viernes, 17 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Al Borde de un Agujero Negro

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Representación del borde de Sagitario A*. Nunca hasta ahora se había observado materia tan cerca de un agujero negro

Noticia de prensa

 

Astrónomos llegan al borde del agujero negro más monstruoso de la Galaxia Vía Láctea

 

Chandra image of Sgr A.jpg

   Vive en el centro de la Galaxia y engulle todo el material que lo circunda

 

Científicos han observado «nubes» de gas girando justo por encima del punto de no retorno de Sagitario A*, el agujero negro supermasivo del centro de nuestra galaxia

 

En las profundidades del espacio, en un punto que en el cielo se puede encontrar detrás de la constelación de Sagitario, se esconde un monstruo. Un auténtico pozo negro que tiene la masa de 4,3 millones de soles y cuya gravedad es tan intensa que se traga la luz. Se trata de Sagitario A*, un agujero negro supermasivo situado en el centro de la Vía Láctea, a 26.000 años luz de la Tierra. En contra de lo que pueda parecer, esta bestia no es muy grande, en términos astronómicos: apenas mide seis horas luz. Tampoco es muy denso. Sin embargo, es capaz de tragarse el espacio-tiempo, de generar una singularidad de densidad infinita y de intrigar a los científicos. Tanto a aquellos que quieren entender la Relatividad como a esos otros que quieren estudiar la relación entre la gravedad y las partículas.

Resultado de imagen de Sagitario A

¿De qué está hecho Sagitario A*? ¿Qué secretos esconde sobre el Universo y la naturaleza de la materia y la energía? Resulta difícil averiguarlo, porque los agujeros negros son pequeños y lejanos y, sobre todo, porque se tragan la luz y apenas dejan entrever lo que ocurre dentro de ellos.

Los científicos están trabajando en resolver una imagen del horizonte de sucesos de Sagitario A*, el punto de no retorno a partir del cual nada sale del agujero. Poder verlo sería fabuloso para averiguar si las predicciones de Einstein se cumplen en estos objetos tan intrigantes.

Resultado de imagen de Sagitario A

Al margen de esto, un equipo de investigadores ha publicado recientemente un estudio en la revista Astronomy & Astrophysics con observaciones de cúmulos de gas girando en el entorno de este agujero negro supermasivo. Estos materiales se mueven a velocidades próximas a la tercera parte de la velocidad de la luz, y lo hacen justo por encima de este horizonte de sucesos. Esta ha sido la primera vez en que los astrónomos han podido observar algo tan cerca y con tanto detalle en las proximidades del punto de no retorno de un agujero negro. Se puede afirmar, sin duda alguna, que la materia observada está a un paso de la oscuridad sin fondo.

Resultado de imagen de varias llamaradas de radiación infrarroja procedentes del disco de acreción de Sagitario A*Resultado de imagen de varias llamaradas de radiación infrarroja procedentes del disco de acreción de Sagitario A*

                            El centro galáctico no es un lugar pacífico

Los datos han sido obtenidos con el observatorio Very Large Telescope (VLT), situado en las instalaciones del Observatorio Europeo Austral (ESO) en el desierto de Atacama, Chile. En concreto, el trabajo es fruto del instrumento GRAVITY, que estudió varias llamaradas de radiación infrarroja procedentes del disco de acreción de Sagitario A* –el disco de acreción es una especie de cinta transportadora de gas que gira a gran velocidad y que se precipita hacia el interior del agujero negro–.

«Es realmente alucinante presenciar material orbitando un agujero negro al 30% de la velocidad de la luz», ha dicho en un comunicado Oliver Pfuhl, primer autor del estudio y científico del Instituto Max Planck de Física Extraterrestre (MPE), Alemania. «La tremenda sensibilidad de GRAVITY nos ha permitido observar los procesos de acreción en tiempo real con un detalle sin precedentes».

Estallidos de electrones

 

 

Resultado de imagen de Estallidos de electrones y radiación

 

Estallidos de electrones y rayos gamma

 

Las observaciones han confirmado, como ya se asume, que en el centro de la Vía Láctea hay un agujero negro supermasivo. Además, han proporcionado alucinantes detalles sobre lo que ocurre en el borde de estos extraños objetos. El material observado gira a una velocidad enorme, en la última órbita posible antes de quedar engullido, de una vez por todas, en el interior de sagitario A*.

