Jul
16
¡Estamos aquí de prestado? ¿Es la vida un accidente?
por Emilio Silvera ~
Clasificado en Catástrofes Naturales ~
Comments (3)
Algunas veces, cuando a solas pienso más profundamente en nuestra presencia en el mundo que habitamos, en el recorrido que ha hecho nuestra especie hasta llegar hasta aquí, en la inmensa lucha contra los elementos y las circunstancias adversas que hemos tenido que superar, sobre todo, esa enorme carga que llevamos sobre nosotros: ¡la ignorancia!, que no pocas veces nos lleva a comportamientos irracionales y contrarios a nuestros propios intereses. ¡Tántas esperanzas y sueños! Cuando, en realidad, no somos dueño de nuestro destino como especie que siempre ha estado en poder de la Naturaleza que nos creó. Las estrellas brillan en el cielo, ajenas a nuestra presencia. En realidad estamos en manos del Azar y nada impide que en cualquier momento, un gran asteroide venido del espacio pueda acabar con nuestra especie y toda la vida que pulula sobre nuestro planeta.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos (¿racionales?) de extinguirse así mismos, agotar los recursos, propagar infecciones letales y venenos mortales, hacer pruebas armamentísticas con la propia Naturaleza y un sin fin de locuras más, lo cierto es que también, aparte de los peligros que aquí nos acechan, bien sean naturales o artificiales, lo cierto es que, las amenazas externas nos acechan.
Los movimientos de cometas y asteroides constituyen una seria amenaza para el desarrollo y la continuidad de la vida inteligente en sus primeras etapas. Los impactos no son infrecuentes y en el pasado lejano han tenido efectos catastróficos sobre nuestro planeta, la Tierra. Somos afortunados por estar doblemente protegidos de estos impactos: por nuestra pequeña y cercana vecina, la Luna, y por nuestro vecino lejano y gigante Júpiter que tiene una masa mil veces mayor que la Tierra y está situado en las afueras del Sistema solar donde su poderosa atracción gravitatoria puede capturar objetos errantes que se dirigen hacia el interior.
El Hubble pudo captar ésta imagen de los fragmentos del cometa Schumacher-Levy 9 que cayeron sobre Júpiter. El mayor planeta del Sistema solar, con la inmensa fuerza de gravedad que genera, atrae a los posibles visitantes y nos preserva en la Tierra de que algunos lleguen aquí. Ahí tenemos una pantalla natural.
Científicos aportan una nueva vuelta de tuerca sobre la enigmática explosión que arrasó 2.000 km cuadrados de Siberia en 1908: ahora creen saber dónde está el cráter de impacto.
En el siglo XX tuvimos dos impactos importantes en la Tierra, uno en América del Sur y el otro en Tunguska, al norte de Rusia. Hemos estado haciendo trampas con la ley de los promedios pero, un día, nuestra suerte cambiará. Y, aunque es cierto que algunos gobiernos están haciendo esfuerzos económicos en proyectos encaminados a seguir y vigilar las trayectorias de algunos grandes meteoritos sospechosos, lo cierto es que el paso del tiempo acerca, de manera inexorable, el acontecimiento hacia nosotros, dado que en última instancia será inevitable.
Cien años han pasado de la explosión de origen desconocido que arrasó una zona de 50 kilómetros de diámetro en Tunguska, una remota zona de Siberia, explosión que se conoce con el nombre de evento de Tunguska. Esta explosión fue tan potente que fue detectada por sismogafos en toda Asia y Europa e incluso llegaron a medirse en Londres las variaciones de presión atmosférica que causó.
A la fecha (al menos que yo sepa), sólo una sonda ha visitado un Asteroide que se Acerca a La Tierra. Se trata de la sonda NEAR-Shoemaker (Near Earth Asteroid Rendezvous), NASA, USA. Fue lanzada el 17 de Febrero de 1996 con destino final en el asteroide de tipo orbital amor 433 Eros. Su peso total era de 805 kilogramos. En Febrero de 1998 pasó por Eros sin ponerse en órbita. El 14 de Febrero de 2000 entró en órbita alrededor de Eros y el 12 de Febrero de 2001 descendió (!!) suavemente sobre él.
La sonda sobrevivió al aterrizaje y transmitió una serie de imágenes desde la superficie de este AAT. Se observaban bloques de rocas en un suelo polvoriento semejante al de nuestra Luna. Esta sonda contaba con espectrógrafos ópticos, infrarrojos, de rayos X y Gamma, magnetómetros, una cámara óptica multiespectral y un radar láser.
Dactylic
Algunos de estas rocas llegan a tener más de mil kilómetros (Asteroide 1 Ceres. Algunos, como el conocido por el nombre de Ida llegan a tener hasta su propia pequeña luna llamada Dáctiylic. ¿Os imagináis lo que sería la caída de uno de estos monstruos sobre nuestras cabezas?
Curiosamente, estas intervenciones externas sobre la evolución de la Tierra tienen otra cara. Es cierto que pueden producir extinciones globales de una inmensa gravedad y retrasar la evolución de la complejidad en millones de años. Pero, en ciertas circunstancias pueden tener un efecto positivo y acelerador sobre la evolución de formas de vida inteligente.
El suceso que, según todos los indicios, dio lugar a la extinción de los dinosaurios por la caída de un objeto espacial en la provincia del Yucatán hace ahora 65 millones de años, al final de la Era Mesozoica. Lo cierto es que, la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral .
La desaparición de los dinosaurios, junto con otras muchas formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Además limpió algunos nichos de competidores por los recursos naturales. Todo aquello estimuló una rápida aceleración del desarrollo de la diversidad. Quizás esos impactos desempeñen un papel vital en la puesta en marcha de nuevos mecanismos evolutivos cuando, las formas de vida se ven atascadas en caminos poco prometedores.
¿Quién sabe? Pudiera ser que sin impactos, los procesos de desarrollo pueden establecerse en un camino estable pero poco prometedores y con extinciones sistemáticas se posibilitan mutaciones y cambios que, de otra manera, nunca llegarían a producirse. Hemos oído muchas veces esa expresión que dice: ¡La Naturaleza es sabia! Pero, por otra parte, se me hace muy cuesta arriba pensar que ninguna de las estrellas que titilan en el firmamento, se puedan preocupar de nuestra efímera existencia aquí en la Tierra.
Resulta muy difícil imaginar un organismo con vida que logre sobrevivir completamente aislado de otras formas de vida. Las necesidades orgánicas de todos los seres vivos vuelve el contacto con otras especies una condición sine qua non para poder sobrevivir en lo que conocemos como ecosistemas, los cuales se definen, justamente, por la interacción de varias formas de vida.
La existencia de un ser vivo que logre vivir completamente independiente del resto de formas de vida es algo que podríamos a priori enmarcar en el contexto de la ciencia ficción. Sin embargo, un reciente descubrimiento que tuvo lugar en Sudáfrica ha dejado boquiabierta a la ciencia.
Unas condiciones duras y rápidamente cambiantes podrían estimular la adaptación y acelerar los procesos evolutivos incrementando la diversidad que es el mejor seguro de vida que puede tener un planeta contra la extinción total de su biología por un impacto futuro. Claro que, no lo veríamos de la misma manera si fuéramos dinopsaurios. Por otra parte, la vida es persistente y, como se puede leer debajo de la imagen de arriba, hasta aislada insiste en estar presente.
Por otra parte y de manera independiente de los posibles sucesos naturales que nos puedan amenazar, nuestra imaginación también crea otros que, según los rumores… pudieran ser ciertos. Tal es el caso del Planeta X, Hercóbulus, El 12º Planeta, Nibiru, son diferentes nombres que existen desde antiguo para designar a un extraño y destructor cuerpo celeste, que forma parte del Sistema Solar vecino de Tylo, pero que sin embargo su órbita tan elíptica y tan larga le lleva a cruzarse con nuestro Sistema Solar cada 3660 años.
