miércoles, 26 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo y la Vida… ¡Nuestra imaginación!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 Resultado de imagen de La Mente del Universo

 

 ¡Ese misterio que llamamos “Mente”! ¿Y la existencia de la denominada Conciencia? Uno de los más grandes secretos del Universo, al menos que yo sepa, ningún filósofo ha podido explicar lo que es. La conciencia, nos diferencia del resto de los animales, nosotros tenemos “consciencia” de SER, nos preguntamos cosas, queremos saber, tenemos una curiosidad innata que nos lleva a profundizar en el por qué de las cosas, en la Naturaleza que nos rodea para tratar de entender nuestra presencia aquí y hacia donde nos encaminamos.

 

Resultado de imagen de La Humanidad y las CivilizacionesResultado de imagen de La Humanidad y las Civilizaciones

 

Pensando en el recorrido de nuestra especie, podemos ver que, en realidad, en el tiempo cósmico, hace tres días que estamos aquí, y, sin embargo, hemos conseguido muchas cosas: Las matemáticas, el Lenguaje, la Física, la Astronomía y tantas cosas más que, nos hacen pensar. Los Dinosaurios reinaron en el Planeta Tierra durante 150 millones de años, desaparecieron hace ahora unos 65 millones de años. Nosotros estamos aquí, como verdaderos hombres y mujeres, desde hace 2 millones de años, y, sin embargo, nos creemos los reyes de la Creación, cuando en realidad, somos unos jóvenes engreídos y ególatras que creen saber más de lo que en realidad saben.

 

Mind Stream Royalty Free Stock PhotographyMind Stream Royalty Free Stock Photos

“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”

 

Resultado de imagen de Vía Láctea es captada en el Desierto de Atacama sobre el telescopio ALMA del Observatorio Espacial Europeo ESO

Resultado de imagen de Vía Láctea es captada en el Desierto de Atacama sobre el telescopio ALMA del Observatorio Espacial Europeo ESOResultado de imagen de El Telescopio ALMA

Vía Láctea es captada en el Desierto de Atacama sobre el telescopio ALMA del Observatorio Espacial Europeo ESO

Inmensas galaxias cuajadas de estrellas, nebulosas y mundos. Espacios interestelares en los que se producen transmutaciones de materia que realizan el asombroso “milagro” de convertir unas cosas en otras distintas. Un Caos que lleva hacia la normalidad. Estrellas que explosionan y riegan el espacio de gas y polvo constituyentes de materiales en el que se forjarán nuevas estrellas, nuevos mundos y nuevas formas de vida.

 

Las estrellas de neutrones son uno de los objetos más asombrosos del  universo. Sus misterios empiezan a ser resueltosObjetos misteriosos! : Blog de Emilio Silvera V.Objetos extraños del universo: Explorando lo desconocido

Esta última imagen nos trae a la memoria la maraña de entrelazados nervios neuronales de nuestro cerebro

No pocas veces nos tenemos que maravillar ante las obras de la Naturaleza, en ocasiones, con pinceladas de las propias obras que nosotros mismos hemos sido capaces de crear. Así, no es extraño que algunos piensen que la Naturaleza nos creó para conseguir sus fines, que el universo nos trajo aquí para poder contemplarse así mismo.

Siempre hemos tratado de saber lo que el Universo es, lo que la Naturaleza esconde para conocer los mecanismos de que ésta se vale para poder hacer las maravillas que podemos contemplar tanto en la tierra como en el cielo. Valles, ríos y montañas, hermosos bosques de lujuriante belleza , océanos inmensos y llenos de formas de vida y, criaturas que, conscientes de todo eso, aunque algunas veces temerosas ante tanto poder, no por ello dejan de querer saber el origen de todo.

Resultado de imagen de crear un cromosoma completo a partir de una célula de levaduraResultado de imagen de crear un cromosoma completo a partir de una célula de levadura

 

Es posible que nos creamos más de lo que en realidad somos. Queremos jugar con fuerzas que no hemos llegado a comprender y, desde las estrellas y las inmensas galaxias, hasta los mundos y las fuerzas que todo lo rigen en el Universo, hemos querido conocer para poder, con esos conocimientos, recrear la misma creación. Los científicos han dado ya el primer paso para la creación de la vida sintética, han sido capaces de crear un cromosoma completo a partir de una célula de levadura. El logro es considerado un gran hallazgo dentro de la biología sintética, que busca diseñar organismos desde sus principios más básicos.

¿Hasta dónde queremos llegar?

carteles naturaleza truth anndechocholate amo desmotivaciones

Precisamente por que lo es, ha dispuesto que las estrellas estén lejos las unas de las otras, dando tiempo a que las distintas Civilizaciones de los muchos mundos habitados, maduren y tengan la capacidad de contactar pacíficamente.