La tremenda energía generada en este proceso se libera en forma de llamaradas de electrones, brillantes estallidos cuyo comportamiento observado coincide con lo predicho por modelos teóricos para agujeros negros de cerca de cuatro millones de masas solares. Se cree que dichas llamaradas se originan como resultado de las interacciones magnéticas entre gas muy caliente y cargado eléctricamente girando a velocidades de vértigo.

Estos investigadores son los mismos que este mismo año confirmaron las predicciones de la Relatividad de Einstein gracias al paso cercano de la estrella S2 por el campo gravitacional de Sagitario A*.

«Estábamos estudiando S2 muy de cerca (…) y tuvimos la suerte de detectar tres brillantes llamaradas en los alrededores del agujero negro», ha recordado Pfuhl.

Tal como ha resumido Reinhard Genzel, líder del estudio e investigador en el MPE, «el resultado es una confirmación impresionante del paradigma de los agujeros negros». Si para los científicos es una tranquilizadora confirmación de las teorías existentes, para el resto es un recordatorio de los impresionantes fenómenos astrofísicos que ocurren en la naturaleza y que nos pasan desapercibidos en nuestro día a día.

El Horizonte de los Agujeros Negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros  supermasivos.

El centro galáctico: un misterio en ondas de radio

Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Nefro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.

 

El Telescopio Espacio Hubble capta la Imagen de un chorro de 5000 años-luz de longitud que está siendo eyectado del núcleo activo de la galaxia M87  (una radiogalaxia). La radiación sincrotrón del chorro (azul) contrasta con la luz estelar de la galaxia albergadora (amarillo). Crédito: NASA/ESA.

 Resultado de imagen de Galaxias activas con núcleos brillantes


Las galaxias activas tienen nucleos que brillan tanto, que pueden llegar a ser más luminosos que las galaxias que los alberga. Estas galaxias activas sae caracterizan porque en sus núcleos ocurren procesos no-térmicos que liberan enormes cantidades de energía que parece provenir de una región muy pequeña y brillante situada en el corazón de la galaxia.

Son muchos los indicios que favorecen la hipótesis de que tales objetos son agujeros negros muy masivos (del orden de 100-1000 millones de veces la masa del Sol), con un tamaño de 1 minuto-luz o varios días-luz. La enorme fuerza gravitatoria que ejercen estos agujeros negros atrae el gas y las estrellas de las inmediaciones, formando el denominado disco de acrecimiento que está en rotación diferencial en torno al objeto masivo.

El modelo de “Agujero Negro + disco de acrecimiento” es el más satisfactorio hoy día para explicar las propiedades de los núcleos activos de galaxias. Un aspecto muy destacado en la morfología de las regiones compactas de los núcleos activos es la presencia de una intensa emisión radio en forma de chorros (los denominados Jets relativistas), que están formados por un plasma de partículas relativistas que emanan del núcleo central y viajan hasta distancias de varios megaparsec.

Jet relativista de un AGN. Creditos: Pearson Education, Inc., Upper Saddle River, New Jersey

Estos Jets son los aceleradores de partículas más energéticos del Cosmos. Sin embargo, todavía se desconoce como se generan, aceleran y coliman, si bien a través de simulaciones magnetohidrodinámicas se conoce que el campo magnético juega un papel fundamental en estos procesos. La técnica de mm-VLBI proporciona imágenes directas y nítidas de las regiones nucleares de las galaxias activas y acotan tanto el tamaño de los núcleos como la anchura de los chorros en la vecindad del agujero negro supermasivo. De hecho, las resoluciones angulares proporcionadas por mm-VLBI corresponderían a escalas lineales del orden de miles, centenares y decenas de Radios de Schwarzschild dependiendo de la distancia y la masa del agujero negro.