El paso del planeta X, cruzándose por dentro de nuestro Sistema Solar, crearía unos efectos devastadores en La Tierra, encendiendo volcanes, terremotos, tsunamis, lluvias de fuego, etc… pues tendría que acercarse a unos 14 millones de millas de La Tierra, que astronómicamente se puede considerar como una distancia peligrosamente próxima.
La órbita elíptica de Nibiru, un planeta rojizo, más grande que Júpiter, le lleva a atravesar nuestro Sistema solar causando desequilibrios apocalípticos en la Tierra. Hercóbulus tiene un tamaño bastante grande, entre 2 y 5 veces mayor más que Júpiter, con lo que la fuerza de este planeta gigante altera electromagnéticamente y gravitacionalmente, a todos los niveles, a nuestro planeta; su polo norte ejerce una gran influencia magnética al acercarse al polo norte de La Tierra, momento en el que ambos cuerpos se repelen magnéticamente y se produce una gran sacudida geo-magnética que cambia los polos en La Tierra.
Esto explicaría que la civilización humana transcurre y evoluciona en el tiempo mediante periodos cíclicos, de aproximadamente cada 4 milenios, siendo una de las visitas indeseables de Nibiru la causante de la desaparición del continente de la Atlántida. según todas estas leyendas, se calcula que el paso de Nibiru cerca de La Tierra, hacia el año 2012, podría ocasionar la muerte de 2/3 de la población mundial. (Ya tenemos aquí “hecha realidad” la predicción maya).
¡Qué gente!
Lo cierto es que no tenemos que ir tan lejos para poder constatar in situ, los cambios que los desastres naturales pueden producir en nuestro entorno que, con cada suceso catastrófico se ve transformado y hay cosas que desaparecen para dejar pasos a otras nuevas… La vida incluida.
Los cráteres volcánicos, como parece ser el caso, están frecuentemente llenos de agua de lluvia y freáticas, formando lagos. Suele ocurrir que, tras una erupción volcánica, sean destruidos miles de kilómetros cuadrados de terreno a su alrededor y cambien por completo la orografía de la zona. Parece imposible pensar que la Naturaleza pueda recuperarse tras un acontecimiento de este tipo, sin embargo, las primeras muestras de vida vegetal aparecen a unos escasos tres meses del acontecimiento en los campos cubiertos por las cenizas ricas en minerales. Poco tiempo después, vuelven los animales y la vida, se reanuda, como si allí, nada hubiese pasado.
Así es la Naturaleza, y, como tantas veces se dijo aquí, algo se destruye para hacer posible que algo nuevo surja a la vida. Cuando una estrella muere crea las condiciones necesarias para que otras surjan a la vida. La eterna rueda de los ciclos del Universo que, una y otra vez, reproduce los acontecimientos para que todo siga igual pero… diferente. Y, aunque os parezca una paradoja, así es el ritmo del Universo en el que todo muere para que todo pueda seguir el ritmo evolutivo que la Naturaleza impone.
Emilio Silvera Vázquez
Jul
16
¿Vida fuera de la Tierra?: Seguramente pero… ¡Cuidado!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
¿Por qué la Vía Láctea no está llena de vida?
Además de sus numerosas aportaciones a la Física y la Cosmología, Stephen Hawking se interesó también por múltiples cuestiones, desde la Inteligencia Artificial y su impacto al desarrollo de naves que nos permitan, algún día, viajar a las estrellas. El origen de la vida, la necesidad de expandirnos a otros mundos si queremos sobrevivir como especie o el origen de la vida ocuparon también a menudo la mente del genial científico británico.
A ese respecto, Hawking se preguntó, en una celebre conferencia, por la razón de que no hayamos encontrado aún rastro alguno de otras civilizaciones en nuestra galaxia. Si la vida surgió y se desarrolló en la Tierra, argumentaba el físico, también pudo hacer lo mismo en otros planetas alrededor de estrellas similares al Sol. ¿Por qué entonces no hemos detectado señales de otras inteligencias?
Para Hawking, las razones podrían ser muy variadas. Por un lado es posible que, después de todo, los procesos que desembocan en la vida no sean tan sencillos como podríamos pensar, y nosotros somos una excepción única. Por otro, también es posible que lo que resulta complicado es que la vida evolucione durante el tiempo suficiente como para que surja la inteligencia, en cuyo caso habría muchos planetas con vida pero que no han tenido tiempo aún de dar ese “salto”.
La tercera posibilidad es que, por alguna razón, existan otras inteligencias pero que no hayamos sido capaces de detectarlas. Lo cual, según Hawking, debería ponernos en guardia, ya que esas civilizaciones serían mucho más avanzadas que la nuestra y sería un error señalarles nuestra presencia con señales y mensajes.
Hasta aquí el reportaje de prensa.
En la misma Vía Láctea existen cientos o miles de planetas que pueden albergar la Vida
La pregunta que se hace al principio de ¿Por qué la Vía Láctea no está llena de vida?, no tiene mucho sentido, toda vez que en realidad, no lo sabemos y, las probabilidades es que sí lo está no tenemos los medios para corroborarlo debido a las distancias que nos separan.
A 27.000 años luz del centro galáctico es donde estamos nosotros, en la periferia de la Galaxia
El Sistema solar, la región de la Tierra, sólo es un punto en la Galaxia. Estrellas como el Sol parece que pueden llegar a los 30.000 millones. De esos miles de millones, se calcula que los planetas podrían ser una media de 3 por cada estrella. Si tenemos 90,000 planetas, pongamos que sólo el 10 por ciento están situados en la zona habitable: ¡Tendríamos 9.000 mundos habitables.
Solo hemos explorado el espacio exterior en una pequeña proporción, la que sería la superficie de una piscina olímpica en comparación con el Océano Pacífico. Las distancias que nos separan no son humanas, hablamos de cientos, miles o miles de millones de años luz, y, si la Naturaleza (que es sabia), lo dispuso así… ¡Por qué sería?
En esos mundos, las criaturas que la habitan, estarán más o menos adelantados a nosotros en función del Tiempo de sus historias, y, se harán las mismas preguntas que nos hacemos nosotros, y, como nosotros mismos, estarán confinados en sus mundos por el insalvable “muro de las distancias”.
Las estrellas han necesitado 10.000 millones de años para “fabricar” los materiales de los que estamos hechos los seres vivos, y, a partir de la vida primigenia evolucionado, alguna especie en alguno de esos mundos, habrá conseguido tener consciencia de Ser. Estarán (como nosotros), avanzando en las disciplinas científicas, y, quizás algún día lejos aún aún en el Futuro, podrían viajar por el Espacio descubriendo la manera de salvar la “velocidad de la luz, c, y otras clases de energías.
Está claro que (al menos para mí), la Vida, está confinada en sus mundos y continuaran evolucionando hasta que sea un hecho el poder abrir esa puerta que llamamos Hiperespacio, Agujero de Gusano 0 cualquier otra que “burlando” no “venciendo” a c, (la velocidad de la luz en el vacío) nos lleve a mundos lejanos y a otras galaxias.
Porque el Universo es el mismo en todas partes y, por muy alejadas que las regiones estén, las fuerzas que las rigen y las constantes allí presentes, son las mismas que las que mandan aquí. La Mecánica del Universo, siempre cambiante para que todo siga igual, se produce continuamente como la noche y el día. Nacen estrellas que viven miles de millones de años, y, en su final, riegan el Espacio Interestelar de materiales que son la materia prima para que nazcan otras estrellas y otros mundos.
Así las cosas, si un planeta viene a situarse en la zona habitable de su estrella: ¡La Vida estará servida!
Segunda parte de Emilio Silvera V.
Jul
16
Desde la materia “inerte”… ¡Hasta los pensamientos!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Todos estos escenarios, sin la luz… ¡Serían diferentes!
