martes, 01 de julio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sí, es mucho, ¡lo que no sabemos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Es cierto que la ignorancia ha sido siempre nuestra compañera inseparable. Siempre hemos adolecido de (sabiduría) mientras hemos tenido una gran ignorancia y, gracias a ello, hemos sentido la necesidad por saber el por qué de las cosas que, habiéndolas observado a nuestro alrededor o en la lejanía del Espacio, despertó nuestra curiosidad, la otra compañera inseparable del Ser Humano.

El Cinturón de Orión: Almitak, Amilan y Mintaka, las tres estrellas que forman el Cinturón, son tres gigantes azules con un brillo cegador.

 

El Gran Carro de la Osa Mayor

 

El Cinturón de Orión y su espada son parte de la constelación de Orión, un grupo de estrellas que forma la figura del cazador. El Arado, el Carro o el Gran Cazo son nombres comunes para la constelación Ursa Mayor, también conocida como la Gran Osada.

 

Estrellas y constelaciones: ¿qué significan sus nombres según la mitología griega?
         El Cinturón y la espada de Orión y El  Arado, el Carro o el Gran Cazo
Gracias a esas dos eternas compañeras de viaje (Curiosidad e Ignorancia), hemos podido evolucionar y avanzar a lo largo del transcurso del Tiempo. Siempre nos preguntamos, mirando al cielo estrellado, por aquellas maravillas que titilaban como queriendo decirnos alguna cosa que no llegábamos a entender. También, en el “universo” de lo muy pequeño, fijamos nuestra atención, y, de esa manera pudimos llegar a descubrir el átomo de Demócrito y el Cosmos “infinito” de las galaxias.
                        DE LOS ÁTOMOS DE DEMÓCRITO AL ÁTOMO DE BOHR - VicMatUniverso infinito
Decía que la ignorancia siempre ha estado con nosotros y, junto a la curiosidad, ha sido un gran acicate para ir aprendiendo de los fenómenos que podíamos observar y, de aquellos otros misterios que presentíamos y tratamos de desvelar. Nunca estamos conformes con lo que sabemos, ya que, cada nuevo conocimiento nos posibilita para poder seguir haciendo más y más preguntas, cada vez de temas más complejos.

                             
                               Si existen otras dimensiones… ¿Dónde están?

Como siempre nos pasa cuando no sabemos alguna cosa, nuestra imaginación se desboca y plantea mil y una solución de lo que podría ser. , nos ocurre con el Universo y los secretos que aún no hemos podido desvelar. Construimos modelos que nos den una satisfactoria explicación o menos aceptable, buscamos remedio -no pocas veces poniendo “parches”- para cuestiones que no podemos explicar, y nos inventamos escenarios y situaciones que, tampoco sabemos si alguna vez podremos comprobar: materia oscuraagujeros de gusano, universos paralelos…

 

                                                      

 

Cuando oímos la palabra hiperespacio todos pensamos en un lugar por encima, alto, más allá del “espacio normal” de tres dimensiones en el que nos movemos en nuestra vida cotidiana. Y, las ideas se pueden mezclar para confundirnos más, con espacios vectoriales lineales que pueden tener un infinito de dimensiones, como si fuera un espacio de Hilbert. Es como un túnel situado fuera de este mundo nuestro que nos puede llevar hacia regiones lejanas en la galaxia o, incluso, en otras galaxias y hasta en otro universo,  sin tener que recorrer el espacio que de esos lejanos lugares nos separa.

 

Hiperespacio | Star Wars Wiki | FandomEl experimento que podría mostrarnos cómo es el hiperespacio

         Nuestra fantasía dibuja de mil maneras el Hiperespacio ¿Una puerta a otro lugar?