Existen algunos casos espectaculares, las imágenes obtenidas con mm-VLBI trazán los chorros relativistas a escalas del subparsec, cartografiando los motores centrales de las fuentes compactas con una resolución lineal tal que nos permite acercarnos a la última órbita estable en torno al agujero negrosupermasivo. Podemos mencionar algunos casos espectaculares que han dejado asombrados a propiso y extraños.

https://www.mpi-hd.mpg.de/hfm/HESS/pages/about/physics/images/cena_chandra.jpg

Mrk 501: Es una radiogalaxia situada a un corrimiento al rojo de z = 0.oo34. La masa del agujero negrocentral es del orden de mil millones de masas solares, por lo que el tamaño del radio de Schwarzschild es de 0,12 días-luz. Las observaciones con mm-VLBI a 86 GHz, muestra que su núcleo es muy compacto. El tamaño del núcleo de la radiofuente se puede establecer en 0,03 pc.

M87: La galaxia M87 está situada a la una distancia de 16,75 Mpc tiene un agujero negro situado en la región nuclear con una masa del orden de los 3.000 millones de masas solares, lo que implica que el tamaño del Radio de Schwarzschild es de 0,34 días-luz, Las observaciones interferométricas a 45 y 43 GHz han mostrado la presencia de un chorro relativista, en la que se observan dos fenómenos muy relevantes: i) en la base del jet, el ángulo de apertura es muy grande, lo que indicaría que el chorro vuelve a recolimarse a una cierta distancia del Agujero Negro central; ii) el chorro presenta fuerte emisión en sus bordes (fenómeno conocido como “edge brightening”, mientras que presenta emisión muy débil en su interior.

Todo esto lleva consigo una serie de implicaciones y parámetros de tipo técnicos que no son al caso destacar aquí.

 En el centro galáctico de la Vía Láctea ocurren fenómenos que han sido profundamente investigados y, allí habita un agujero negro que tiene 150 millones de kilómetros de diámetro. ¿Os podéis imaginar la cantidad de materia que la fuerza de gravedad que genera tal monstruo podrá engullir?

Las observaciones de VLBI a longitudes de onda centimétricas han mostrado que SgrA, la radiofuente compacta en el centro de nuestra Galaxia, tiene un tamaño angular que escala con la longitud de onda al cuadrado, resultado que se interpreta físicamente considerando que la estructura que detectamos para SgrA no es su estructura intrínseca sino la imagen resultado de la interacción de su emisión de radio con sus electrones interestelares de la región interna de la Galaxia (lo que técnicamente se conoce como el “disco de scattering”. Las observaciones con mm-VLBI a 86 GHz han permitido determinar por primera vez el tamaño intrínseco de SgrA que ha resultado ser de 1,01 Unidades Astronómicas.

Imagen relacionada

Considerando que SgrA se encuentra a una distancia de 8 Kpc y que su masa es de 4 millones de masas solares, este tamaño lineal corresponde a 12,6 Radios de Schwarzschild. Con todo esto, vengo a decir que estamos ya en la misma vecindad de los agujeros negros y, lo único que tenemos que despejar es la incognita que nos pueda crear el efecto del que nos habla la Relatividad General cuando establece que la raqdiación proveniente de una superficie esférica a una cierta distancia del agujero negro, sufriría un proceso de lente gravitacional amplificadora dandonos un tamaño mayor que el real. Así, cualquier objeto emisor con un tamaño intrínseco inferior a 1,5 Radios de Schwarzschild tendría un diámetro aparente mayor que 5,2 R de Schwarzschild.

¡Es todo tan complejo!

emilio silvera

Todo lo que podamos imaginar… ¡Se puede hacer realidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Sinfonía de los Agujeros Negros binarios, ¿La oiremos alguna vez?

“Cuando se forma un par de agujeros negros binarios, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal), y, a medida que los agujeros orbítan el uno en torno al otro, los pozos en órbitas, producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Esas son, las ondas gravitacionales captadas por LIGO. También se producen cuando se fusionan los agujeros o cuando chocan dos estrellas de neutrones y, seguramente en otros eventos similares.”

 « 

 

 

 

Todas las células están formadas por elementos químicos que al combinarse forman una amplia variedad de moléculas que, a su vez, forman agregados moleculares y estos los diversos organelos celulares.Los elementos constitutivos de las biomoléculas más importantes son; el Carbo, el Hidrógeno, el Oxígeno y el Nitrógeno.

 

Los cuerpos de los seres vivos que conviven con nosotros en el planeta Tierra, todos, sin excepción están basados en el Carbono, el elemento más dúctil y que puede realizar funciones que para otros elementos están vedadas.