Lo mismo que desconocemos la auténtica naturaleza de la Luz, que según creo encierra muchos secretos que tenemos que desvelar para conocer la realidad de la Naturaleza y del Universo, de la misma manera, tenemos que llegar a desvelar los secretos que se encierra en esa esencial y sencilla sustancia que llamamos agua, ya Tales de Mileto nos hablaba de la importancia que esa sustancia tenía para la vida.
¿Cómo podríamos suponer que en esa hermosa Nebulosa está la materia “inerte” de la que nacen estrellas?
Estructuración del Proto-plasma vivo
¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros puedan pensar? ¿Qué cosa mágica se pudo producir en el corazón de las estrellas para
que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno…?
“Protoplasma: Elemento fundamental de que se componen todos los seres vivos; es la parte de la célula compuesta en un 85 a 90 por ciento por agua, que contiene proteínas, sustancias grasas y sales inorgánicas.”
Muchos miles de millones de años más tardes, en mundos perdidos en sistemas planetarios como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia formas de vida superiores?
Los sentidos: las herramientas que utiliza el cerebro para
estar comunicado con el exterior
La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.
El cerebro humano ¿es especial?, su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la Naturaleza.
Aquí se fraguan los pensamientos como en las galaxias lo hacen las estrellas
Nuestro cerebro adulto, con poco más de 1 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número
posible de circuitos neuronales, tendremos que habérnoslas con cifras hiper-astronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.
Con tan enorme cantidad de circuitos neuronales, ¿Cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento? Algunas veces hemos oído comentar: “Sólo utilizamos un diez por ciento del cerebro…” En realidad, la frase no indica la realidad, se refiere al hecho de que, aunque utilizamos el cerebro en su totalidad, se estima que está al diez por ciento de su capacidad real que, será una realidad a medida que evolucione y, en el futuro, esa capacidad de hoy será un 90 por ciento mayor.
Aún no conocemos bien la direccionalidad de los circuitos neuronales
El límite de lo que podremos conseguir tiene un horizonte muy lejano. Y, llega un momento en el cual, se puede llegar a pensar que no existen limites en lo que podemos conseguir: Desde hablar sin palabras sonoras a la auto-transportación. Si -como pienso- somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.
Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!
¿Es más grande el cerebro humano que el universo?
“Durante siglos el hombre ha intentado responder a una de las más complicadas inquietudes: ¿Es el cerebro humano más grande que el universo? Y si bien la respuesta aún no ha llegado, muchos expertos a lo largo de los años han intentado esbozar sus teorías.
Diferencias entre Universo y Cerebro
La cantidad de información que llega al cerebro proveniente de los órganos de los sentidos es de 11 millones de bits por segundo, pero la capacidad de información de nuestra consciencia no sobrepasa los 45 bits por segundo. Esto significa que la inmensa mayoría de nuestra actividad cerebral es inconsciente. Sin embargo, el llamado yo consciente piensa que todo lo que sucede está bajo la iluminación de la consciencia. De la misma manera que no se ha podido constatar la existencia de ese yo en ninguna parte del cerebro, es muy probable que la libertad sea también una ilusión, una construcción cerebral, ya que esa libertad va unida al yo consciente, según nos asevera el Dr. Francisco J. Rubia.
“En la Tierra existen más 10 millones de linajes u organismos y quizá 50.000 millones de sucesos de especiación, sólo uno condujo a una alta inteligencia; eso me hace creer en su completa improbabilidad”.
Robert Krulwich
Precisamente, con el fin de poder acercar una somera respuesta a esta gigantesco interrogante, el periodista Robert Krulwich publicó en la página web NPR.org una completa compilación de este gran e interminable. Una compilación que incluye teorías de ambos bandos, y entre las cuales existen muchas que son realmente convincentes.”
Mirando ambas imágenes… ¿Quién podría decir, si no se les explicara, que son “mundos” diferentes”
La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas que, sin embargo y en sentido figurado, podríamos decir que son tan grandes como el universo mismo.
Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para que eso pueda llegar a ocurrir, aún falta mucho tiempo. Sin embargo, si el Universo no lo impide y nuestro transcurrir continúa, todo lo que podamos imaginar… podrá ser posible. Incluso imposibilidades físicas de hoy, dejarán de existir mañana y, ¡la Mente! posiblemente (al igual que hoy ordena a las distintas partes del cuerpo que realice esta o aquella función), se encargará de que todo funcione bien, erradicará cualquier enfermedad que nos pueda atacar y, tendrá el conjunto del “sistema” en perfectas condiciones de salud, lo cual me lleva a pensar que, para cuando eso llegue, los médicos serán un recuerdo del pasado.
Veamos, por ejemplo, la Ecuación de Schrödinger
¿Qué dice?
La ecuación modela la materia no como una partícula, sino como una onda, y describe cómo estas ondas se propagan.
¿Por qué es importante?
La ecuación de Schrödinger es fundamental para la mecánica cuántica, que junto con la relatividad general constituyen en la actualidad las teorías más efectivas del universo físico.
¿Qué provocó?
Una revisión radical de la física del mundo a escalas muy pequeñas, en las cuales cada objeto tiene una «función de onda» que describe una nube de probabilidad de posibles estados. A este nivel el mundo es incierto intrínsecamente. Intentos de relacionar el mundo microscópico cuántico con nuestro mundo macroscópico clásico llevaron a temas filosóficos que todavía tienen eco. Pero experimentalmente, la teoría cuántica funciona maravillosamente bien y los láseres y chips de los ordenadores actuales no funcionarían sin ella.
Creo que cuando las palabras no pueden explicar alguna cosa… Aparecen las ecuaciones
Es curioso y sorprendente la evolución alcanzada por la Mente Humana. El mundo físico se representa gobernado de acuerdo a leyes matemáticas. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales que aún no hemos podido llegar a comprender y, ni que sabemos que puedan existir.
Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, o, Ramanujan… que, con sus nuevas ideas transformarán el pensamiento matemático para hacer posible que podamos, al fin, comprender lo que realmente somos.
Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido descubrir que existen “números misteriosos” dentro de los cuales subyacen mensajes que tenemos que desvelar.
Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo -, de la constante de Planck (h) – el cuando
te acción – y de la luz (c) – la relatividad -.
Y, mientras tanto, nuestras mentes siguen su camino, siempre queriendo ir más allá y siempre profundizando en los secretos de la Naturaleza de lo que tenemos muchos ejemplos, tales como nuestras consideraciones sobre los dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.
Mediante la combinación de diversas observaciones de telescopios, y la ayuda del trabajo de modelación avanzada, el equipo de Emanuele Farina, de la Universidad de Insubria en la provincia de Como, Italia, y Michele Fumagalli del Instituto Carnegie de Ciencia, en Washington, D.C., Estados Unidos, fue capaz de captar como tal el trío de quásares, llamado QQQ J1519+0627. La luz de esos quásares ha viajado 9.000 millones de años-luz para
llegar hasta nosotros, lo que significa que dicha luz fue emitida cuando el universo tenía sólo un tercio de su edad actual.
Todo es finito, es decir, que tiene un fin, y la velocidad de la luz no podía ser una excepción
Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1.638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco (otro ejemplo de la evolución que, con el tiempo, se produce en nuestras mentes). Él no tenía forma
alguna de anticipar la extraordinaria velocidad de la luz.
Parece que tanto Galileo como Newton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida y, si consideramos que esa fuerza que hace posible la unión de la materia reside en el corazón de los átomos (en sus núcleos), podemos hacernos una clara idea de lo ilimitado que puede
ser el pensamiento humano que, ya en aquellos tiempos -en realidad mucho anters- pudo llegar a intuir las fuerzas que están presentes en nuestro Universo.