A veces, viendo como se desarrollan las cosas y cómo se desenvuelven los hechos a medida que el Tiempo transcurre, no tenemos más remedio que pensar que parece como sí, la Naturaleza, supiera que estamos aquí y, desde luego, nos tiene impuesto límites que no podemos traspasar hasta que “ella” no considera que estamos preparado para ello. Un amigo asiduo a éste lugar nos decía que la Naturaleza nos preserva de nosotros mismos. Nosotros, los humanos, no conocemos ninguna regla que nos prohíba intentar todo aquello que podamos imaginar y, de esa manera, a veces, jugamos a ser dioses.

 

 

Pero, ¿acaso no somos, nosotros mismos universo? Dicen que genio es aquel que puede plasmar en realidad sus pensamientos y, aunque nos queda mucho camino por recorrer, lo cierto es que, hasta el momento presente, mucho de eso se ha plasmado ya. Es decir, hemos sabido de qué están hechas las estrellas, conocemos la existencias de las grandes estructuras del Universo constituidas por cúmulos y supercúmulos de galaxias, sabemos de mundos en los que, con mucha probabilidad puedan existir criaturas diversas que, conscientes o no, piensen, como nosotros, en todos los secretos que el Universo esconde. Hemos viajado hasta el “universo” infinitesimal del átomo y hemos conocido de qué está hecho el ínfimo núcleo donde los protones y neutrones, esos hadrones conformados por tripletes de Quarks que están confinados en su interior por los Gluones, los mensajeros de la Fuerza Nuclear Fuerte.

 

hombre universo

Sinceramente creo que, dentro de nosotros, están todas las respuestas a las preguntas que podamos plantear, toda vez que, como parte del Universo que somos, en nuestros genes, en lo más profundo de nuestras mentes están grabados todos los recuerdos y, siendo así, solo se trata de recordar para saber lo que pasó, para comprender los orígenes y, finalmente saber, el por qué estamos aquí y para qué. Nos hemos olvidado de que somos “polvo de estrellas”, los materiales que nos conforman se forjaron en los “hornos” nucleares de los astros que brillan en el firmamento lejano. A temperaturas de millones de grados se pudieron fusionar los elementos que hoy están en nosotros.

 

Captura

 

Una Supernova, hace miles de millones de años, hizo brillar el cielo con un resplandor cegador, una enorme región quedó sembrada de materiales en forma de Nebulosa que, con el paso de los eones, conformó un sistema planetario con un Sol central que le daba luz y calor a un pequeño planeta que, mucho después, llamaron Tierra. Los seres que allí surgieron y evolucionaron, eran el producto de grandes transiciones de fase y cambios que, desde el Caos hizo todo el recorrido necesario hasta la creación de la Vida consciente.

 

 

 De esa manera, sin lugar a ninguna duda, podemos hablar de un Universo viviente en el que, la materia evoluciona hasta la vida y los pensamientos. En el que en un carrusel sin fin surgen nuevas estrellas y nuevos mundos en los que, como en la Tierra, pasando el tiempo, también surgirá la vida que, podrá ser… ¡de tántas maneras! Una galaxia como la Vía Láctea puede tener más de cien mil millones de estrellas, en el universo pueden estar presentes más de cien mil millones de galaxias, los mundos que existen en una sola galaxia son cientos de miles de millones y, sabiendo todo eso, ¿Cómo poder pensar que la vida sea única en la Tierra?

“La vida se abre paso… ¡imparable!”

 

Resultado de imagen de http://ascendingstarseed.files.wordpress.com/2012/08/starseed.jpg

La vida surgió hace 3.800 millones de años en una Tierra primitiva. Tendríamos que pensar que no fue debido al Azar, ya que, serían muchas las casualidades que se produjeron para hacerlo posible, y, la causalidad que lo hizo posible parece aconsejarnos y hacernos creer que alguna “inteligencia” estaba presente (Los genes, el ADN…)

 

 

ADN, genes, cromosomas… | DcienciaLa vida comenzó en charcas calientes salpicadas por meteoritosAguas Termales De Ojo Caliente En El Parque Nacional De Yellowstone Foto de  archivo - Imagen de amarilla, caliente: 73291326

 

“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…” Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza. Hemos podido constatar la persistencia con la que la vida, se abre paso en este mundo, la hemos podido hallar en lugares tan insólitos como fumarolas marinas a más de 100 ºC, o en aguas con una salinidad extrema, o, a varios kilómetros de profundidad bajo tierra, o, nutriendose de metales, o metanógenas y alófilas y tantas otras infinitesimales criaturas que nos han causado asombro y maravilla.

 

http://4.bp.blogspot.com/_JlhvjWXE_Ik/TKO0LwU5O8I/AAAAAAAAAtY/IJ48OMDTWvY/s1600/Extremofilos.jpg

 

Si, amigos míos, en lo que a la vida se refiere, ésta se abre paso en los lugares más extremos e inesperados por muy malas condiciones que allí puedan estar presentes. De la misma manera, podrían estar situadas en mundos lejanos que, con unas condiciones distintas a las de la Tierra, se puedan haber creado criaturas que ni nuestra desbordante imaginación pueda configurar en la mente.