 

 Hace ya algún tiempo que se puso este trabajo en el Blog, su Título:

La Sinfonía de los Agujeros Negros binarios, ¿La oiremos alguna vez?

Me parece al caso traer aquí este trabajo que puse hace algún tiempo ya, toda vez que el reciente hallazgo de las Ondas gravitacionales lo ha renovado y su contenido puede resultar interesante al filo de la noticia. Decía por aquel entonces:

Kip Thorne at Caltech.jpg

         Kip Stephen Thorne

Lo que nos cuentan Kip S. Thorne y  otros especialistas en Agujeros negros nos posibilitan para entender algo mejor los mecanismos de estos extraños objetos que aún esconden misterios que no hemos sabido resolver. Está claro que muchas de las cosas que sobre agujeros negros podemos leer, son en realidad, especulaciones de cosas que se deducen por señales obervadas pero que, de ninguna manera, se pueden tomar como irrefutables verdades, más bien, las tomaremos como probables o muy probables de acuerdo a los resultados obtenidos de muchos experimentos y, ¿por qué no? de muchas horas de prácticas teóricas y pizarras llenas de ecuaciones que tratan de llegar al fondo de un saber que, desde luego, nos daría la clave de muchas cuestiones que en nuestro Universo son aún desconocidas.

Finalmente, Thorne y sus dos compañeros en LIGO, consiquieron captar las Ondas gravitatorias y, por ello, han recibido el Nobel de Física.

En el corazón de una galaxia lejana, a más de 1.000 millones de años-luz de la Tierra y hace 1.000 millones de años, se acumuló un denso aglomerado de gas y cientos de millones de estrellas. El aglomerado se contrajo gradualmente, a medida que algunas estrellas escapaban y los 100 millones de estrellas restantes se hundían más hacia el centro. Al cabo de 100 millones de años, el aglomerado se había contraído hasta un tamaño de varios años-luz, y pequeñas estrellas empezaron, ocasionalmente, a colisionar y fusionarse, formando estrellas mayores. Las estrellas mayores consumieron su combustible y luego implosionaron para formar agujeros negros; y, en ocasiones, cuando dos de estos agujeros pasaban uno cerca del otro, quedaban ligados formando pares en los que cada agujero giraba en órbita alrededor del otro.

Resultado de imagen de Agujeros negros binarios

Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.

Resultado de imagen de Agujeros negros binarios

Puesto que la curvatura-espacio-temporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einstein predice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbíten uno en torno al otro.

Cuando parten hacia el espacio exterior, las ondas gravitacionales producen una reacción sobre los agujeros de la misma forma que una bala hace retroceder el fusil que la dispara. El retroceso producido por las ondas aproxima más los agujeros y les hace moverse a velocidades mayores; es decir, hacen que se muevan en una espiral que se cierra lentamente y hace que se vayan acercando el uno hacia el otro. Al cerrarse la espiral se genera poco a poco energía gravitatoria, una mitad de la cual va a las ondas y la otra mitad va a incrementar las velocidades orbitales de los agujeros.

 

El movimiento en espiral de los agujeros es lento al principio; luego, a medida que los agujeros se acercan, se mueven con mayor velocidad, radian sus ondulaciones de curvatura con más intensidad, y pierden ene´rgía y se cierran en espiral con más rapidez. Finalmente, cuando cada agujero se está moviendo a una velocidad cercana a la de la luz, sus horizontes se tocan y se fusionan. Donde una vez hubo dos agujeros, ahora sólo hay uno.

http://chandra.harvard.edu/photo/2005/j0806/j0806_2panel.jpg

El horizonte del agujero giratorio queda perfectamente liso y con su sección ecuatorial circular, con la forma descrita precisamente  por la solución de Kerr a la ecuación de campo de Einstein. Cuando se examina el agujero negro liso final, no hay ningún modo de descubrir su historia pasada. No es posible distinguir si fue creado por la coalescencia de dos agujeros más pequeños, o por la implosión directa de una estrella supermasiva construida por materia, o por la implosión directa de una estrella constituida por antimateria. El agujero negro no tiene “pelo” a partir del cual se pueda descifrar su historia.