Los Quarks están confinados dentro de los nucleones por la Fuerza nuclear fuerte cuyos emisarios son los Gluones
En los núcleos atómicos reside la fuerza (nuclear fuerte) que hace posible la existencia de la materia que comienza por los átomos que, al juntarse y formar células, hace posible que éstas se junten y formen moléculas que a su vez, se reunen para formar sustancias y cuerpos.
Pero la comprensión adecuada de estas ideas tuvo que esperar hasta el siglo XX, cuando se reveló la verdadera naturaleza de las fuerzas químicas y de las fuerzas que mantienen unidos los átomos individuales. Ahora sabemos que tales fuerzas tienen un origen fundamentalmente electromagnético (que vincula y concierne a la implicación del campo electromagnético con partículas cargadas) y que la teoría del electromagnetismo es también la teoría de la luz.
Para entender los átomos y la química se necesitan otros ingredientes procedentes de la teoría cuántica, pero las ecuaciones básicas que describen el electromagnetismo y la luz fueron propuestas en 1.865 por el físico escocés James Clark Maxwell, que había sido inspirado por los magníficos descubrimientos experimentales de Michael Faraday unos treinta años antes y que él plasmó en una maravillosa teoría.
El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo.
Esta teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que en unidades ordinarias es aproximadamente 3 × 108 metros por segundo. Maxwell, guiado por los experimentos de Faraday, hizo posible un hecho que cambió la historia de la humanidad para siempre. Un hecho de la misma importancia que el descubrimiento del fuego, la rueda o los metales. El matemático y poeta escocés unificó los campos eléctrico y magnético a través de unas pocas ecuaciones que describen como
estos campos se entretejen y actúan sobre la materia.
La escalera infinita hacia el saber, en la que nunca se ve el final
Claro que, estos importantísimos avances han sido simples escalones de la “infinita” escalera que tenemos que subir y, la misma relatividad de Einstein no ha sido (después de un siglo) aún comprendido en su plenitud y muchos de sus mensajes están escondidos en lo más profundo de nuestras mentes que, ha sabido parcialmente descubrir el mensaje de Einstein pero
, seguimos buscando.
Sin embargo, esto nos presenta un enigma si queremos conservar el principio de relatividad. El sentido común nos diría que si se mide que la velocidad de la luz toma el valor concreto c en el sistema de referencia del observador, entonces un segundo observador que se mueva a una velocidad muy alta con respecto al primero medirá que la luz viaja a una velocidad diferente, aumentada o disminuida, según sea el movimiento del segundo observador.
Estaría bueno que, al final se descubriera que alfa (α) tuviera un papel importante en la compleja teoría de cuerdas, ¿Por qué no? En realidad alfa, la constante de estructura fina, nos habla del magnetismo, de la constante de Planck y de la relatividad especial, es decir, la velocidad de la luz y, todo eso, según parece, emergen en las ecuaciones topológicas de la moderna teoría de cuerdas. ¡Ya veremos!
Pero el principio de relatividad exigiría que las leyes físicas del segundo observador (que definen en particular la velocidad de la luz que percibe el segundo observador) deberían ser idénticas a las del primer observador. Esta aparente contradicción entre la constancia de la velocidad de la luz y el principio de relatividad condujo a Einstein (como
de hecho, había llevado previamente al físico holandés Hendrick Antón Lorentz y muy en especial al matemático francés Henri Poincaré) a un punto de vista notable por el que el principio de relatividad del movimiento puede
hacerse compatible con la constancia de una velocidad finita de la luz.
¿Cómo funciona esto? Sería normal que cualquier persona creyera en la existencia de un conflicto irresoluble entre los requisitos de una teoría como la de Maxwell, en la que existe una velocidad absoluta de la luz, y un principio de relatividad según el cual las leyes físicas parecen las mismas con independencia de la velocidad del sistema de referencia utilizado para su descripción.
¿No podría hacerse que el sistema de referencia se moviera con una velocidad que se acercara o incluso superara a la de la luz? Y según este sistema, ¿no es cierto que la velocidad aparente de la luz no podría seguir siendo la misma que era antes? Esta indudable paradoja no aparece en una teoría, tal como la originalmente preferida por Newton (y parece que también
por Galileo), en la que la luz se comporta como partículas cuya velocidad depende de la velocidad de la fuente. En consecuencia, Galileo y Newton podían seguir viviendo cómodamente con un principio de relatividad.
La velocidad de la luz en el vacío es una constante de la Naturaleza y, cuando cientos de miles de millones de millones salen disparados de esta galaxia hacia el vacío espacial, su velocidad de 299.792.450 metros por segundo, es constante independientemente de la fuente que pueda emitir los fotones y de si ésta está en reposo o en movimiento.
Así que, la antigua imagen de la naturaleza de la luz entró en conflicto a lo largo de los años, como era el caso de observaciones de estrellas dobles lejanas que mostraban que la velocidad de la luz era independiente de la de su fuente. Por el contrario, la teoría de Maxwell había ganado fuerza, no sólo por el poderoso apoyo que obtuvo de la observación (muy especialmente en los experimentos de Heinrich Hertz en 1.888), sino también por la naturaleza convincente y unificadora de la propia teoría, por la que las leyes que gobiernan los campos eléctricos, los campos magnéticos y la luz están todos subsumidos en un esquema matemático de notable elegancia y simplicidad.
Las ondas luminosas como las sonoras, actúan de una u otra manera dependiendo del medio en el que se propagan.
En la teoría de Maxwell, la luz toma forma de ondas, no de partículas, y debemos enfrentarnos al hecho de que en esta teoría hay realmente una velocidad fija a la que deben viajar las ondas luminosas.
El punto de vista geométrico-espaciotemporal nos proporciona una ruta particularmente clara hacia la solución de la paradoja que presenta el conflicto entre la teoría de Maxwell y el principio derelatividad.
Este punto de vista espaciotemporal no fue el que Einstein adoptó originalmente (ni fue el punto de vista de Lorentz, ni siquiera, al parecer, de Poincaré), pero, mirando en retrospectiva, podemos ver la potencia de este enfoque. Por el momento
, ignoremos la gravedad y las sutilezas y complicaciones asociadas que proporciona el principio de equivalencia y otras complejas cuestiones, que estimo aburrirían al lector no especialista, hablando de que en el espacio-tiempo se pueden concebir grupos de todos los diferentes rayos de luz que pasan a ser familias de líneas de universo.
Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.
El Universo está dentro de nuestras Mentes
¡La Mente! Qué caminos puede recorrer y, sobre todo ¿Quién la guía? Comencé este trabajo con la imagen del ojo humano y hablando de los sentidos y de la consciencia y mira donde he finalizado…Sí, nos falta mucho camino por recorrer para llegar a desvelar los misterios de la Mente que, en realidad, es la muestra más alta que el Universo nos puede mostrar de lo que puede surgir a partir de la sencillez de los átomos de hidrógeno que, evolucionados, primero en las entrañas de las estrellas y después en los circuitos de nuestras mentes, llega hasta los pensamientos y la imaginación que…son palabras mayores de cuyo alcance, aún no tenemos una idea que realmente refleje su realidad.
Pero, ¿existe alguna realidad?, o, por el contrario todo es siempre cambiante y lo que hoy es mañana no existirá, si “realmente” es así, ocurre igual que con el tiempo. La evolución es algo que camina siempre hacia adelante, es inexorable, nunca se para y, aunque como el tiempo pueda ralentizarse, finalmente sigue su camino hacia esos lugares que ahora, sólo podemos imaginar y que, seguramente, nuestros pensamientos no puedan (por falta de conocimientos) plasmar en lo que será esa realidad futura.
Emilio Silvera V.
Jul
16
El Universo, la Vida consciente y, …, ¿el Destino?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

Semillas de galaxias y nuevas estrellas
Semillas para la Vida que surgieron diez mil millones de años más tarde
«La cosmología ha cambiado enormemente en los últimos sesenta años. A principios de siglo se aceptaba sin dudar que el universo era esencialmente uniforme y estático. (…) La mayoría prefería creer que el universo había existido desde siempre, porque así se evitaban preguntas extrañas sobre las condiciones iniciales y sobre qué había antes del inicio».