Michio Kaku, un físico que nos habla de dimensiones extra y de hiperespacio, en una de sus obras comienza diciendo:

                                                   El científico Michio Kaku: “está claro que estamos en un plano regido por reglas creadas y no determinadas por azares universales” - Forum Libertas

“¿Existen dimensiones superiores? ¿Están los mundos invisibles más allá de nuestro alcance, más allá de las leyes corrientes de la física? Aunque las dimensiones superiores hayan sido históricamente cosa de charlatanes, místicos y de escritores de ciencia ficción, muchos físicos teóricos creen ahora, no solo que las dimensiones superiores existen, sino que además pueden llegar a explicar algunos de los más profundos secretos de la Naturaleza. Aunque queremos aclarar que no existen evidencias experimentales de la existencia de dimensiones superiores, en principio, pueden llegar a resolver el problema esencial de la física: la unificación de todo el conocimiento físico a un nivel fundamental.”

 

Los Pilares de la Creación vistos por el James Webb: el esplendor del cielo  en infrarrojo - Eureka

La imagen que vemos arriba es la prueba irrefutable de la grandiosidad del Universo, esa que llaman los Pilares de la Creación tienen la dimensión de  61 mil billones de kilómetros. El mayor de los tres pilares tiene una longitud de unos 4 años luz (38 billones de km) y las pequeñas protuberancias en forma de dedo en los bordes de los pilares son mayores que el Sistema Solar.

 

Hermosa, cabeza de caballo, nebulosa, espacio, estrellas, Fondo de pantalla HD | Wallpaperbetter

La Nebulosa Cabeza de Caballo, también conocida como Barnard 33, tiene un tamaño de  unos 3,5 años luz  de ancho  Se encuentra a una distancia de aproximadamente 1500 años luz de la Tierra. Esta nebulosa oscura se ubica en la constelación de Orión, específicamente al lado de la estrella Alnitak.

 

Qué es la 5ª dimensión y dónde está escondida - BBC News Mundo

       Hace mucho tiempo que alguien fantaseó con la Quinta Dimensión

        Hemos mirado por todo el Universo y, añadiendo el tiempo como otra dimensión, vemos que es tetradimensional, no podemos ver dimensiones que algunas teorías dicen que están compactadas en el límite de Planck. Cuando hablamos del límite de Planck nos estamos refiriendo a esas unidades fundamentales de longitud, tiempo y masa de Planck que marcan el límite de nuestra comprensión del Universo a la escala más pequeña.  Estas unidades, derivadas de la Constante de Planck.

La longitud de Planck es 10-35 metros, eso es 0.000000000000000000000000000000000016 metros o alrededor de una billonésima de una billonésima de una …

Está claro que los físicos y también los matemáticos, que mencionaron la existencia de dimensiones extra, al ser preguntados por donde estaban esas dimensiones, no podían contestar y, a uno de ellos (no recuerdo ahora si fue Kaluza o Klein), se le ocurrió decir que estaban compactadas en el límite de Planck, un lugar que no podíamos ver, un mundo invisible allá del poder de la Ciencia para poder localizarlas o visualizarlas. Una buena manera de salir del atolladero de explicar algo que no podían explicar.

¡AH! Lo recordé, fue El físico Theodor Kaluza  el primero en hablar de una quinta dimensión, en 1919, al intentar unificar la teoría de la relatividad general de Einstein con el electromagnetismo de Maxwell.

                                               EXISTE EVIDENCIA DE QUE EL UNIVERSO ES UN HOLOGRAMA – CR Comunicación

                                Miro con atención y no consigo ver esas otras dimensiones

¿Dónde, pues, ha de hallarse el universo hiper-dimensional de la simetría perfecta? Ciertamente, no aquí y ahora; el mundo en que vivimos está lleno de simetrías rotas, y sólo tiene cuatro dimensiones, tres de y una temporal. La imaginación que nunca descansa, nos lleva a una en la cosmología, la cual nos dice que el universo super-simétrico, si existió, pertenece al pasado. Como nos decían los autores de la Teoría Kaluza-Klein, esas otras dimensiones se quedaron compactadas cuando el universo se desarrolló y, aunque son parámetros necesarios para las grandes teorías de cuerdas y supercuerdas… ¡No las vemos por ninguna parte!