Resultado de imagen de Colisión de dos estrellas de neutrones

También dos estrellas de neutrones pueden producir ondas

Sin embargo, la historia no se ha perdido por completo: ha quedado un registro codificado en las ondulaciones de la curvatura espacio-temporal que emitieron los agujeros coalescentes. Dichas ondulaciones de curvatura son muy parecidas a las ondas sonoras de una sinfonía. De la misma forma que la sinfonía está codificada en las modulaciones de las ondas sonaras (mayor amplitu aquí, menor allí), también la historia de la coalescencia está codificada en modulaciones de las ondulaciones de curvatura. Y de la misma forma que las ondas sonoras llevan su sinfonía codificada desde la oequesta que la produce hasta la audiencia, también las ondulaciones de curvatura llevan su historia codificada desde los agujeros fusionados hasta los rincones más lejanos del Universo lejano.

Imagen relacionada

Las ondulaciones de curvatura viajan hacia afuera por el tejido del espacio-tiempo a través del conglomerado de estrellas y gas del que nacieron los agujeros. El aglomerado no absorbe las ondulaciones ni las distorsiona en absoluto; la historia codificada de las ondulaciones permanece perfectamente invariable, se expanden hacia el exterior de la galaxia madre del aglomerado y el espacio intergaláctico, atraviesan el cúmulo de galaxias del que forma parte la galaxia progenitora, luego siguen atravesando un cúmulo de galaxias tras otro hasta llegar a nuestro propio cúmulo, dentro del cual está nuestra Vía Láctea con nuestro Sistema Solar, atraviesan la Tierra, y continúan hacia otras galaxias distantes.

http://4.bp.blogspot.com/_yd9OLN_xAiw/SeXI-2qdPXI/AAAAAAAAEIE/B4pD0a4_kAw/s400/16.jpg

Claro que, en toda esta historia hay un fallo, nosotros, los humanos, aún no somos lo suficientemente hábiles para haber podido construir aparatos capaces de detectar y oir las sinfonías  mencionadas con entusiamo por el Sr. Thorne y, que según el cree, son mensajes que nos traen esas ondas de gravedad de los agujeros negros binarios. Es como si no pudiéramos oir esa hermosa sinfonía que nos mostraría un nuevo Universo por nosotros desconocido. Ahora sabemos que por medio de potentes telescopios podemos conocer lo que es el Universo, podemos observar galaxias lejanas y estudiar cúmulos de galaxias o de estrellas y captar las imágenes de bonitas Nebulosas, todo eso es posible gracias a que al captar la luz que emitieron esos objetos cosmológicos hace decenas, cientos, miles o millones de años como señal electromagnética que viajando a la velocidad de c, hace posible que podamos ver lo observado como era entonces, en aquel pasado más o menos lejano. De la misma manera, se cree que, las ondas gravitatorias emitidas por estos objetos misteriosos, se podrán llegar a captar con tal claridad que nos permitirá saber de otra faseta (ahora) desconocida del Universo, y, sobre todo, podremos entender el pasado de esos densos objetos que, de momento, nos resultan exóticos y también extraños.

emilio silvera

Sometidos por los agujeros negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cada día se descubren nuevas cosas que antes ignorábamos, y, según se deduce de los hechos a lo largo de la historia.. La Ciencia está en un callejón sin salida, no puede hacer nada para evitarlo, y, lo único que le queda… ¡Es crecer u crecer! En un artículo de prensa pude leer un reportaje sobre los agujeros negros y particularmente sobre el que está en el centro de nuestra Galaxia. Le he puesto algunas imágenes para no hacerlo tan pesado y, aquí os lo dejo:

Ciencia

Esa inmensa fuerza de gravedad que parece ubicarse en el centro de todas las galaxias (emitida por agujeros negros colosales) mantiene a las estrellas unidas pero también es una fatal fuerza destructora.

 

 

 

 

NASA/JPL-Caltech
Recreación artística de un agujero negro supermasivo

Los científicos están cada vez más cerca de confirmar que todas las galaxias, esencialmente las espirales y elípticas, mantienen sus cientos de miles de millones o billones de estrellas unidas gracias a una potentísima fuerza de gravedad que se ubica en el centro de cada una de ellas.