¿Cómo se mide el tamaño y la edad del Universo?
El Espacio se expande y arrastra galaxias y todo tipo de objetos que se ven separados sin poder frenar
A medida que se expandía a partir de su estado primordial uniforme, el universo se enfriaba. Y con las temperaturas más bajas vinieron nuevas posibilidades. La materia fue capaz de agregarse en enormes estructuras amorfas: las semillas de las galaxias actuales. Empezaron a formarse los átomos allanando el camino para la química y la formación de objetos físicos sólidos.
Esta es una de las primeras galaxias formadas después del Big Bang capturada por los telescopios
Comparado con los patrones actuales, el universo en dicha época era sorprendentemente homogéneo. El material cósmico estaba presente por todo el espacio con una uniformidad casi perfecta. La Temperatura era la misma en todas partes. La materia, descompuestas en sus constituyentes básicos por el tremendo calor, estaba en un estado de extraordinaria simplicidad.
Ningún hipotético observador hubiera podido conjeturar a partir de este estado poco prometedor que el universo estaba dotado de enormes potencialidades. Ninguna clave podía desvelar que, algunos miles de millones de años más tarde, billones de estrellas refulgentes se organizarían en miles de millones de galaxias espirales; que aparecerían planetas y cristales, nubes y océanos, montañas y glaciares; que uno de esos planetas (al menos que sepamos) sería habitado por árboles y bacterias, por elefantes y peces. Ninguna de estas cosas podía predecirse.
La Tierra se formó hace aproximadamente 4550 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida.18 La atmósfera y otras condiciones abióticas han sido alteradas significativamente por la biosfera del planeta, favoreciendo la proliferación de organismos aerobios, así como la formación de una capa de ozono que junto con el campo magnético terrestre bloquean la radiación solar dañina, permitiendo así la vida en la Tierra.
La Tierra primigenia en la que surgió la Vida
a historia de la vida en la Tierra pretende narrar los procesos por los cuales los organismos vivos han evolucionado, desde el origen de la vida en la Tierra, hace entre 3800 y 3500 millones de años, hasta la gran diversidad y complejidad biológica presente en las diferentes formas de los organismos, su fisiología y comportamiento que conocemos en la actualidad; así como la naturaleza que, en forma de catástrofes globales, cambios climáticos o uniones y separaciones de continentes y océanos, han condicionado su desarrollo. Las similitudes entre todos los organismos actuales indican la existencia de un ancestro común universal del cual todas las especies conocidas se han diferenciado a través de los procesos de la evolución.
Agujeros negros masivos que escupen chorros de gas
Muchos fenómenos maravillosos han emergido en el universo desde aquella época primera: agujeros negros monstruosos tan masivos como
miles de millones de soles, que engullen estrellas y escupen chorros de gas; estrellas de neutrones y púlsares que giran miles de veces por segundo y cuyo material está comprimido hasta
una densidad de mil millones de toneladas por centímetro cúbico; partículas subatómicas tan esquivas que podrían atravesar una capa de plomo sólido de años-luz de espesor y que, sin embargo, no dejan ninguna traza discernible; ondas gravitatorias fantasmales producidas por la colisión de dos agujeros negros que finalizan su danza de gravedad fusionando sus terribles fuerzas de densidades “infinitas”. Pese a todo, y por sorprendentes que estas cosas nos puedan parecer, el fenómeno de la vida es más notable que todas ellas en conjunto.
¿De dónde surgieron con su gracia y colorido, su agilidad de movimiento y su sentido de orientación?
En realidad, la Vida, no produjo ninguna alteración súbita o espectacular en la esfera cósmica. De hecho, y a juzgar por la vida en la Tierra, los cambios que han provocado han sido extraordinariamente graduales. De todas formas, una vez que la vida se inició, el universo nunca sería el mismo. De manera lenta pero segura, ha transformado el planeta Tierra. Y al ofrecer un camino a la consciencia, la inteligencia y la tecnología, ella tiene la capacidad de cambiar el universo.
Si miramos esas Nebulosa de arriba, podemos pensar en qué materiales están ahí presentes sometidos a fuerzas de marea de estrellas jóvenes y de inusitadas energías de radiación ultravioleta que, junto con la fuerza de gravedad, conformar el lugar y hacen que se distorsionen los materiales en los que inciden parámetros que los hacen cambiar de fase y transmutarse en otros distintos de los que, en principio eran. Ahí, en esa nubes inmensas productos de explosiones supernovas, están los materiales de los que se forman nuevas estrellas y mundos que, si se sitúan en el lugar adecuado…pueden traer consigo la vida.
¡Han sido y son tantas formas de vida las que han pasado y están en la Tierra! Dicen los expertos que sólo el uno por ciento de las especies que han existido viven actualmente en nuestro planeta y, teniendo en cuenta que son millones, ¿Cuántas especies han pasado por aquí?
Claro que no podemos hacer caso de todo lo que los científicos puedan decir alguna que otra vez que, en realidad, va encaminado a producir el asombro de la gente corriente, alimentar el consumo público y, sobre todo, conseguir subvenciones para nuevos proyectos. Es curioso que, la ignorancia, proporcione mejor situación para seguir investigando que la certeza, toda vez que, con la incertidumbre del qué será, se despierta la curiosidad y nos proporciona una motivación, en cambio, la certeza nos relaja.
Está claro que debemos apoyar con fuerza el programa de Astrobiología de la NASA y de las otras naciones. Si queremos que, finalmente, se lleve a cabo un Proyecto de cierta entidad, tendremos que aunar las fuerzas y, las distintas Agencvias Espaciales del Mundo Occidental tendrán que poner sobre la mesa lo que tienen para que, de una vez por todas podamos, por ejemplo, hacer realidad una colonia terrestre en el Planeta Marte.
Nuestro Mundo es un Planeta Privilegiado
Todos sabemos que resolver el problema de biogénesis está en la mente de muchos. Los astrónomos consioderan que planetas como Júpiter y Saturno y, también sus lunas, son inmensos laboratorios prebióticos, en donde los pasos que trajeron la vida a la Tierra podrían estar ahora misma allí presentes y, de ahí, la enorme importancia que tendría poder investigarlos en la forma adecuada.
¿Qué sorpresas nos aguarda en Titán con su atmósfera y océanos de metano?
Resolver el misterio de la biogénesis no es sólo un problema más de una larga lista de proyectos científicos indispensables. Como el origen del Universo y el origen de la Consciencia, representa algo en conjunto mucho más profundo, puesto que pone a prueba las bases mismas de nuestra ciencia y de nuestra visión del mundo. Un descubrimiento que promete cambiar los principios mismos en los que se basa nuestra comprensión del mundo físico merece que se le de una prioridad urgente.
El misterio del origen de la vida ha intrigado a filósofos, teólogos y científicos durante dos mil quinientos años. Durante los próximos siglos tendremos la oportunidad de ahondar más en ese misterio grandioso que es la Vida, una oportunidad dorada que no debemos, de ninguna manera desechar, ahí tendremos la oportunidad, con los nuevos medios tecnológicos y de todo tipo que vendran, los avances en el saber del mundo, la nueva manera de mirtar las cosas, la nueva física…Todo ello, nos dará la llave para abrir esa puerta durante tanto tiempo cerrada. Ahora parece un poco entrwabierta pero, no podemos conseguir que se abra de par en par para poder mirar dentro del misterio central.
Nosotros somos una simple ramita del inmenso árbol de la Vida
Árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro. Los tres dominios están coloreados de la siguiente forma; las Bacterias en azul, las Archeas en verde, y las Eucariotas en color rojo. Puede parecer mentira que a partir de estos minúsculos seres pudiera comenzar la fascinante aventura de la Vida en la Tierra.