 

Resultado de imagen de http://ascendingstarseed.files.wordpress.com/2012/08/starseed.jpgResultado de imagen de http://ascendingstarseed.files.wordpress.com/2012/08/starseed.jpgResultado de imagen de http://ascendingstarseed.files.wordpress.com/2012/08/starseed.jpgResultado de imagen de http://ascendingstarseed.files.wordpress.com/2012/08/starseed.jpg

 

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

Es cierto que en todo el Universo rigen las mismas leyes y están presentes las mismas constantes universales que, ni con el paso del tiempo pueden variar, así la luz siempre irá a 300.000 Km/s, la carga del electrón será siempre la misma como la masa del protón y, gracias a que eso es así, podemos estar nosotros aquí para contarlo. Sin embargo, el Universo, no es uniforme y en el inmenso espacio interestelar impera la diversidad.

 

http://www.eso.org/public/archives/images/screen/eso1208a.jpg

 

Existe una amplia variedad de densidades dentro del medio interestelar. En la modalidad más ligera, la materia que está entre las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos -composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

 

Aquí se crea entropía negativa. También nosotros, tenemos una manera de vencer a la inexorable Entropía que siempre acompaña al Tiempo, su transcurrir deja sentir sus efectos sobre las cosas que se hacen más viejas. Sin embargo, sabemos, como las galaxias, generar energía reproductora y, mientras que las galaxias crean estrellas nuevas y mundos, nosotros, recreamos la vida a partir de la unión entr hombre y mujer, y, de esa unión surgen otros seres que, perpetúan nuestra especie. Es la entropía negativa que lucha contra la extinción.

Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

 

El hombre furente a una enorme galaxia en el espacio ilustra el sermón 'El origen del ser humano, su dignidad y su lugar en el universo'.

Puede que podamos ser más de lo que parece y que, seamos menos de lo que nosotros mismos nos podamos creer. No parece muy aconsejable que estemos situados en un plano de superioridad en el cual podamos mirarlo todo por encima del hombro. Precisamente por ser Naturaleza nosotros mismos, estamos supeditados a sus cambios y, por lo tanto, a merced de ellos.

El problema está, como dijo aquel hombre sabio:  “¡Somos parte del problema que tratamos de resolver!”

 

Sol explosion GIF en GIFER - de Akinokree

    Son mucho más que puntitos brillando en el cielo de una noche oscura

Estamos envueltos en grandes secretos que nos acompañan desde la cuna. No hemos podido resolver ni el misterio de la Vida, ni tampoco hemos podido saber lo que realmente el Tiempo es, cuestiones como la Luz, el Agua, y la asombrosa verdad descubierta de que somos “polvo de estrellas”, nos han llevado a comprender que en las entrañas de los cuerpos estelares se han estado “fabricando” durante diez mil millones de años los materiales de los que estamos hechos los seres vivos.

Emilio Silvera V.

¡Las estrellas! Que transforman la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Keplers supernova.jpg

Aquí podemos contemplar una imagen compuesta de la Supernova Kepler del Telescopio Espacial Spitzer y el Hubble con la ayuda del Observatorio de rayos X Chandra. El remanente de supernova que muestra los filamentos de plasma en que se ha convertido una estrella masiva que ha dejado por el camino algún agujero negro y muchos elementos complejos creados en las inmensas temperaturas que allí estuvieron presentes.

En las supernovas se produce la nucleosíntesis de la materia. Es decir, allí se crean nuevos elementos químicos. Ocurre principalmente debido a la nucleosínteis explosiva durante la combustión de oxígeno explosivo y la combustión del silicio. Estas reacciones de fusión crean los elementos silicio, azufre, cloro, argón, potasio, calcio, escandio, titanio, vanadio, cromo, manganeso, hierro, cobalto y níquel. Como resultado de su expulsión desde supernovas individuales, sus abundancias crecen exponencialmente en el medio interestelar. Los elementos pesados (más pesados que el níquel) son creados principalmente por un proceso de captura de neutrones conocido como proceso-R. Sin embargo, hay otros procesos que se piensa que son responsables de algunas nucleosíntesis de elementos, principalmente un proceso de captura de protones conocido como el Proceso rp  y un proceso de foto-disgregación conocido como el Proceso P. Al final se sintetizan los isótopos más ligeros (pobres en neutrones) de los elementos pesados.

                    Diagrama del Ciclo CNO

“El ciclo CNO (carbononitrógenooxígeno), también llamado ciclo Bethe-Weizsäcker a nombre de sus descubridores, es una de las 2 reacciones nucleares de fusión por las que las estrellas convierten hidrógeno en helio, siendo la otra la cadena protón-protón. El proceso CNO fue propuesto en 1938 por Hans Bethe.”

 

Una Estrella en una Caja Explorando el ciclo

 

El ciclo CNO (carbono-nitrógeno-oxígeno) es una de las 2 reacciones nucleares de fusión por las que las estrellas convierten el hidrógeno en Helio, siendo la otra la cadena protón-protón. Aunque la cadena protón-protón es más importante en las estrellas de la masa del Sol o menor, los modelos teóricos muestran que el ciclo CNO es la fuente de energía dominante en las estrellas más masivas. El proceso CNO fue propuesto en 1938 por Hans Bethe.