Es de destacar que las estrellas de las galaxias espirales giran en torno al núcleo de la galaxia, donde se aglutina el mayor número de estrellas por unidad cúbica, pero parece insuficiente que este grupo constituido de millones de estrellas puedan mantener unidas y girando a su alrededor al resto de las estrellas componentes de una galaxia, en algunos casos, como la galaxia elíptica M 87, con más de un billón de estrellas. Hay algo más, justo en el centro de los núcleos de las galaxias que posee una fuerza superior y que además de mantener compacto el núcleo de la galaxia, mantiene estrellas girando a su alrededor a distancias de cientos de miles de años luz (un año luz equivale a 9,6 billones de km).

La galaxia elíptica M87 (también conocida como Galaxia Virgo AVirgo AMessier 87M87, o NGC 4486) es una galaxia elíptica gigante fácil de ver con telescopios de aficionados.  Se trata de la mayor y más luminosa galaxia de la zona norte del Cúmulo de Virgo,  hallándose en el centro del subgrupo Virgo A.

Nuestra galaxia, la Vía Láctea, mide 100.000 años luz, es como un disco con brazos espirales, muy aplastada y fina, excepto hacia el centro, cuyo bulbo en forma de esfera mide 30.000 años luz de diámetro, pero dentro de esta enorme bola de estrellas viejas, se encuentra el núcleo, aún más denso y compacto, cuyas estrellas se amontonan en espesa multitud, concretamente unos 85 millones de estrellas, que determinó el telescopio de infrarrojos VISTA, un telescopio capaz de atravesar las inmensas nubes de polvo que hay entre nosotros y el núcleo galáctico que es invisible con telescopios ópticos normales. Mientras más nos acerquemos al núcleo galáctico, las estrellas estarán más cerca las unas de las otras.

Cuando comenzaron a formarse las galaxias, algunas estrellas supermasivas comenzaron a agotar su combustible nuclear. Estas estrellas decenas o cientos de veces más masivas que el Sol duran pocos millones de años; el Sol, 10.000 millones de años. Comenzaron a estallar y se convirtieron en brillantísimas supernovas. En todo el Cosmos las supernovas se sucedían y dieron paso a la formación de agujeros negros supermasivos.

La inmensa fuerza de gravedad de estos agujeros negros comenzó a atraer a las estrellas jóvenes en formación o con pocos millones de años de edad. Como si de vórtices se trataran, las estrellas comenzaron a girar alrededor de los agujeros negros, así dice una teoría que se agruparon las estrellas para formar las galaxias.

No es de extrañar. Se han encontrado agujeros negros en los núcleos de casi todas las galaxias, incluso agujeros negros dobles uno girando alrededor del otro. Aquellas galaxias que no suelen contener agujeros negros supermasivos en sus núcleos son galaxias irregulares, cuya estructura amorfa no obedece a las formas bellísimas de las galaxias espirales o elípticas, cuyos agujeros negros les dan la forma.

Los agujeros negros no sólo están en los núcleos de las galaxias, sino en diversas regiones de éstas, aunque estos no suelen ser muy masivos, varias veces la masa del Sol, como el descubrimiento de uno de ellos, de 10 masas solares, en uno de los brazos espirales de la vecina galaxia de Andrómeda, a 2,3 millones de años luz, descubierto gracias a que en ese momento estaba engullendo una estrella emitiendo una poderosa fuente de rayos X. La Vía Láctea posee varios agujeros negros detectados, quizás el más famoso sea Cygnus X-1, un agujero negro de unas 15 masas solares a cuyo alrededor gira una estrella supergigante a la que continuamente roba las capas más externas.

Resultado de imagen de Agujeros Negros como sumideros cósmicos

        A. N. como sumideros cósmicos

Un agujero negro en una galaxia actúa casi de la misma forma que cuando quitamos el tapón del lavabo y el agua comienza a desaparecer formando una espiral. Los agujeros negros no tragan con tanta rapidez, a pesar de su poderosa fuerza de gravedad, las estrellas están muy distantes y van cayendo poco a poco, mientras que el resto de estrellas sometidas a la fuerza de gravedad del agujero negro supermasivo giran en torno a él esperando su turno.

Los agujeros negros son tan poderosos y dominantes que cuando la materia comienza a caer hacia ellos, se calientan y emiten tanta radiación que equivale a la energía de toda una galaxia de 100.000 millones de estrellas.

