdad prevalece, es el sentido, el motivo que me lleva a estar aquí. No creo que nadie tenga ningún título jurídico para criticar lo que hago, y, si no le gusta, nadie le obliga a personarse en este lugar que, de humildes pretensiones, sólo desea, que el sitio transcurra en paz y armonia.

Un saludo amigos.

¿Sabremos algún día, aprender de la Naturaleza?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (15)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los núcleos presentes en el Universo

La Astrofísica nuclear es una rama relativamente joven de la física entre cuyos objetivos destaca la descripción de las reacciones mediante las cuales tiene lugar la generación de energías y la síntesis de elementos químicos en el Universo. Se trata, por tanto, de un campo multidisciplinar que combina las observaciones astronómicas, con el análisis de la composición de meteoritos, la modelización astrofísica y la física nuclear tanto experimental como teórica.

Fred Hoyle

En 1957, E.M. Burbidge, W.A. Fowler and F. Hoyle y de manera independiente A.G.W. Cameron publicaron sendos artículos clave, donde definen los principales procesos que explican la transformación de unos núcleos en otros, asentados en base de la Astrofísica nuclear.

A lo largo de la segunda mitad del siglo XX, la Astrofísica nuclear ha conseguido importantes logros que sin duda están íntimamente conectados al impresionante avance experimentado por las técnicas instrumentales y de medidas asociadas y por la capacidad de cálculo numérico.

Los diferentes procesos de nucleosíntesis que tienen lugar durante la vida de una estrella dan lugar a la creación de nuevos elementos químicos que son expulsados al medio interestelar. Estos elementos pasan a formar parte de una nueva generación de estrellas, y pueden ser detectados mediante estudios espectroscópicos. La mejora de las técnicas utilizadas en la instrumentación observacional y de los métodos de detección espectroscópicos, la construcción de grandes telescopios como el VLT y el Keck a los que pronto se añadirá el Gran TeCan, y la posibilidad de hacer observaciones desde el espacio sin la interferencia de la atmósfera terrestre (Telescopio Hubble, Chandra, XMM Newton e Integral), ha permitido obtener toda una nueva visión del universo que nos rodea.

Leer más

Las galaxias, y…la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…” Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza.

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

En muchos de estos comentarios nos hemos referido a los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON).

Lee Smolin, de la Universidad de Waterloo,  Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas.

Nuestro hogar dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas – de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por doscientos mil millones de estrellas que describen órbitas en torno al centro del disco.

Leer más