Modelo: 126C donde 12 es peso atómico y 6 es número de protones.

Las reacciones del ciclo CNO son:

Reacciones nucleares en las estrellas - NUSGREM - Asociacion Nacional de Estudiantes de Física

                Rama 1 (99,96% de todos las reacciones):

157N + 11H 126C + 42He +4,96 MeV

El resultado neto del ciclo es la fusión de cuatro protones  en una partícula alfa  y dos positrones y dos neutrinos,  liberando energía en forma de rayos gamma.  Los núcleos de carbono, oxígeno y nitrógeno sirven como catalizadores  y se regeneran en el proceso.

Fusión de elementos

Debido a las grandes cantidades de energía liberadas en una explosión de supernovas se alcanzan temperaturas mucho mayores que en las estrellas. Las temperaturas más altas para un entorno donde se forman los elementos de masa atómica mayor de 254, el californio siendo el más pesado conocido, aunque sólo se ve como elemento sintético en la Tierra. En los procesos de fusión nuclear en la nucleosíntesis estelar,  el peso máximo para un elemento fusionado en que el níquel, alcanzando un isótopo con una masa atómica de 56. La fusión de elementos entre el silicio y el níquel ocurre sólo en las estrellas más grandes, que termina como explosiones de supernovas -proceso de combustión del silicio-. Un proceso de captura de neutrones conocido como el proceso-s que también ocurre durante la nucleosíntesis estelar puede crear elementos por encima del bismuto con una masa atómica de aproximadamente 209. Sin embargo, el proceso-s ocurre principalmente en estrellas de masa pequeña que evolucionan más lentamente.

No podemos completar la Tabla periódica de elementos sin acudir a las estrellas. En las estrellas pequeñas y medianas como el Sol se transmutan una serie de elementos hasta llegar al hierro donde la fusión se frena por falta de potencia energética y, el resto de elementos más pesados y complejos, están en el ámbito de las estrellas masivas que, al final de sus vidas explotan como Supernovas y riegan el espacio interestelar de otros materiales como el oro y el platino, o, el Uranio.

 

http://farm3.static.flickr.com/2734/4076849383_1a19aa7aa0.jpg

 

Una imagen del Observatorio Chandra de Rayos-X del remanente de supernova Cassiopeia A, con una impresión artística de la estrella de neutrones en el centro del remanente. El descubrimiento de una atmósfera de carbono en esta estrella de neutrones resuelve un misterio de hace una década alrededor de este objeto. Crédito: NASA/CXC/Southampton/W.Ho;NASA/CXC/M.Weiss

Durante la nucleosíntesis de supernovas, el Proceso-R (R de Rápido) crea isótopos pesados muy ricos en neutrones, que se descomponen después del evento a la primera isobara estable, creando de este modo los isótopos estables ricos en neutrones de todos los elementos pesados. Este proceso de captura de neutrones ocurre a altas densidades de neutrones con condiciones de grandes temperaturas. En el Proceso-R, los núcleos pesados son bombardeados con un gran flujo de neutrones para formar núcleos ricos en neutrones altamente inestables que rápidamente experimentan la desintegración Beta  para formar núcleos más estables con un número atómico mayor y la misma masa atómica. El flujo de neutrones es increíblemente alto, unos 1022 neutrones por centímetro cuadrado por segundo.

Desintegración beta - Wikipedia, la enciclopedia libreNeutrino y desintegración beta (β) — AstronooEL FÍSICO LOCO: Desintegración alfa, beta y gamma

Los primeros cálculos de un Proceso-R, muestran la evolución de los resultados calculados con respecto al tiempo, también sugieren que en el Proceso-R las abundancias son una superposición de diferentes flujos de neutrones. Las pequeñas afluencias producen el primer pico de abundancias del Proceso-R cerca del peso atómico A = 130 pero no actínidos, mientras que las grandes afluencias producen los actínidos Uranio y Torio, pero no contiene el pico de abundancia de A = 130. Estos procesos ocurren en una fracción entre un segundo y unos cuantos segundos, dependiendo de detalles. Cientos de artículos relacionados publicados han utilizado esta aproximación dependiente del tiempo. De modo interesante, la única supernova moderna cercana, la Supernova 1987A, no ha revelado enriquecimientos del Proceso-R. La idea moderna es que el Proceso-R puede ser lanzado desde algunas supernovas, pero se agota en otros como parte de los neutrones residuales de la estrella o de un agujero negro.