Aquellos primeros tiempos fueron duros y de una larga transición para nuestro planeta, las visitas de meteoritos, el inmenso calor de sus entrañas, la química de los materiales fabricados en las estrellas que allí estaban presentes…Todo ello, contribuyó, junto a otros muchos y complejos sucesos, fuerzas e interacciones, a que, hacde ahora unos cuatro mil millones de años, surgiera aquella primera célula replicante que, con el tiempo, nos trajo a nosotros aquí.
Margulis y la endosimbiosis
Los protobiontes fueron los precursores evolutivos de las primeras células procariotas. Los protobiontes se originaron por la convergencia y conjugación de microesferas de proteínas, carbohidratos, lípidos y otras substancias orgánicas encerradas por membranas lipídicas. El agua fue el factor más significativo para la configuración del endo-plama de los protobiontes.
Como físico teórico hecho así mismo, algo ingenuo y con un enorme grado de fantasía en mis pensamientos, cuando pienso acerca de la vida a nivel molecular, la pregunta que se me viene a la mente es: ¿Cómo saben lo que tienen que hacer todos estos átomos estúpidos? La complejidad de la célula viva es inmensa, similar a la de una ciudad en cuanto al grado de su elaborada actividad. Cada molécula tiene una función específica y un lugar asignado en el esquema global, y así se manufacturan los objetos correctos. Hay mucho ir y venir en marcha. Las moléculas tienen que viajar a través de la célula para encontrarse con otras en el lugar correcto para llevar a cabo sus tareas de forma adecuada.
Todo esto sucede sin un jefe que dé órdenes a las moléculas y las dirija a sus posiciones adecuadas. Ningún supervisor controla sus actividades. Las moléculas hacen simplemente lo que las moléculas tienen que hacer: moverse ciegamente, chocar con las demás, rebotar, unirse. En el nivel de los átomos individuales, la vida es una anarquía: un caos confuso y sin propósito. Pero, de algún modo, colectivamente, estos átomos inconscientes se unen y ejecutan, a la perfección, el cometido que la Naturaleza les tiene encomendados en la danza de la vida y con una exquisita precisión.
Ya más recientemente, evolucionistas tales como el inglés Richard Dawkins, han destacado el paradigma del “gen egoista”, una imagen poderosa que pretende ilustrar la idea de que los genes son el objetivo último de la selección natural. Los teóricos como Stuart Kauffman, asociado desde hace tiempo al famoso Instituto de Santa Fe, donde los ordenadores crean la llamada vida artificial, insisten en la “autoorganización” como una propiedad fundamental de la vida.
¿Puede la ciencia llegar a explicar un proceso tan magníficamente auto-orquestado? Muchos son los científicos que lo niegan al estimar que, la Naturaleza, nunca podrá ser suplantada ni tampoco descubierta en todos sus secretos que, celosamente nos esconde. Sin embargo…Tengo mis dudas. Ellos piensan que la célula viva es demasiado elaborada, demasiado complicada, para ser el producto de fuerzas ciegas solamente y, que debajo de esa aleatoriedad y de un falso azar, deben estar escondidas otras razones que no llegamos a alcanzar. La Ciencia podrá llegar a dar una buena explicación de esta o aquella característica individual, siguen diciendo ellos, pero nunca explicará la organización global, o cómo fue ensamblada la célula original por primera vez.
= Sección captor de agua de moléculas lípidas
= Colas repelentes de agua
Sección Horizontal a Través De Hemisferios Cerebrales. Anatomía Cerebral Humana
Alfombras» microbianas son múltiples capas, multi-especies de colonias de bacterias. Son los estromatolitos, una forma primigenia de vida
Las «alfombras» microbianas son múltiples capas, multi-especies de colonias de bacterias y otros organismos que generalmente sólo tienen unos pocos milímetros de grosor, pero todavía contienen una amplia gama de entornos químicos, cada uno de ellos a favor de un conjunto diferente de microorganismos. Hasta cierto punto, cada alfombra forma su propia cadena alimenticia, pues los subproductos de cada grupo de microorganismos generalmente sirven de “alimento” para los grupos adyacentes.
Los estromatolitos (arriba) son pilares rechonchos construidos como alfombras microbianas que migran lentamente hacia arriba para evitar ser sofocados por los sedimentos depositados en ellos por el agua. Ha habido un intenso debate acerca de la validez de fósiles que supuestamente tienen más de 3000 millones de años, con los críticos argumentando que los llamados estromatolitos podrían haberse formado por procesos no biológicos.En 2006, otro descubrimiento de estromatolitos fue reportado en el mismo lugar de Australia, como los anteriores, en las rocas de hace 3500 millones de años.
En las modernas alfombras bajo el agua, la capa superior consiste a menudo de cianobacterias fotosintéticas que crean un ambiente rico en oxígeno, mientras que la capa inferior es libre de oxígeno y, a menudo dominado por el sulfuro de hidrógeno emitido por los organismos que viven allí. Se estima que la aparición de la fotosíntesis oxigénica por las bacterias en las alfombras, aumentó la productividad biológica por un factor de entre 100 y 1.000. El agente reductor utilizada por la fotosíntesis oxigénica es el agua, pues es mucho más abundante que los agentes geológicos producidos por la reducción requerida de la anterior fotosíntesis no oxigénica. A partir de este punto en adelante, la «vida» misma produce mucho más los recursos que necesita que los procesos geoquímicos.67 El oxígeno, en ciertos organismos, puede ser tóxico, pues éstos no están adaptados a él, así mismo, en otros organismos que sí lo están, aumenta considerablemente su eficiencia metabólica. El oxígeno se convirtió en un componente importante de la atmósfera de la Tierra alrededor de hace 2400 millones de años
Al igual que muchas esponjas, hay cianobacterias fotosintéticas que viven dentro de sus células.
¿Cuál es el secreto de esta sorprendente organización? ¿Cómo puede ser obra de átomos estúpidos? Tomados de uno en uno, los átomos solo pueden dar empujones a sus vecinos y unirse a ellos si las circunstancias son apropiadas. Pero colectivamente consiguen ingeniosas maravillas de construcción y control, con un ajuste fino y una complejidad todavía no igualada por ninguna ingeniería humana. De algún modo la Naturaleza descubrió cómo construir intrincadas máquinas que llamamos célula viva, utilizando sólo todas las materias primas disponibles, todas en un revoltijo. Repite esta hazaña cada día en nuestros propios cuerpos, cada vez que se forma una nueva célula. Esto ya es un logro fantástico. Más notable incluso es que la Naturaleza construyó la primera célula a partir de cero. ¿Cómo lo hizo?
Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como
en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.
Algunas veces he pensado que el secreto de la vida puede proceder de sus propiedades de información; un organismo es un completo sistema de procesos de información. La complejidad y la información pueden ser iluminadas por la disciplina de la termodinámica. La vida es tan sorprendente que, de algún modo, debe haber podido sortear las leyes de la termodinámica. En particular, la segunda ley que puede considerar como la más fundamental de todas las leyes de la naturaleza, describe una tendencia hacia la desintegración y la degeneración que la vida, ¡claramente evita!
¿Cómo es posible tal cosa?
Si alguno de ustedes sabe contestar esa pregunta…que nos lo exponga, así sabremos un poco más.
¿Qué pasa con el destino?
Bueno, como el destino es incierto, si hablamos de él sería conjeturar.
Emilio Silvera V.
Jul
16
Un rumor del saber del Mundo
por Emilio Silvera ~
Clasificado en Rumores del Saber ~
Comments (1)
Hubo que descubrir la historia antes de explorarla. Los mensajes del pasado se transmitían primero a través de las habilidades de la memoria, luego de la escritura y, finalmente, de modo explosivo, en los libros.
