Ago
5
Las cosas del Universo que tratamos de comprender
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (3)
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro universo: los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contra), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-tiempo que viaja a la velocidad de la luz transportada por los gravitones. 
Ago
3
La Supernova más rara
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)

Ilustración del material eyectado por la supernova SN 2007bi: el núcleo de níquel radiactivo (blanco) se convierte en cobalto, que emite rayos gamma y positrones y excitan las capas siguientes (amarillo), ricas en hierro. Las capas más superficiales (oscuras) son ricas en elementos más ligeros, como el oxígeno y el carbón. / LBNL
Una explosión estelar de 2007 fue de un tipo nunca observado antes y creó gran cantidad de níquel radiactivo
Una explosión estelar extraordinariamente brillante y larga, que fue captada en 2007 por un telescopio robótico, ha resultado ser el primer ejemplo de un tipo de estrellas que fueron las primeras que poblaron el Universo. Esta supernova ocurrió en una galaxia enana cercana a la Tierra que es bastante normal pero que hasta ahora había sido poco estudiada.
La SN2007bi fue encontrada por un programa de observación del Laboratorio Nacional Lawrence Berkeley de EE UU. El espectro, registrado por los telescopios, de la supernova no era el habitual en este tipo de explosiones estelares y en los años siguientes se estudió con mucho mayor detalle.
El equipo liderado por Avishay Gal-Yam, del Instituto Weizmann de Israel, recogió numerosos datos a medida que la supernova se apagaba lentamente en el cielo. El análisis, que ha publicado la revista Nature, indicó que la estrella que explotó sólo podía haber sido una gigante, con una masa de al menos 200 veces la del Sol, que contenía inicialmente pocos elementos además del hidrógeno y el helio. En suma, una estrella como las primeras del Universo primitivo.
“Pudimos medir la cantidad de nuevos elementos creados en esta explosión, incluyendo níquel recién sintetizado y altamente radiactivo que representa unas cinco veces la masa de nuestro Sol”, explica Paolo Mazzali, que dirigió el estudio teórico. “Estas explosiones pueden ser una importante factoría de metales pesados en el Universo”.
“Dado que sólo el núcleo representaba unas 100 masas solares, ha debido de ocurrir el fenómeno, abundantemente predicho, llamado de inestabilidad de par”, explica el astrofísico Peter Nugent, quien ha participado en el análisis. “En el calor extremo del interior de la estrella, los rayos gamma muy energéticos crearon pares de electrones y positrones que consumieron en parte la presión que sostenía el núcleo y evitaba su colapso”.
“Esta supernova fue la explosión de una estrella muy masiva”, dice Alex Filippenko, que también ha participado en la investigación. “Pero en vez de convertirse en un agujero negro como otras estrellas masivas, su núcleo sufrió una reacción termonuclear sin control que la hizo explotar. Este tipo de comportamiento fue predicho hace varios decenios por los teóricos, pero hasta ahora no se había observado con seguridad”.
Fuente: El País.
Ago
3
Cada día “vemos” más
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
ESA recoge una imagen de una danza de rayos X en el espacio
Más de un millar de movimientos de rayos X realizados por el telescopio espacial XMM-Newton quedaron registrados en la imagen.
Como si fueran luces de autos que circulan a gran velocidad por la noche, cientos de líneas anaranjadas cruzan un fondo negro.
Así es como se ve la danza de rayos X realizada por el telescopio espacial XMM-Newton y registrada en una imagen de la Agencia Espacial Europea (ESA).
La fotografía creada reúne hasta 178 capturas individuales realizadas entre 2001 y 2012, donde se observan las marcas de fuentes de rayos X que abarcan cerca del 62% del cielo.
El punto más brillante de la imagen es el remanente de una supernova, mientras que en el lado opuesto se ve otro objeto luminoso que es el Lazo del Cisne, una onda de choque en expansión causada por una estrella que explotó como supernova hace menos de 15.000 años.
Justo en el centro se ve también la fuente de rayos X de gran alcance, conocida como Scorpius X-1, que se ubica a 9.000 años luz de la Tierra.
El telescopio espacial XMM-Newton orbita en el espacio desde 1999 y estudia los fenómenos de alta energía del Universo, como agujeros negros, estrellas de neutrones, vientos estelares, entre otros.
Fuente: ESA
Ago
3
Inmersos en una inmensidad
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (3)
¡EL UNIVERSO!
¡Y menudo Universo! Poderosas corrientes de galaxias se precipitan por el espacio. Blondas de burbujas y de abismos aparecen por todas partes, burlándose de los que intentan encontrar una uniformidad sencilla en la Naturaleza. Ni siquiera la fábrica del Universo es lo que esperábamos. Por lo menos el noventa por ciento de lo que hay ahí fuera está compuesto por materiales cuya forma y composición nos son desconocidas. Apenas pasa un mes sin que salga a la luz alguna nueva y sorprendente e inesperada faceta del Universo. A medida que nos acercamos a las preguntas finales parece incrementarse el ritmo con el que el Universo nos entrega sus secretos.