 

ALMA encuentra indicios de estrella de neutrones en Supernova 1987A | ALMALos Misteriosos Anillos de la Supernova 1987A – astronomia-iniciacion.comALMA encuentra indicios de estrella de neutrones en Supernova 1987A | ALMASupernova 1987a Fotos e Imágenes de stock - Alamy

 

La famosa Supernova 1987A cuya onda expansiva al expandirse hacia el espacio interestelar  creó inmensos anillos  brillantes de material caliente, que fueron captados por el Hubble en todo su esplendor. No hace tanto tiempo que se observó la supernova más notable de los tiempos modernos. En febrero de 1987, la luz llegó a la Tierra procedente de una estrella que explotó en la cercana galaxia grande Nube de Magallanes. 1987a Supernova sigue siendo la supernova más cercana desde la invención del telescopio. La explosión catapultó una enorme cantidad de gas, la luz y los neutrinos en el espacio interestelar. Cuando se observó por el telescopio espacial Hubble (HST) en 1994, se descubrieron grandes anillos extraños cuyo origen sigue siendo misterioso, aunque se cree que han sido expulsados​​, incluso antes de la explosión principal. Observaciones más recientes del HST muestran en la inserción, sin embargo, han descubierto algo realmente predicho: la bola de fuego en expansión de la estrella en explosión.

 

Supernova captada por el Hubble

Con el paso de los siglos, las supernovas se difuminan y van cediendo material que pierden por distintos motivos de la gravedad, vientos estelares y otros sucesos que se llevan material del remanente. Arriba podemos contemplar lo que ha quedado de la Supernova SN 1572, más conocida como la Supernova de Tycho.

TRANSURÁNIDOS, TRANSACTÍNIDOS Y MÁS ALLÁ

Elementos transuránicos - Wikipedia, la enciclopedia libreElementos Transuránicos | Esto y Más

Los elementos químicos en el Universo hasta el Uranio son naturales, y, más allá, están los transuranidos o transuránicos que se obtienen en el laboratorio. Son los que están más allá del Uranio, el 92 de la T.P.

En el Universo se han detectado alrededor de 90 elementos químicos distintos. La abundancia de cada uno de ellos es muy diferente,  el hidrógeno constituye casi el 75% de la materia atómica del Universo, de un elemento como el francio apenas si existen 30 g en toda la Tierra, de otros elementos no se conoce su existencia y se han sintetizado en el laboratorio, en algunos casos, apenas unos pocos átomos. Este capítulo lo vamos a dedicar a conocer como el hombre ha ampliado, sintetizándolos de manera artificial, el número de elementos químicos conocido hasta llegar en la actualidad al 118, de ellos 112 reconocidos y con nombre admitido por la IUPAC.

Lo cierto es que hemos podido llegar a saber cómo se forman los elementos en el Universo donde la Naturaleza se sirve de las estrellas para “fabricarlos” y en sus distintas categorías de más o menos masas, cada tipo de estrella desempeña una función esencial para que en el Universo puedan existir toda la gama de elementos que podemos conocer y que conforman la Tabla Periódica. Los más sencillos se transmutan en las estrellas pequeñas y los más complejos en las masivas y en las supernovas que se producen al final de sus vidas. Como se dice más arriba, los artificiales, los que están más allá del Uranio, son formados por el hombre en el laboratorio.

 

El Alquimista descubriendo el fósforo (1771) de Joseph Wright

Lejos quedan ya aquellos tiempos en el que los Alquimistas, perseguían transmutar el plomo en oro, encontrar la piedra filosofal y el elisír de la eterna juventud. Siempre hemos tenido una imaginación desbordante y, cuando no teníamos los conocimientos necesarios para explicar o conseguir aquello que queríamos y pensábamos que podíamos conseguir… ¡La Imaginación se desataba y volaba por los ilusorios campos de la Ignorancia!

Algunos piensan y se ha podido leer por ahí que:

“Un modelo propone que el origen de los elementos más pesados que el hierro no se da en las explosiones de supernova, sino en procesos en los que están involucradas las estrellas de neutrones.”

 

Foto

Somos cenizas de estrellas. Muchos de los átomos que componen nuestros cuerpos estuvieron alguna vez en el interior de alguna estrella en donde las reacciones de fusión nucleares los sintetizaron. Una vez esos cuerpos estelares murieron los elementos que los componían fueron diseminados por el espacio. Parte de esa materia fue a parar a otros discos de acreción que formaron nuevas estrellas, planetas e incluso seres vivos.

El Big Bang sólo produjo hidrógeno, helio y pequeñas trazas de elementos ligeros, como el litio de nuestras baterías. Son los elementos primordiales. Las reacciones de fusión de las estrellas pueden sintetizar el resto de los elementos de la tabla periódica, pero no los de número atómico más elevado. El elemento de corte se suele colocar en el hierro, aunque esta frontera es un tanto difusa. La razón es que las reacciones de fusión para producir esos elementos más pesados no producen energía, sino que la consumen. De hecho, la mejor manera de crear esos elementos pesados es por captura de neutrones.

El caso es que, hasta ahora, se decía que esos elementos pesados, como el oro cuyo brillo tanto nos ciega, el uranio de nuestros reactores o el platino que cataliza tanta química moderna, procedían de las propias explosiones de supernovas. Todos hemos repetido esta popular hipótesis una y otra vez, pero no hay pruebas que la avalen. De hecho, las simulaciones de modelos de explosiones de supernova no confirman dicha síntesis.