El insospechado tesoro de reliquias que guardaba la tierra se remontaba a la prehistoria. El pasado se convirtió en algo más que un almacén de mitos y leyendas o un catálogo de lo familiar.
Nuevos mundos terrestres y marinos, riquezas de continentes remotos, relatos de viajeros aventureros que nos traían otras formas de vida de pueblos ignotos y lejanos, abrieron perspectivas de progreso y novedad. La sociedad, la vida diaria del hombre en comunidad, se convirtió en un nuevo y cambiante escenarios de descubrimientos.
Aquí, como sería imposible hacer un recorrido por el ámbito de todos los descubrimientos de la Humanidad, me circunscribo al ámbito de la física, y, hago un recorrido breve por el mundo del átomo que es el tema de hoy, sin embargo, sin dejar de mirar al hecho cierto de que, TODA LA HUMANIDAD ES UNA, y, desde luego, teniendo muy presente que, todo lo que conocemos es finito y lo que no conocemos infinito. Es bueno tener presente que intelectualmente nos encontramos en medio de un océano ilimitado de lo inexplicable. La tarea de cada generación es reclamar un poco más de terreno, añadir algo a la extensión y solidez de nuestras posesiones del saber.
Como decía Einstein: “El eterno misterio del mundo es su comprensibilidad.”
Ahora, amigos, hablemos del átomo.
De lo Pequeño a lo Grande
Podríamos decir, sin temor a equivocarnos que el átomo y la vida son los dos obras más grandiosas de la Naturaleza. El átomo lo conforma todo, desde una lombriz hasta una galaxia.
El 6 de Agosto de 1945 el mundo recibió estupefacto desde Hiroshima la noticia de que el hombre había desembarcado en el oscuro continente del átomo. Sus misterios habrían de obsesionar al siglo XX. Sin embargo, el “átomo” había sido más de dos mil años una de las más antiguas preocupaciones de los filósofos naturales. La palabra griega átomo significa unidad mínima de materia, que se suponía era indestructible. Ahora el átomo era un término de uso corriente, una amenaza y una promesa sin precedentes.
El primer filósofo atómico fue un griego legendario, Leucipo, que se cree vivió en el siglo V a.C., y, a Demócrito, su discípulo, que dio al atomismo su forma clásica como filosofía: “la parte invisible e indivisible de la materia”, se divertía tanto con la locura de los hombres que era conocido como “el filósofo risueño” o “el filósofo que ríe”. No obstante fue uno de los primeros en oponerse a la idea de la decadencia de la Humanidad a partir de una Edad de Oro mítica, y predicó sobre una base de progreso. Si todo el Universo estaba compuesto solamente por átomos y vacío, no sólo no era infinitamente complejo, sino que, de un modo u otro, era inteligible, y seguramente el poder del hombre no tenía límite.
Lucrecio (c. 95 a.C. –c. 55 a.C.) perpetuó en De rerum natura uno de los más importantes poemas latinos, al atomismo antiguo. Con la intención de liberar al pueblo del temor a los dioses, el poeta demostró que el mundo entero estaba constituido por vacío y átomos, los cuales se movían según sus leyes propias; que el alma moría con el cuerpo y que por consiguiente no había razón para temer a la muerte o a los poderes sobrenaturales.
Lucrecio decía que comprender la Naturaleza era el único modo de hallar la paz de espíritu, y, como era de esperar, los padres de la Iglesia que pregonaban la vida eterna, atacaron sin piedad a Lucrecia y este fue ignorado y olvidado durante toda la Edad Media que, como sabéis, fue la culpable de la paralización del saber de la Humanidad. Sin embargo, Lucrecia fue, una de las figuras más influyentes del Renacimiento.
El círculo perfecto de Euclides
Así pues, en un principio el atomismo vino al mundo como sistema filosófico. Del mismo modo que la simetría pitagórica había proporcionado un marco a Copérnico, la geometría había seducido a Kepler y el círculo perfecto aristotélico hechizo a Harvey, así los “indestructibles” átomos de los filósofos atrajeron a los físicos y a los químicos. Francis Bacon observó que “la teoría de Demócrito referida a los átomos es, si no cierta, al menos aplicable con excelentes resultados al análisis de la Naturaleza”.
Descartes (1596-1650) inventó su propia noción de partículas infinitamente pequeñas que se movían en un medio que llamó éter. Otro filósofo francés, Pierre Gassendi (1592-1655), pareció confirmar la teoría de Demócrito y presentó otra versión más del atomismo, que Robert Boyle (1627-1691) adaptó a la química demostrando que los “elementos clásicos –tierra, aire, fuego y agua- no eran en absoluto elementales.
Aquellas ideas nos trajeron hasta aquí
Las proféticas intuiciones de un matemático jesuita, R.G. Boscovich (1711-1787) trazaron los caminos para una nueva ciencia, la física atómica. Su atrevido concepto de “los puntos centrales” abandonaba la antigua idea de una variedad de átomos sólidos diferentes. Las partículas fundamentales de la materia, sugería Boscovich, eran todas idénticas, y las relaciones espaciales alrededor de esos puntos centrales constituían la materia… Boscovich que había llegado a estas conclusiones a partir de sus conocimientos de matemáticas y astronomía, anunció la íntima conexión entre la estructura del átomo y la del Universo, entre lo infinitesimal y lo infinito.
El camino experimental hacia el átomo fue trazado por John Dalton (1766-1844). Era este un científico aficionado cuáquero y autodidacta que recogió un sugestivo concepto de Lavoisier (1743-1794). Considerado una de los fundadores de la química moderna, Lavoisier, cuando definió un “elemento” como una sustancia que no puede ser descompuesta en otras sustancias por medio de ningún método conocido, hizo del átomo un útil concepto de laboratorio y trajo la teoría atómica a la realidad.
Dalton había nacido en el seno de una familia de tejedores de Cumberland, localidad inglesa situada en la región de los lagos, y estuvo marcada toda su vida por su origen humilde. A los doce años ya se encontraba a cargo de la escuela cuáquera de su pueblo. Después, comenzó a ejercer la enseñanza en la vecina Kendal, y en la biblioteca del colegio encontró ejemplares de los Principia de Newton, de las Obras de la Historia Natural de Buffón, así como un telescopio reflectante de unos setenta centímetros y un microscopio doble. Dalton recibió allí la influencia de John Gough, un notable filósofo natural ciego que, de acuerdo a lo que Dalton escribió a un amigo, “entiende muy bien todas las diferentes ramas de las matemáticas…Conoce por el tacto, el sabor y el olor de casi todas las plantas que crecen a casi treinta kilómetros a la redonda”. También Wordsworth elogia a Gough en su Excursión. Dalton recibió del filósofo ciego una educación básica en latín, griego y francés, y fue introducido en las matemáticas, la astronomía y todas las ciencias “de la observación”. Siguiendo el ejemplo de Gough, Dalton comenzó a llevar un registro meteorológico diario, que continuó hasta el día de su muerte.
Cuando los “disidentes” fundaron su colegio propio en Manchester, Dalton fue designado profesor de matemáticas y de filosofía natural. Halló una audiencia muy receptiva para sus experimentos en la Sociedad Literaria y Filosófica de Manchester, y presentó allí sus Hechos extraordinarios concernientes a la visión de los colores, que probablemente fue el primer trabajo sistemático sobre la imposibilidad de percibir los colores, o daltonismo, enfermedad que padecían tanto John Dalton como su hermano Jonathan. “He errado tantas veces el camino por aceptar los resultados de otros que he decidido escribir lo menos posible y solamente lo que pueda afirmar por mi propia experiencia”.
Dalton observó la aurora boreal, sugirió el probable origen de los vientos alisios, las causas de la formación de nubes y de la lluvia y, sin habérselo propuesto, introdujo mejoras en los pluviómetros, los barómetros, los termómetros y los higrómetros. Su interés por la atmósfera le proporcionó una visión de la química que lo condujo al átomo.
