May
28
¿Es viejo el Universo? ¿Cómo puede ser tan grande?
por Emilio Silvera ~
Clasificado en El Universo Hiperdimensional ~
Comments (2)


BIOLOGÍA Y ESTRELLAS
La biología de las estrellas, en realidad, no existe como tal en el sentido biológico terrestre, Las estrellas son cuerpos celestes gigantes de gas y plasma que se forman y evolucionan a través de procesos físicos y químicos, no a través de procesos biológicos. La astronomía es la ciencia que estudia las estrellas, incluyendo su formación, evolución, propiedades físicas y químicas, y su ciclo de vida.
¿El tamaño del Universo?
El universo observable tiene un diámetro de aproximadamente de 93.000 millones de años luz. Sin embargo, se cree que el universo real es mucho más grande, potencialmente infinito, y que la región que podemos observar es solo una pequeña fracción de lo que hay.
¿La edad del Universo?
La edad del universo, según el consenso científico, es de aproximadamente 13.800 millones de años. Este número se basa en las mediciones más precisas de la expansión del universo, la constante de Hubble y las observaciones del fondo cósmico de microondas.
¿Es viejo el universo? Todos los cálculos nos llevan a una edad de 13.800 millones de años que, comparado con el tiempo en el que nosotros hicimos acto de presencia en él, es menos que un simple parpadeo de ojos. Sin embargo, a veces nos sentimos los amos del mundo y del Universo mismo, lo que en realidad, es un simple espejismo, una ilusión que se forja en nuestras mentes que, jóvenes e inmaduras… Aún no comprenden, como son las cosas.
Cuando tenemos que operar con la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio. Son tan inmensas las distancias y tan descomunal el tiempo que está presente en el ámbito del Universo que, hemos inventado unidades especiales para poder hablar de ellas sin tener que escribir cantidades tan grandes con los números y, el año-luz, la Unidad Astronómica, el Parsec, Kilo-parsec o Giga-parsec son palabras que expresan medidas antropomórficas y extraordinarias que se pierden en el espacio-tiempo.
Queremos medirlo todo, saber dónde estamos, conocer con detalles la inmensidad en la que estamos inmersos
¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor del astro rey, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque queremos saber en qué lugar estamos, porque es conveniente y porque desde siempre hemos tratado de saber, lo que el universo es. Por otra parte, también en el ámbito de lo muy pequeño hemos tenido que inventar unidades que, esta vez, han querido significar lo que dice la Naturaleza y no el hombre.
Las unidades de Stoney (o también llamadas unidades de escala de Stoney) son un sistema de unidades naturales que se basa en las constantes físicas fundamentales como la carga elemental, la permisividad del vacío y la constante gravitacional. Se proponen como un posible sistema de unidades en la escala de longitud y tiempo más pequeña y fundamental. George Johnstone Stoney fue un físico irlandés que propuso este sistema como una alternativa a las unidades de Planck.
Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.
El joven Planck
Mientras que Stoney había visto en la elección de unidades prácticas una manera de cortar el nudo gordiano de la subjetividad, Planck utilizaba sus unidades especiales para sustentar una base no antropomórfica para la física y que, por consiguiente, podría describirse como “unidades naturales”.
= 1.616255(18)×10−35 m
= 2.176434(24)×10−8 kg
= 5.391247(60)×10−44 s.
= 1.416784(16)×1032 K
Unidades de Planck para la Longitud, la Masa, el Tiempo y la Temperatura
De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que ahora
lleva el nombre de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Sus valores no difieren mucho de los de Stoney que figuran en el trabajo
siguiente de hoy:
Mp = | (hc/G)½ = | 5’56 × 10-5 gramos |
Lp = | (Gh/c3) ½ = | 4’13 × 10-33 centímetros |
Tp = | (Gh/c5) ½ = | 1’38 × 10-43 segundos |
Temp.p = | K-1 (hc5/G) ½ = | 3’5 × 1032 ºKelvin |
Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.
La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.
En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:
“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando
sean medidas por las inteligencias más diversas con los métodos más diversos.”
¿Quién sabe cómo serán?
En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos también las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:
“La creciente distancia entre
la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”
Sí, Planck tenía razón, el mundo de los sentidos cada vez están más cerca de ese mundo real que perseguimos. Sabemos que nuestra realidad no es la realidad del mundo y, poco a poco, con descubrimientos como estos de las Unidades de Stoney-Planck, nos vamos acercando a la comprensión de esa Naturaleza creadora que permitió aquí nuestra presencia y que ahora, nosotros tratamos de saber.
Podemos ver que Max Planck apelaba a la existencia de constantes universales de la naturaleza como prueba de una realidad física al margen y completamente diferentes de las mentes humanas. Al respecto decía:
“Estos…números, las denominadas “constantes universales” son en cierto sentido los ladrillos inmutables del edificio de la física teórica. Deberíamos preguntar:
Ejemplos de algunas constantes universales:
- La velocidad de la luz en el vacío (c): c ≈ 299,792,458 metros por segundo.
- La constante de gravitación universal (G): G ≈ 6,674 × 10⁻¹¹ N m²/kg².