Ahora, una nueva teoría, coloca el origen de estos elementos en las estrellas de neutrones. Una estrella de neutrones es el residuo que dejan algunas estrellas de gran masa una vez explotan en forma de supernova. Unas simulaciones numéricas realizadas por científicos del Max Planck han verificado que la materia eyectada en procesos en los que están involucrados estos cuerpos producen las colisiones nucleares violentas necesarias como para producir núcleos pesados y generar los elementos más pesados que el hierro.

Qué son las estrellas de neutrones?Descubrieron una de las estrellas de neutrones más densas jamás detectada - Infobae

Estrella de neutrones - EcuRedQué es una estrella de neutrones?

Las estrellas de neutrones son uno de los objetos más misteriosos en el mundo de la Astronomía y, de momento, el cuerpo celeste y objeto natural del Universo más denso cuya existencia ha sido demostrada. Sin tener en cuenta los agujeros negros, claro, pues estos tienen una densidad infinita.

“Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares, con un radio correspondiente aproximado de 12 km. En cambio, el radio del Sol es de unas 60 000 veces esa cifra. Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol), comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³. La densidad de una estrella de neutrones varía desde menos de 1×109 kg/m³ en la corteza, aumentando con la profundidad a más de 6×1017 u 8×1017 kg/m³ aún más adentro (más denso que un núcleo atómico). Esta densidad equivale aproximadamente a la masa de un Boeing 747 comprimido en el tamaño de un pequeño grano de arena.”

Ciencias para el mundo contemporáneo

Estrellas como el Sol: Gigante roja y enana blanca

Estrellas más masivas que el Sol: El mismo proceso pero con final en estrella de neutrones.

 

Agujeros Negros: todo lo que hay que saber | National Geographic

Estrellas súper-masivas: Agujeros Negros

Todos sabemos por haberlo explicado aquí repetidas veces, como se forman las estrellas de neutrones que tiene una densidad de 1017 Kg/m3. ¡Una barbaridad! Pues bien, cuando dos de estas estrellas colisionan, se produce una inmensa explosión en la que se pueden crear materiales como el oro y el platino entre otros. Así ha resumido, un grupo de astrofísicos una investigación realizado para comprobar qué pasaba en este tipo de sucesos. De ello podemos deducir que se pueden formar nuevos materiales por procesos distintos al de la fusión nuclear en las estrellas. Sin embargo, la mayoría de los elementos están “fabricados en los hornos nucleares” y, gracias a ello, podemos nosotros estar aquí para contarlo.

Emilio Silvera V.

El Futuro de nuestra Sociedad y los Robots

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entrevista con Sophía, un robot con inteligencia artificial.Sophia (robot) - Viquipèdia, l'enciclopèdia lliure

“Los dos equipos de robótica que hoy en día trabajan para el desarrollo de robots con más semejanza a los humanos son Hanson Robotics y Hiroshi Ishiguro Laboratories. Precisamente estas corporaciones son las que han dado vida a Sophia, el androide más avanzado con inteligencia artificial de la actualidad.”

 

Sophia, el robot casi humano | LeonoticiasQueremos que los robots tengan compasión? | Código EspaguetiSophia, El robot más avanzado del mundo? | EL PROFE CESARrobotsophia - Radio Rumba NetworkEl robot humanoide Sofía, único en el mundo

    Viendo estas imágenes puede dar un  poco de miedo

Si finalmente los científicos y expertos en robótica, consiguen (como quieren), crear cerebros artificiales que puedan pensar por sí mismos, que tengan consciencia de Ser… ¡Mal nos irán las cosas!

Cada día están construyendo Robots que se asimilan más y más a los humanos. Sin embargo, estos “seres” artificiales tienen la particularidad de que son más fuertes que nosotros, no tienen enfermedades, no necesitan comer ni dormir, la radiación del Espacio exterior no les afecta… ¿Cómo podremos equipararnos a ellos?

 

La conquista de MarteHumanos a Marte: estado de los planes para poner un astronauta sobre el planeta rojo - EurekaPin en Documentales

 

Planetas extrasolares que los humanos nunca podrán visitar como consecuencia de que la atmósfera no es la adecuada y de que están sometidos a una intensa radiación, podrán ser visitados (sin problema alguno) por los Robots.

Expectativas de la robótica en un futuro – IXIONCómo el futuro de la robótica se construirá sobre herramientas abiertas | Zonamovilidad.es

La robótica aumentará la capacidad de sentir, actuar y aprendertalentstreet | equipos&talento

Todas estas escenas serán una realidad a no tardar mucho, los avances en robótica están siendo exponenciales y, cada día, se avanza en este campo en el que se busca (con buena intención), que estos “seres” artificiales nos ayuden en muchos campos que, para nosotros, resultan pesados o “imposibles”.