Astrónomos europeos tuvieron la ocasión de ver por primera vez cómo un agujero negro de 300.000 masas solares situado en la galaxia NGC 4845 a 47 millones de años luz, arrancaba las capas exteriores de un planeta 15 veces mayor que Júpiter, un planeta errante expulsado de su sistema solar, que ahora gira en torno al agujero negro. Solo el hecho de arrancarle el 10% de la masa puso en alerta a los investigadores, pues se produjo una importante emisión de rayos X.

      grandes emisiones de Rayos X

El agujero negro supermasivo de nuestra galaxia, de 4,5 millones de masas solares, posee una gran actividad. Prácticamente y a diario, se observan explosiones, aunque no extremas, ello indica que todos los días engulle algo. El telescopio espacial Herchel, ha comprobado que una nube de gas compacta, se dirige hacia nuestro agujero negro y probablemente caiga en él este mismo año. Por otro lado estrellas cercanas al mismo, giran a velocidades de vértigo y serán su próxima comida. El Sistema Solar que se encuentra a 28.000 años luz del agujero negro gira gracias a éste y alrededor de nuestra galaxia a una velocidad de 960.000 km/h.

Los agujeros negros, forman las galaxias, mantienen unidas a sus estrellas, pero a cambio, se nutren de ellas. ¿Será el destino de las galaxias acabar en el interior del agujero negro supermasivo que contienen?

https://paolera.files.wordpress.com/2010/08/chandra_m87shock5b25d.jpg

         Chandra: Photo Album M87

Agujeros negros supermasivos distorsionan las galaxias, y emiten poderosos jets de energía y materia a cientos de miles de años luz de distancia, es el caso del agujero negro de la galaxia M 87 con 3.000 millones de masas solares. M 87 sigue engullendo otras galaxias menores y el agujero negro no para de alimentase. Los astrónomos creen que el límite de un agujero negro puede ser el de una masa de 50.000 millones de soles, es decir, la mitad de la masa de nuestra propia Galaxia. Un agujero negro de estas características no tendría límites y podría absorber una galaxia tranquilamente, por lo que se convertiría en el mayor destructor del Universo.

Pero, ¿qué es un agujero negro?

Un agujero negro se produce cuando las estrellas muy masivas, a partir de 2,5 veces la masa solar, llegan al final de su vida, se detienen las reacciones termonucleares que hacen que la estrella se expanda y la gravedad se encarga de encoger a la estrella hasta el tamaño de la Tierra (enana blanca), si la gravedad consigue aplastar aún más a la estrella, se convertirá en una estrella de neutrones, del tamaño de una ciudad, donde un cm cúbico pesa millones de toneladas. Pero si no consigue pararse en ese tamaño, se aplastará aún más convirtiéndose en un objeto diminuto, pero con la masa de varias, decenas, cientos o miles de soles.

Resultado de imagen de HUir de un agujero negro

Imagen tomada por el telescopio espacial Hubble de la galaxia distante 3C 186. La elipse punteada demarca la periferia de la galaxia. El agujero negro supermasivo, detectado a partir de la emisión energética de la materia circundante, corresponde al punto con aspecto de estrella que se encuentra ligeramente apartado del centro de la elipse. Un estudio reciente sugiere que el objeto estaría alejándose del centro galáctico a más de 2000 kilómetros por segundo. [NASA/ ESA/Marco Chiaberge/Instuto para la Ciencia del Telescopio Espacial (STScI) y Universidad Johns Hopkins.]

Para escapar de la Tierra hace falta una velocidad de 11,2 km/s. Si no conseguimos alcanzarla caeremos otra vez a nuestro planeta. Pero un agujero negro posee tanta fuerza de gravedad, que ni siquiera la luz, que es lo más rápido y que viaja a 300.000 km/s podría escapar del agujero negro. Si nos pudiéramos poner en un agujero negro (vamos a imaginarlo porque no es muy probable) y encender una linterna, veríamos cómo la luz de la linterna intentaría escapar del agujero negro, pero se doblaría y volvería hacia nosotros. Así son los objetos más poderosos del Universo.

Los agujeros negros hunden el espacio y distorsionan el tiempo. En estudio está que estos objetos sean atajos espaciales que en un futuro nos lleven a lugares muy distantes del Universo sin que apenas pase el tiempo.

¿La singularidad? ¡Un extraño objeto!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión.  La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir.  Además, en la singularidad,  según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.