“Una burbuja de gas, fotografiada por el Telescopio Espacial Hubble de la NASA, flota serenamente en las profundidades del espacio”
Ago
1
Maravillas del Universo: Supernovas…
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
Novas y supernovas

Hace unos cuatro años apareció en la prensa una noticia interesante que nos hablaba de la explosión y muerte de una estrella excesivamente masiva situada a unos 238 millones de años luz de nosotros en la galaxia NGC 1260, que es una espiral del tipo S0-a visible hacia atrás de las estrellas que forman la mítica y boreal constelación de Perseus. Hoy se cree que la “estrella progenitora” de esta supernova tenía una masa equivalente a más de 100 veces la masa del Sol, y de acuerdo a mediciones recientes, cuando explotó su brillo se hizo equivalente al de 50 mil millones de estrellas similares al Sol.

Supernova Tycho

El 11 de Noviembre 1572 Tycho Brahe, observó una estrella brillante ¨nueva¨, hoy una Súper Nova en Casiopea superando en brillo a Venus hasta 1574 al irse extinguiendo. En esa época los Astrónomos creían que las estrellas eran parte de una cúpula fija inmodificables y distantes de la Tierra en todos sus puntos; Brahe argumentaba que la estrella ¨Nueva¨ mostraba que el firmamento podía cambiar y que cada estrella tenía una distancia individual; una Supe Nova ocurre cuando una estrella muere violentamente disparando un estallido luminoso y brillante de energía; parte de la luz (fotones) del evento original de la Súper Nova arrojan violentamente partículas de polvo a las nubes interestelares circundantes y alcanzan la Tierra muchos años después.
Son estrellas que explotan liberando en el espacio parte de su material. Durante un tiempo variable, su brillo aumenta de forma espectacular. Parece que ha nacido una estrella nueva.

Hipernova
Las novas y las supernovas aportan materiales al Universo en forma de Nebulosas que servirán para formar nuevas estrellas, nuevos mundos y, muy probablemente, nuevas formas de vida.
Novas, ¿estrellas nuevas?
Antiguamente, a una estrella que aparecía de golpe donde no había nada, se le llamaba nova, o ‘estrella nueva’. Pero este nombre no es correcto, ya que estas estrellas existían mucho antes de que se pudieran ver a simple vista. Quizá aparezcan 10 o 12 novas por año en la Vía Láctea, pero algunas están demasiado lejos para poder verlas o las oscurece la materia interestelar.
A las novas se las observa con más facilidad en otras galaxias cercanas que en la nuestra. Una nova incrementa en varios miles de veces su brillo original en cuestión de días o de horas. Después entra en un periodo de transición, durante el cual palidece, y cobra brillo de nuevo; a partir de ahí palidece poco a poco hasta llegar a su nivel original de brillo.

Las novas son estrellas en un periodo tardío de evolución. Explotan porque sus capas exteriores han formado un exceso de helio mediante reacciones nucleares y se expande con demasiada velocidad como para ser contenida. La estrella despide de forma explosiva una pequeña fracción de su masa como una capa de gas, aumenta su brillo y, después se normaliza.
La estrella que queda es una enana blanca, el miembro más pequeño de un sistema binario, sujeto a una continua disminución de materia en favor de la estrella más grande. Este fenómeno sucede con las novas enanas, que surgen una y otra vez a intervalos regulares.
Supernovas