 

Isaac Asimov: El maestro de la ciencia ficción – Radio JAIPasión por la ciencia-ficción: Robots e Imperio (1985). Isaac AsimovLOS ROBOTS DEL AMANECER ISAAC ASIMOV - | Novela contemporanea, Libros, Amaneceryo robot - isaac asimov (edhasa ) - Comprar Libros de ciencia ficción y fantasía en todocoleccion - 45870088Will Smith protagoniza 'Yo, robot', inspirada en un relato de Isaac Asimov

Asimov nos advirtió del peligro que podrían suponer estos “seres” artificiales si llegaban a tener consciencia. Se darían cuenta de la gran ventaja que tendrían sobre nosotros y, se pensarían (muy seriamente), por qué motivo nos dejarían al mando.

“Las leyes de la robótica son un conjunto de leyes, reglas o principios, que están pensados ​​como un marco fundamental para sustentar el comportamiento de los robots diseñados para tener cierto grado de autonomía. Los robots de este grado de complejidad aún no existen, pero han sido ampliamente anticipados en la ciencia ficción, las películas, y son un tema de investigación y desarrollo activo en los campos de la robótica y la inteligencia artificial.”

Las tres leyes son:

  1. Un robot no puede dañar a un ser humano o, por inacción, permitir que un ser humano sufra daños.
  2. Un robot debe obedecer las órdenes que le den los seres humanos, excepto cuando tales órdenes entren en conflicto con la Primera Ley.
  3. Un robot debe proteger su propia existencia siempre que dicha protección no entre en conflicto con la Primera o Segunda Ley.
I, Robot - The Evitable Conflict - YouTube

 

En The Evitable Conflict, las máquinas generalizan la Primera Ley para significar:

  1. “Ninguna máquina puede dañar a la humanidad; o, por inacción, permitir que la humanidad sufra daños”.
Fundación y Tierra - En segunda persona

Esto se refinó al final de Fundación y Tierra, se introdujo una ley cero, con las tres originales reescritas adecuadamente como subordinadas a ella:

O. Un robot no puede dañar a la humanidad o, por inacción, permitir que la humanidad sufra daños.

Existen adaptaciones y extensiones basadas en este marco. A partir de 2011 siguen siendo un “dispositivo ficticio”

 

Robot humanoide que usa una tableta para análisis de datos grandes con inteligencia artificial | Foto Premium
Siendo máquinas que no estarán supeditadas a las limitaciones intelectuales de los humanos, y, podrán llevar incluidas en sus cerebros positrónicos todos los datos necesarios para realizar las tareas encomendadas, podríamos decir que serán, en la práctica, superiores a sus creadores.
Si “ellos” llegan a tener consciencia de ese detalle… ¿Se dejarán manipular por los humanos? ¿Servirán las leyes de Asimov para algo, o, por el contrario serán ellos los que determinarán sus comportamientos  en relación a su “sentir”.
¡Da un poco de miedo!
Emilio Silvera V.
Nota: este pequeño trabajo quiere ser una respuesta al otro publicado hoy recordando aquellas celebraciones de 2.014 en el que todos celebraban gozosos el futuro que tendría la Humanidad con la Robótica, y, con lo que no acabo de estar de acuerdo.

 

 

¿La masa perdida? ¿O no entendemos nada?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La masa perdida? ¿O, que no entendemos nada? : Blog de Emilio Silvera V.

 

La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.

La masa perdida? ¿O, que no entendemos nada? : Blog de Emilio Silvera V.El misterio de la Energía Oscura, El misterio de la Materia Oscura

Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).

La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.

El proceso mediante el cual la fuerza nuclear fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; una botella de leche explotará si se deja en el exterior una noche fría del crudo invierno. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.
Lo que sí sorprende es la enorme magnitud de la expansión. El tamaño del universo aumentó en un factor no menor de 1050. Este número es tan inmenso que virtualmente no tiene significado para la mayoría de la gente. Y es lógico que así sea, ya que, si su altura aumentase de repente en un factor tan grande como ése, se extendería de un extremo del universo al otro y les faltaría sitio. Incluso un solo protón de un solo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el universo.
En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una buena naranja. No es extraño que el nombre inflación esté ligado a este proceso en un cambio de fase tan descomunalmente inusual.
File:Universes-es.svg
Todas estas ideas han dado lugar a que los científicos se planteen el problema de la clase de universo en el que vivimos, y, se ha llegado a la conclusión de que será el que determine la cantidad de materia que contenga, es decir, conforme lo determine Ω, signo que significa toda la masa que contiene el universo y que será la que determine su geometría final y también, qué clase de final le espera en función de ese parámetro que llamamos Densidad Crítica del Universo y que según las medidas más afinadas está en 10-29 g/cm3.
Claro que cuando uno lee estas cosas y le dicen que el universo sufrió una expansión de tal magnitud, no se puede sustraer a la pregunta: ¿No violaría un crecimiento tan rápido las reglas de Einstein contra viajar más rápido que la luz? Si un cuerpo material viajó de un extremo de una naranja al otro en 10-35 segundos, su velocidad excedió la de la luz en una cantidad muy considerable.
Claro que la respuesta a tal objeción la podemos encontrar, de manera simple y sencilla, en un globo que tiene dibujadas algunas galaxias. A medida que le añadimos aire y el globo se hincha (se expande), podemos apreciar cómo las galaxias se van separando las unas de las otras. Sin embargo, no son las galaxias las que viajan velozmente a medida que el aire entra en el globo, sino que es, el espacio mismo dentro del globo el que se infla haciendo que las galaxias se muevan y dando la sensación de que son éstas las que corren, cuando, en realidad, es el espacio el que se está expandiendo. Ningún cuerpo material, ninguna de las galaxias se mueve a altas velocidades en el espacio. Las reglas contra el viaje a velocidad mayor que la luz sólo se aplica al movimiento dentro del espacio, no al movimiento del espacio mismo. Así que, nunca se ha violado la regla impuesta por la relatividad especial y la velocidad de la luz es una constante del universo inviolable.
La expansión del Universo es más rápida de lo que se pensaba - MuyComputer
La consecuencia de la rápida expansión se puede describir mejor con referencia a la visión einsteniana de la gravitación. Antes de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribución de la materia (su forma precisa no importa). A causa de esta materia, el espacio-tiempo tendrá alguna forma característica. Podríamos suponer que estaba algo arrugado o banboleado, es decir, no era uniforme y en presencia de materia se curvaba en función de la masa allí presente. Pero llegó la inflación y comenzó una especie de estiramiento del espacio-tiempo que dejó al universo como lo podemos ver hoy, es decir, según la materia que parece que contiene, es casi perfectamente plano por lo general.
Origen y evolución del UniversoFriedmann Equation