- La carga elemental (e): e ≈ 1,602 × 10⁻¹⁹ coulombs.
- La constante de Planck (h): h ≈ 6,626 × 10⁻³⁴ J s.
- La constante de Boltzmann (k): k ≈ 1,3806 × 10⁻²³ J/K.
Estas constantes son fundamentales para describir las leyes de la física y el comportamiento del universo. Un pequeño cambio en una de estas constantes podría tener efectos drásticos en la estructura y el funcionamiento del universo. Por lo tanto, su valor permanece constante en cualquier lugar del universo.
En resumen: Las constantes universales son valores fundamentales que describen las leyes de la naturaleza y que no cambian, independientemente de quién las mida o dónde se mida.
¿Cuál es el significado real de estas constantes?”
Claro que, nosotros, simplemente somos un misterio más de los muchos que en el Universo son. Sin embargo y a diferencias de los otros, tenemos la ventaja de ser conscientes con la facultad de pensar y, además, tenemos una insaciable curiosidad. Un fallo que a menudo tenemos ha sido caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.
Sí, una molécula es generalmente más grande y más fácil de desmembrar que un átomo. Las moléculas están compuestas por átomos unidos entre sí, mientras que un átomo es la unidad fundamental de la materia y es mucho más pequeño y resistente.
Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Y, creemos saber que…
La edad actual del universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:
Densidad actual del universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la Planck
Estructura del Universo a gran escala
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.
Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser. Pero, pese a la enorme edad del universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.
¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena.
Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo
.
La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos y el vulcanismo parará su actividad al ser frenado el planeta geológicamente y carecerán de muchos de los movimientos internos que impulsan la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero
Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución. Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.
La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros en comparación, llevamos aquí tres días y, desde luego, ¡la que hemos formado!
Y no podemos tener la menor duda, mientras que estemos aquí, seguiremos pretendiendo y queriendo saber sobre los secretos de la Naturaleza que, al fin y al cabo, puede ser nuestra salvación. Ya saben ustedes: ¡Saber es poder!
Hemos llegado a comprender el Universo
La afirmación de que la humanidad ha logrado comprender el universo es un tema complejo. Si bien hemos hecho avances significativos en nuestra comprensión del cosmos, hay mucho que aún no sabemos. La ciencia ha logrado modelar y predecir ciertos aspectos del universo, como la expansión, pero… ¡Nos queda tanto por saber!
De todas las maneras hay que reconocer que los logros de nuestra especie, en todas las disciplinas científicas, tienen un inmenso valor, ya que, confinados en un pequeño mundo situado en un sistema planetario ubicado en la periferia de una galaxia de entre cien mil millones, no es poca cosa si tenemos en cuenta que hemos logrado captar las imágenes de objetos cosmológicos como estrellas, galaxias, nebulosas, cuásares…. situados a miles de millones de años luz de nosotros.
Nuestra imaginación, nuestra curiosidad innata, nuestra intuición… Hay que reconocerlo, si no somos los elegidos… ¡Al, menos lo parece! Y, una cosa es cierta: ¡El Universo nos ha traído, somos parte de él!
Emilio Silvera Vázquez
el 27 de agosto del 2015 a las 23:28
Muy curiosa y sugestiva la colecciōn de las potencias de las unidades de Plank respecto a las diversas magnitudes del universo ¿ no ?. ¿ Nos querrán decir algo ?.
el 28 de agosto del 2015 a las 6:16
Sí, amigo Juan Antonio, parece que esas unidades nos quieren tramsmitir un mensaje que no sabemos descifrar. Hemos hablado aquí con cierta frecuencia del número puro y adimensional, 137. Está relacionado con Alfa (α), la constante de estructura fina. Es un número de la Naturaleza, algo que está ahí y en lo que no ha intervenido ningún miembro de nuestra especie, es la Naturaleza la que lo puso ahí.
Lo más notable de este número es su adimensionalidad. La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo; la constante de Planck racionalizada, ћ, es h/2π = 1’054589×10 julios segundo; la altura de mi hijo Isat, el peso de mi amigo, etc., todo viene con sus dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está solo:y se exhibe desnudo a donde va. Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la galaxia Andrómeda, aunque utilicen quién sabe qué unidades para la carga del electrón y la velocidad de la luz y qué versión utilicen para la constante de Planck, también les saldrá el 137. Es un número puro. No lo inventaron los hombres. Está en la naturaleza, es una de sus constantes naturales, sin dimensiones.
La física se ha devanado los sesos con el 137 durante décadas. Werner Heisember (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.
¿Por qué alfa es igual a 1 partido por 137?
Esperemos que algún día aparezca alguien que, con la intuición, el talento y el ingenio de Galileo, Newton o Einstein, Rieman o Ramanujan nos pueda por fin aclarar el misterioso número y las verdades que encierra. Menos perturbador sería que la relación de todos estos importantes conceptos (e-, h y c) hubieran resultado ser 1 ó 3 o un múltiplo de pi… pero… ¿137?
Hay cosas que están en la Naturaleza y nosotros, sólo tenemos que descubrirlas y, las unidades de Planck-Stoney están en esa dirección.