La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de una enana blanca o de estrella de neutrones, para convertirse en una singularidad.

Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.

Modelo OS
La figura de la izquierda representa a la nube de polvo en colapso de Oppenhieimer y Snyder, que ilustra una superficie atrapada.
El modelo de Oppenhieimer y Snyder posee una superficie atrapada, que corresponde a una superficie cuya área se iOppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro al desarrollar el planteamiento de una nube de polvo colapsante.

En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidadde la que pasará a formar parte.

Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Wheeler (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros.

Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca tal singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:

  • Debe ser una superficie nula donde es pareja, generada por geodésicas nulas,
  • contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
  • el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.

Pueden existir agujeros negros supermasivos (de 105 masas solares) en los centros de las galaxias activas. En el otro extremo, mini agujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del big bang. Diminutos agujeros negros podrían ser capaces de capturar partículas a su alrededor, formando el equivalente gravitatorio de los átomos.

Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espaciotiempo como el espaciotiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío, de vacío de Einstein y, como un tema que se relaciona con la singularidad en los agujeros negros.

No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de Kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.

Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de un agujero negro,  en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque ésta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape:


Para el caso de u objeto sin masa (o casi), tales como los neutrinos, se sustituye la velocidad de escape por la de la luz c2. “En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, … Es cierto que en mecánica cuántica quedan muchos enigmas por resolver. Pero hablando de objetos de grandes masas, veámos lo que tenemos que hacer para escapar de ellos.

Podemos escapar de la fuerza de gravedad de un planeta pero, de un A.N., será imposible.

La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:

Objeto

Velocidad de escape

La Tierra

………….11,18 Km/s

El Sol

………….617,3 Km/s

Júpiter

………….59,6 Km/s

Saturno

………….35,6 Km/s

Venus

………….10,36 Km/s

Agujero negro

…….+ de 299.000 Km/s

Como se ve en el cuadro anterior, cada objeto celeste, en función de su masa, tiene su propia velocidad de escape para que cualquier cosa pueda salir de su órbita y escapar de él. El caso de la singularidad, es decir, la inmensa masa que está presente en las entrañas de un Agujero negro, genera una fuerza de gravedad tal que, nada está a salvo en sus inmediaciones, cualquier objeto, sea estrella, polvo estelar, planeta o lo que pudiera ser, será engullido por el “monstruo”, sin que nada pueda evitarlo.

La excepción está en el último ejemplo, la velocidad de escape necesaria para vencer la fuerza de atracción de un agujero negro que, siendo preciso superar la velocidad de la luz en el vacío  igual a  299.792’458 Km/s, es algo que no está permitido, ya que todos sabemos que conforme determina la teoría de la relatividad especial esa velocidad es un límite impuesto por nuestro universo.

Existen aspectos del A.N. que influyen en el mundo cuántico, y, por ejemplo, el máximo radio que puede tener un agujero negro virtual está dado aproximadamente por:

que equivale a unos 10-³³ centímetros. Esta distancia se conoce como la Longitu de Planck y es la única unidad de distancia que se puede construir con las tres constantes fundamentales de la naturaleza: Gc. La Longitud de Planck es tan extremadamente pequeña (10²° veces menor que el radio de un electrón) que debe ser la distancia característica de otro nivel de la naturaleza, subyacente al mundo subatómico, donde rigen las leyes aún desconocidas de la gravedad cuántica.

Así como el océano presenta un aspecto liso e inmóvil cuando se observa desde una gran distancia, pero posee fuertes turbulencias y tormentas a escala humana, el espacio-tiempo parece “liso” y estático a gran escala, pero es extremadamente turbulento en el nivel de la Longitud de Planck donde los hoyos negros se forman y evaporan continuamente. En el mundo de Planck, las leyes de la física deben ser muy distintas de las que conocemos hasta ahora.

La estructura macroscópica del espacio-tiempo parece plana, pero éste debe ser extremadamente turbulento en el nivel de la escala de Planck. Escala en la que parece que entramos en otro mundo… ¡El de la mecánica cuántica! que se aleja de ese mundo cotidinao que conocemos en el que lo macroscópico predomina por todas partes y lo infinitesimal no se deja ver con el ojo desnudo.

¡Existen tántos secretos! ¡Es tan grande nuestra ignorancia!

emilio silvera