 

     Hace tiempo ya que buscamos esas otras dimensiones pero,,, ¿Dónde están?

La implicación de eso es que el universo tuvo que comenzar en un estado de perfección simétrica, desde el que evolucionó a este otro universo menos simétrico que conocemos y en el que vivimos. Si es así, la de la simetría perfecta sería la del secreto del origen del universo, y la atención de sus acólitos puede volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica. Alguna vez hemos podido comentar aquí de aquella simetría primera, cuando todas las fuerzas de la naturaleza estaban unidas en una sola fuerza y, a medida que el universo se enfrió en los infiernos del Big Bang, aquella simetría se rompió, y se desgajó en las cuatro fuerzas que ahora conocemos y, algunos dicen que, se formaron las cuatro dimensiones que podemos ver y, otras, quedaron confinadas en el límite Planck, ese límite que antes mencionamos

De manera que, la simetría, quedó rota para siempre.

 

El Planck produce la imagen más detallada del universo primigenio

El satélite  Planck de la ESA  produce la imagen más detallada del universo primigenio

 

Así que las teorías se han embarcado a la de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

 

           NeoFronteras » El Universo parece girar sobre sí mismo - Portada -Ritmos y simetrias: Bases para la vida

          Simetría - Wikipedia, la enciclopedia libreSimetria y sus aplicacionesUna guía para descubrir? ¡La simetría! : Blog de Emilio Silvera V.

                    El Universo está lleno de simetrías que es una guía para descubrir

Recordemos que:  “En griego, la simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría para los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera. Así, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético .”

Nuestro Tiempo 716 by universidaddenavarra - Issuu

Nos empeñamos en tareas que no podemos llevar a buen fin, nos sobrepasa

De esa manera, como digo más arriba, buscar “la simplicidad primigenia” y, para ello, hacemos cábalas con dimensiones más altas que nos devuelva una simetría superior que nos lo explique todo y donde todo quepa sin que surjan los indeseables infinitos que aparecen cuando tratamos de juntar la Mecánica cuántica con la Relatividad general, es decir, cuando queremos unificar el “universo” de lo infinitesimal con el “universo” de lo muy grande.

                                                Arte Humo Simétrica Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 8808585.

                                                                         Humo simétrico

Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos parte de ese Universo de simetría.

                                                            

                                                              También en nosotros está presente la simetría

Los planetas son esféricos y, por ejemplo, simetría de rotación. Lo que quiere indicar es que poseen una característica -en este caso, su circular- que permanece invariante en la transformación producida cuando la Naturaleza los hace rotar. Las esferas pueden hacerse rotar en cualquier eje y en cualquier grado sin que cambie su “personalidad” , lo cual hace que sea más simétrica.

Increíble: Explicación de 10 ejemplos de simetría en la naturalezaFractales en la naturaleza - YouTube

Simetria y sus aplicacionesFractales en el mundo de las crucíferas – masbrocoliImagen Espejo De Un árbol Antiguo Que Destaca La Simetría En El Mundo  Natural. Foto de archivo - Imagen de espejo, cerque: 217633586

         La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la Belleza

Sí, a nuestro alrededor podemos contemplar la simetría que en el Universo quedó rota. Así las cosas, nuestra imaginación que es libre de “volar” hacia espacios desconocidos y hacia escenarios imposibles, también puede, no sólo escenificar el Hiperespacio, sino que, llevando la fascinación aún más lejos, ¿quién sabe? (como tántas veces hemos comentado), si los teóricos no habrán dado en el y, con su intuición “infinita”, haber podido vislumbrar que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas en un “universo hiper-dimensional” que no podemos ver pero que, está ahí.