Newton había confiado en que los cuerpos visibles más pequeños siguieran las leyes cuantitativas que gobernaban los cuerpos celestes de mayor tamaño. La química sería una recapitulación de la Astronomía. Pero, ¿Cómo podía el hombre observar y medir los movimientos y la atracción mutua de estas partículas invisibles? En los Principios Newton había conjeturado que los fenómenos de la Naturaleza no descritos en este libro podrían “depender todos de ciertas fuerzas por las cuales las partículas de los cuerpos, debido a causas hasta ahora desconocidas, se impulsan mutuamente unas hacia otras y se unen formando figuras regulares, o bien se repelen y se apartan unas de otras.”
Dalton se lanzó a la búsqueda de “estas partículas primitivas” tratando de encontrar algún medio experimental que le permitiera incluirlas en un sistema cuantitativo. Puesto que los gases eran la forma de materia más fluida, más móvil, Dalton centró su estudio en la atmósfera, la mezcla de gases que componen el aire, el cual constituyó el punto de partida de toda su reflexión sobre los átomos.
“¿Por qué el agua no admite un volumen similar de cada gas?”, preguntó Dalton a sus colegas de la Sociedad Literaria y Filosófica de Manchester en 1803. “Estoy casi seguro de que la circunstancia depende del peso y el número de las partículas últimas de los diversos gases; aquellos cuyas partículas son más ligeras y simples se absorben con más dificultad, y los demás con mayor facilidad, según vayan aumentando en peso y en complejidad.”
Dalton había descubierto que, contrariamente a la idea dominante, el aire no era un vasto disolvente químico único sino una mezcla de gases, cada uno de los cuales conservaban su identidad y actuaba de manera independiente. El producto de sus experimentos fue recogido en la trascendental TABLE: Of the Relative Weights of Ultimate Particles of Gaseous and Other Bodies (“Tabla de los pesos relativos de las partículas últimas de los cuerpos gaseosos y de otros cuerpos”).
Tomando al Hidrógeno como número uno, Dalton detalló en esta obra veintiuna sustancias. Describió las invisibles “partículas últimas” como diminutas bolitas sólidas, similares a balas pero mucho más pequeñas, y propuso que se les aplicaran las leyes newtonianas de las fuerzas de atracción de la materia. Dalton se proponía lograr “una nueva perspectiva de los primeros principios de los elementos de los cuerpos y sus combinaciones”, que “sin duda…con el tiempo, producirá importantísimos cambios en el sistema de la química y la reducirá a una ciencia de gran simplicidad, inteligible hasta para los intelectos menos dotados”. Cuando Dalton mostró una “partícula de aire que descansa sobre cuatro partículas de agua como una ordenada pila de metralla” donde cada pequeño globo está en contacto con sus vecinos, proporcionó el modelo de esferas y radio de la química del siglo siguiente.
Dalton inventó unas “señales arbitrarias como signos elegidos para representar los diversos elementos químicos o partículas últimas”, organizadas en una tabla de pesos atómicos que utilizaba en sus populares conferencias. Naturalmente, Dalton no fue el primero en emplear una escritura abreviada para representar las sustancias químicas, pues los alquimistas también tenían su código. Pero él fue probablemente el primero que utilizó este tipo de simbolismo en un sistema cuantitativo de “partículas últimas”. Dalton tomó como unidad el átomo de Hidrógeno, y a partir de él calculó el peso de las moléculas como la suma de los pesos de los átomos que la componían, creando así una sintaxis moderna para la química. Las abreviaturas actuales que utilizan la primera letra del nombre latino (por ejemplo H2O) fueron ideadas por el químico sueco Berzelius (1779-1848).
La teoría del átomo de Dalton no fue recibida en un principio con entusiasmo. El gran sir Humphry Davy desestimó inmediatamente sus ideas tachándolas de “más ingeniosas que importantes”. Pero las nociones de Dalton, desarrolladas en A New System of Chemical Philosophy (1808), eran tan convincentes que en 1826 le fue concedida la medalla real. Como Dalton no olvidó nunca su origen plebeyo, permaneció siempre apartado de la Royal Society de Londres, pero fue elegido miembro, sin su consentimiento, en 1822. Receloso del tono aristocrático y poco profesional de la Sociedad, él se encontraba más a gusto en Manchester, donde realizó la mayor parte de su obra, colaboró con Charles Babage y contribuyó a fundar la Asociación Británica para el Progreso de la Ciencia, cuyo objetivo era llevar la ciencia hasta el pueblo. Los newtonianos partidarios de la ortodoxia religiosa no creían que Dios hubiera hecho necesariamente sus invisibles “partículas últimas” invariables e indestructibles. Compartían con Isaac Newton la sospecha de que Dios había utilizado su poder “para variar las leyes de la Naturaleza y crear mundos diversos en distintos lugares del Universo”.
El átomo indestructible de Dalton se convirtió en el fundamento de una naciente ciencia de la química, proporcionando los principios elementales, las leyes de composición constante y de proporciones múltiples y la combinación de elementos químicos en razón de su peso atómico. “El análisis y la síntesis química no van más allá de la separación de unas partículas de otras y su reunión”, insistió Dalton. “La creación o la destrucción de la materia no está al alcance de ningún agente químico. Sería lo mismo tratar de introducir un planeta nuevo en el Sistema Solar o aniquilar uno de los ya existentes que crear o destruir una partícula de Hidrógeno.” Dalton continuó usando las leyes de los cuerpos celestes visibles como indicios del Universo infinitesimal. El profético sir Humphry Davy, sin embargo, no se convencía, “no hay razón para suponer que ha sido descubierto un principio real indestructible”, afirmó escéptico.
Dalton no era más que un Colón. Los Vespucios aún no habían llegado, y cuando lo hicieron trajeron consigo algunas sorpresas muy agradables y conmociones aterradoras. Entretanto, y durante medio siglo, el sólido e indestructible átomo de Dalton fue muy útil para los químicos, y dio lugar a prácticas elaboraciones. Un científico francés, Gay-Lussac, demostró que cuando los átomos se combinaban no lo hacían necesariamente de dos en dos, como había indicado Dalton, sino que podían agruparse en asociaciones distintas de unidades enteras. Un químico italiano, Avogadro (1776-1856), demostró que volúmenes iguales de gases a la misma temperatura y presión contenían el mismo número de moléculas. Un químico ruso, Mendeleiev, propuso una sugestiva “Ley periódica” de los elementos. Si los elementos estaban dispuestos en orden según su creciente peso atómico entonces grupos de elementos de características similares se repetirían periódicamente.
Faraday dando explicaciones de los fenómenos eléctricos y magnéticos
La disolución del indestructible átomo sólido provendría de dos fuentes, una conocida y la otra bastante nueva: el estudio de la luz y el descubrimiento de la electricidad. El propio Einstein describió este histórico movimiento como la decadencia de una perspectiva “mecánica” y el nacimiento de una perspectiva “de campo” del mundo físico, que le ayudó a encontrar su propio camino hacia la relatividad, hacia explicaciones y misterios nuevos.
Albert Einstein tenía en la pared de su estudio un retrato de Michael Faraday (1791-1867), y ningún otro hubiera podido ser más apropiado, pues Faraday fue el pionero y el profeta de la gran revisión que hizo posible la obra de Einstein. El mundo ya no sería un escenario newtoniano de “fuerzas a distancias”, objetos mutuamente atraídos por la fuerza de la Gravedad inversamente proporcional al cuadrado de la distancia que hay entre ellos. El mundo material se convertiría en una tentadora escena de sutiles y omnipresentes “campos de fuerzas”. Esta idea era tan radical como la revolución newtoniana, e incluso más difícil de comprender para los legos en la materia.
Todo el trabajo de campo de Faraday fue aprovechado por Maxwell para expresarlo en sus famosas ecuaciones.
Emilio Silvera v.