 

Se ha tratado de medir la Densidad Crítica del Universo para poder saber en qué clase de universo estamos y, parece que es plano.

Universo cerrado

 

Lo desconocido del universo: El universo

Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.

En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.

                                 Universo abierto y universo plano

 

NeoFronteras » ¿Vivimos en un universo «tipo Pringle»? - Portada -La masa perdida, o, que no entendemos nada? : Blog de Emilio Silvera V.

 

Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.

Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”,  dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.

Si la densidad media del universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del universo es plana: como en la geometría euclidiana,  la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.

NeoFronteras » Otro modelo elimina la necesidad de energía oscura - Portada  -

Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamente a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón,  proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein  y la cuasipartícula análoga al fermión,  tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.

 

http://upload.wikimedia.org/wikipedia/commons/9/94/Big_rip.gif

     Simulación del Big Rip
En un Universo abierto, la relatividad general predice que el Universo tendrá una existencia indefinida, pero con un estado donde la vida que se conoce no puede existir. Bajo este escenario, la energía oscura causa que las tasa de expansión del universo se acelere.  Llevándolo al extremo, una aceleración de la expansión eterna significa que toda la materia del Universo, empezando por las galaxias y eventualmente todas las formas de vida, no importa cuán pequeñas sean, se disgregarán en partículas elementales  desligadas. El estado final del Universo es una singularidad, ya que la tasa de expansión es infinita.
Big Crunch - LA EVOLUCION DEL UNIVERSO
           El Big Crunch. El eje vertical se puede considerar como tiempo positivo o negativo

La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler.  El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..

Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:

La Entropía lo destruye todo : Blog de Emilio Silvera V.La segunda ley de la termodinã¡mica

la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.

Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.

 

El Universo se expande y crece la energía oscura : Blog de Emilio Silvera V.
Cuando pasen algunos miles de millones de años más, no sabemos que será del Universo ni que rumbo habrán tomado las cosas, toda vez que, el Universo es dinámico y cambiante. Si todo sigue como ahora lo podemos contemplar, lo que parece es que vamos, sin remisión, hacia una muerte térmica del Universo en el que el espacio continuará expandiéndose y las galaxias se alejan las unas de las otras hasta que, la entropía deje sin energía a todo el universo que, como sistema cerrado, se verá abocado a quedar estático, en el frío más profundo de los -273 ºC. Allí, entonces, nada se moverá, ni los átomos tendrán la posibilidad de que sus componentes se muevan.
Claro que, nada de todo lo anterior… ¡lo podemos asegurar!
Emilio Silvera V.

La maravilla de… ¡los cuantos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Cuando un profesor le dijo a Planck que no quedaba nada por descubrir en el  terreno de la física, Einstein no había nacido

 

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

 

 

 

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 Ley de Planck para cuerpos a diferentes temperaturas.

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

 

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

 

            Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

 

E =▷ Descubre la Teoría de Max Planck: La clave para entender la física  cuántica ☆ Teoría OnlineMax Planck y la teoría cuántica - YouTube

 

Donde es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

 

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

Mecánica cuántica - Wikipedia, la enciclopedia libre

                                                                             Función de Onda

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿Qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

La interpretación de Copenhague de la mecánica cuántica — Cuaderno de  Cultura CientíficaInterpretación de Copenhague - Wikipedia, la enciclopedia libre

 

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

 

 

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

Dualidad onda-partícula (o el electrón como onda en el espacio de momentos) - La Ciencia de la Mula Francis

           ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

 

 

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 

 

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecano-cuánticos.

 

 

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

 

El estado actual de la teoría M - La Ciencia de la Mula FrancisRelatividad General cumple 100 años | Conexión causal

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

Emilio Silvera V.