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío. Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. pues, el universo estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

 

900+ ideas de El universo y su belleza | universo, nebulosas, galaxia  planetas

Lo cierto es que, estemos en el Universo que podamos estar, lo que no podemos negar es que es, ¡bello!

Los físicos, en su incansable de respuestas, nos llevan a “cosas”  como la “super-gravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿Qué es la super-gravedad? Meternos en esos berenjenales matemáticos sería algo engorroso y (para muchos) aburrido.

¿Qué pasa entonces con la super-gravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser una coincidencia y que la teoría final de todas las fuerzas podría estar a la . ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta  de las leyes de la física? ¿Se podría conseguir eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.

 

http://guillegg.files.wordpress.com/2010/06/strings1.jpg

Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el de masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, , sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

Historia de explosiones de Supernovas – UNIVERSO BlogLa explosión de supernova que estuvo a punto de extinguir la vida en la Tierra – Muy Interesante

    En las explosiones de Supernovas está presente la Gravedad

Si la Gravedad llegara a ser una interacción fuerte, sería un verdadero desastre. No se puede ni imaginar lo que haría, en ese caso, la gravedad,  tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.

Todo lo que conocemos acerca de la naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la naturaleza de la fuerza gravitatoria funciona espléndidamente, parte de un principio muy fundamental, uno que prácticamente tiene que ser correcto: la gravedad es una propiedad del y el tiempo mismos. El y el Tiempo están “curvados” decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasándole la plancha caliente. La fuerza Gravitatoria es la responsable de semejante rugosidad en el espacio-tiempo.

Hasta aquí, al menos sí hemos podido comprender. Sin embargo, cuando nos sumergimos en el océano profundo del hiperespacio y del universo extra-dimensional… ¡las cosas cambian! Estamos perdidos y, nuestras mentes no encuentran esa luz que ilumine el entendimiento para , de una vez por todas, todo eso puede estar ahí o, simplemente, son falsos escenarios que nuestras mentes imaginan para huir de la cruda realidad.

Gato de Schrödinger - Wikipedia, la enciclopedia libre

Claro que, por otra parte, como nos pasó con la paradoja del gato de Schrödinger que, al principio era tan extraña que uno podía recordar la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

 

http://4.bp.blogspot.com/-xSlWe2yr2xU/Ts6MHliCC8I/AAAAAAAAAG4/D_EcfYZWynQ/s1600/10%2529+Im%25C3%25A1genes+fant%25C3%25A1sticas+by+www.JoseLuisAvilaHerrera.BLOGSPOT.com.jpg

¡Lo que no sea capaz de nuestra imaginación! Y, a pesar de su “infinita riqueza, la Naturaleza la supera y contiene y ocurren cosas inimaginables.

Algunos, como Alejandro Jodorowsky piensan que: “Si tenemos un cuerpo imaginario, es también necesario que nos demos cuenta que tenemos una mente imaginaria. Tenemos pensamientos inconscientes, percepciones olfativas, audiciones, tactos, visiones, sabores mucho más desarrollados que los que creemos “reales”. Vemos más de lo que creemos ver, oímos más de lo que creemos oír, gustamos más de lo que creemos gustar, olfateamos más de lo que creemos olfatear, percibimos con el tacto mucho más de lo que creemos percibir, pensamos más de lo que creemos pensar. No sentimos por completo nuestras sensaciones, tenemos pensamientos de los que no nos damos cuenta, vivimos dentro de limites perceptivos, provocados desde que nacemos por nuestra familia y luego por la sociedad. Nos sumergen en prejuicios y concepciones anquilosadas de la realidad y de nosotros mismos. Debemos aprender a pensar con libertad, (no digo con “inteligencia”, digo con “libertad”). El mágico consiste en disolver los límites de nuestra inteligencia y de nuestras percepciones. Estos limites nos encierran en calabozos irreales que nos impiden a la conciencia suprema.”