El remanente de una supernova que conocemos como Nebulosa del Cangrejo o M1. Charles Messier, un “cazador” de cometas, había tenido la falsa impresión de haberlo descubierto, pues una mancha difusa en dirección a la constelación de Tauro lo indujo a error repetidas veces. Por fin, determinó anotar la posición de ese objeto tan “molesto” para no volver a confundirse. La Nebulosa del Cangrejo, pues de ella se trataba, se convirtió de esa manera en el primer astro del que sería el Catálogo de Messier (M1), probablemente el más conocido, estudiado, fotografiado y admirado por aficionados y profesionales de la Astronomía.
La explosión de una supernova es más destructiva y espectacular que la de una nova, y mucho más rara. Esto es poco frecuente en nuestra galaxia, y a pesar de su increible aumento de brillo, pocas se pueden observar a simple vista. Hasta 1987 sólo se habían identificado tres a lo largo de la historia. La más conocida es la que surgió en 1054 y cuyos restos se conocen como la nebulosa del Cangrejo de arriba.
Abajo teneis una impresionante Nebulosa alrededor del Cúmulo de Estrellas NGC 1929 que es una Superburbuja LHA 120-N 44 en la Gran Nube de Magallanes, que se expande hacia el exterior debido al empuje de jóvenes estrellas que emiten una fuerte radiación ultravioleta y fuertes vientos solares que aleja la nube circundante.

Las supernovas, al igual que las novas, se ven con más frecuencia en otras galaxias. Así pues, la supernova más reciente, que apareció en el hemisferio sur el 24 de febrero de 1987, surgió en una galaxia satélite, la Gran Nube de Magallanes. Esta supernova, que tiene rasgos insólitos, es objeto de un intenso estudio astronómico. Las estrellas muy grandes explotan en las últimas etapas de su rápida evolución, como resultado de un colapso gravitacional. Cuando la presión creada por los procesos nucleares, ya no puede soportar el peso de las capas exteriores y la estrella explota. Se le denomina supernova de Tipo II.

No pocas veces, las supernovas pasan inadvertidas debido a que se producen detrás de nubes moleculares gigantes de gran espesor que las oculta de los telescopios de la Tierra, y, es más frecuente captar estos fenómenos en galaxias vecinas del Grupo Local de galaxias.

Una supernova de Tipo I se origina de modo similar a una nova. Es un miembro de un sistema binario que recibe el flujo de combustible al capturar material de su compañero. De la explosión de una supernova quedan pocos restos, salvo la capa de gases que se expande. Un ejemplo famoso es la nebulosa del Cangrejo; en su centro hay un púlsar, o estrella de neutrones que gira a gran velocidad.
De ello podemos deducir que, las estrellas nacen a partir de las Nebulosas que se formaron en la explosión de supernova, allí vuelven a surgir nuevas estrellas de todo tipo y muchas de ellas masivas cuya vida es sólo de unos pocos millones de años, mientras que estrellas como nuestro Sol tienen una vida media de 10.000 millones de años y las estrellas enanas rojas (las más abundantes del Universo), tienen una duración que es probablemente superior a la actual edad del Universo.
Todo es un ciclo que se repite una y otra vez pero, cada vez, el material es más complejo, ya que, en las explosiones de supernovas se crean materiales que van más allá del Hidrógeno y del Helio como por ejemplo el Oxígeno, Carbono, Nitrógeno y todos aquellos materiales que hacen posible la presencia de vida en planetas que, como la Tierra, reunan las condiciones para ello.
A las explosiones de supernovas las llamo el mecanismo de renovación del Universo, unas estrellas mueren para que otras nuevas puedan nacer y, guardando las distancias, ocurre exactamente lo mismo que con nosotros y, tal verdad, nos lleva a pensar que, mientras hay muerte hay esperanza. En verdad, pensar en la existencia de una vida eterna, sería el mayor castigo.

¡Las maravillas del Universo!
Nada en nuestro Universo es inamovible, todo evoluciona y cambia con el paso del tiempo inexorable y, esa evolución, hizo posible que a pesar de la complejidad del Cosmos, nosotros lo podamos comprender (en parte) y, cada día que pasa avanzamos un poco más en el saber de sus secretos y podemos desvelar los enigmas que tan celosamente tiene guardados en los núcleos de las estrellas y en el corazón mismo de las galaxias, donde habitan terroríficos agujeros negros que, de momento, no sabemos en realidad como funcionan y en que lugar puedan estar sus singularidades o de que material y de qué partículas están conformados una vez que han comprimido la materia ordinaria hasta extremos que ni podemos imaginar.
Hay muchos misterios por desvelar, y, podemos hablar de estrellas en el cielo que las hay de todos los tipos, tamaños y colores e incluso, al final de sus vidas, como hemos podido ver, se convierten, dependiendo de su masa original en enanas blancas, estrellas de neutrones o agujeros negros, e incluso, se habla de la posible existencia de algunas hechas de materia extrasña: las estrellas de Quarks.
¡Es tanto lo que nos queda por saber!
emilio silvera
















Totales: 81.945.193
Conectados: 49





