Viajes en el tiempo y otros fenómenos: la teoría de la relatividad - La Soga | Revista CulturalCono de luz - Wikipedia, la enciclopedia libre

Si realmente eso es, estaríamos limitados por nuestras propias concepciones del mundo. Sin embargo, ahí están los físicos teóricos que se salen del “régimen” establecido y, sus mentes generan e imagina mundos y universos que, siendo muy dispares de este nuestro que creemos real, podrían ser, los auténticos mundos y los auténticos paisajes que la Naturaleza trata de mostrarnos y que, nosotros, nos empecinamos en no querer ver.

 

Antes, para conocer el mundo, teníamos que hacer grandes viajes, realizar grandes aventureras de las que nunca sabíamos cómo podríamos salir. El riesgo y la ventura era el pan de cada día para aquellos que querían descubrir otras tierras, otros pueblos y culturas. Hoy día, las cosas han cambiado. No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Y, cualquier joven, sentado tranquilamente en su casa, con un potente , puede realizar “aventuras” que antes, eran imposibles.

http://histinf.blogs.upv.es/files/2011/01/foto-estudio-protools1.jpg

Sentado cómodamente ante este sencillo conjunto de inventos tecnológicos, cualquier joven, puede construir e inventar “mundos” de inimaginable belleza. Y, lo que parecía un sueño, podrían recrear el de las galaxias, una colisión entre dos agujeros negros, e incluso, una explosión supernova.

 

La gigantesca colisión de dos agujeros negros que la ciencia no logra explicar - BBC News Mundo

 

Algunas veces me sorprendo al constatar que, algunas llegan a tu mente sin haberlas llamado en ese preciso momento. Son preguntas que te hiciste hace muchísimo tiempo y que no tuvieron una respuesta adecuada. Sin embargo, la experiencia, el ir acumulando y algún que otro saber, finalmente determina esa llegada del por qué de las cosas. Todo, sin que nos demos , queda registrado en nuestras mentes y, en el momento oportuno… ¡surge como por arte de magia aquello que queríamos saber! Ciertos parámetros mentales retienen esas cuestiones complejas y, finalmente, la mente consigue llegar a la resolución deseada y correcta que aparece ante nuestros ojos y nos producen, a pesar de todo, algo de asombro de que podamos haber llegado tan lejos en la comprensión de la Naturaleza.

 

                  Cien mil neuronas, tantas como estrellas tiene nuestra Galaxia. Conexiones sin fin

¿Cuántas veces no habré puesto aquí imágenes como la de arriba que quiere significar las conexiones del cerebro que generan los pensamientos? Y, la cuestión es, que esas conexiones no se limitan a estar ahí en ese ámbito reducido que llamamos cerebro, sino que, utilizando ese otro “ente” inmaterial y que llamamos mente y que también nos mantiene conexionados con el Universo, del que, al fin y al cabo, formamos parte.

 

                             

 

Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos. Sabemos que si variara la carga del electrón y la masa del protón en una diezmillonésima parte, las cosas serían totalmente diferentes, es decir, nosotros, no estaríamos aquí para comentar todas estas cuestiones.

Sin embargo, y a pesar de todo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros” con distintas percepciones y sentidos, pudiera ser un mundo muy distinto al que nosotros percibimos y, “ellos”  podrían “ver” cosas que nosotros no vemos.

Vivímos en nuestra propia realidad, la que forja nuestra mente a través de los sentidos y la experiencia. Incluso entre nosotros mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de , sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.

 

                                             EL UNIVERSO EN EXPANSIÓN - ppt descargar

                                     Existen algunas discrepancias que tratamos de solucionar

No, no será nada despejar las incógnitas presentes en esta inmensa complejidad que llamamos Universo. Pero, firmemente creo que las dimensiones extra están en nuestras Mentes, donde todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.

¡Qué complicado resulta ser todo!

Emilio Silvera V.

La simetría CP y otros aspectos de la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 “Nature publica una recreación del experimento E122 de hace 35 años,” LCMF, 06 Feb 2014; “Los quarks se mueven al otro lado del espejo,” Agencia SINC, …

Los quarks al otro lado del espejo. También un Equipo de Científicos del Laboratorio Nacional Jefferson Lab (EEUU) han verificado la rotura de la simetría de paridad (también llamada simetría del espejo) en los quarks mediante el bombardeo de núcleos de deuterio con electrones de alta energía. Los núcleos de deuterio están formados por un protón y un neutrón, es decir, por tres quarks arriba y tres quarks abajo. La dispersión inelástica entre un electrón y un quark, es decir, su colisión, está mediada por la interacción electrodébil, tanto por la fuerza electromagnética como por la fuerza débil. Esta última es la única interacción fundamental que viola la simetría de paridad.

 

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar la coherencia matemática del modelo estándar.  La idea de Higgs, y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes.  Parece, con tantos parámetros imprecisos (19) que, el modelo estándar se mueve bajo nuestros pies.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súper-simetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

 

La Física nos lleva de vez en cuando a realizar viajes alucinantes. Se ha conseguido relacionar y vibrar a dos diamantes en el proceso conocido como entrelazamiento cuántico. El misterioso proceso, al que el propio Eisntein no supo darle comprensión completa, supone el mayor avance la fecha y abre las puertas de la computación cuántica. que nos hagamos una idea del hallazgo, en 1935 Einstein lo llegó a denominar la “acción fantasmal a distancia”. Un efecto extraño en donde se conecta un objeto con otro de manera que incluso si están separados por grandes distancias, una acción realizada en uno de los objetos afecta al otro.

 

 

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado! Pero se sigue hablando de partículas super-simétricas.

La longitud de Planck se define como:

{\displaystyle \ell _{P}={\sqrt {\frac {\hbar G}{c^{3}}}}\approx 1.616199(97)\times 10^{-35}{\mbox{ metros}}}

donde c es la velocidad de la luz en el vacío, G es la constante de gravitación y \hbar  es la Constante de Planck reducida.

Los dos dígitos entre paréntisis son el error estándar estimado, asociado con el valor numérico reportado.

      ¿Quién puede ir a la longitud de Planck para verlas? De momento nadie, ni con el LHC han sido vistas

“En todo el dominio de la física clásica que abarca desde la mecánica newtoniana hasta la teoría de la relatividad general se considera que el espacio es un continuum infinitamente divisible y que visto al microscopio es localmente como el espacio euclídeo.

Sin embargo a escalas de longitud tan increíblemente pequeñas como la longitud de Planck se espera que la concepción clásica del espacio como un continuum localmente euclídeo no sea válida y a esas escalas el espacio de hecho tenga algún tipo de comportamiento probabilístico cuántico. Otra situación en la que se espera que los efectos cuánticos sean importantes es cuando la curvatura escalar de Ricci sea del orden del inverso del cuadrado de la longitud de Planck:

 

{\displaystyle R=\sum _{\alpha ,\beta =0}^{3}g^{\alpha \beta }R_{\alpha \beta }\;\approx \quad o(L_{p}^{-2})\;\approx \quad 3,828\cdot 10^{+69}\;{\mbox{m}}^{-2}}

Los previsibles efectos cuánticos cuando la curvatura está cercana a ese valor deberán ser tratados mediante algún tipo de teoría cuántica de la gravitación.”

Descubren la posible puerta a la quinta dimensión • Tendencias21

 

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intento calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

 

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello,  no la tiene ni la nueva capacidad energético del  acelerador de partículas LHC . Ni sumando todos los aceleradores de partículas de nuestro mundo, podríamos lograr una energía de Planck (1019 GeV), que sería necesaria para poder llegar hasta las cuerdas vibrantes de la Teoría. Ni en las próximas generaciones seremos capaces de poder utilizar tal energía.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Sabemos sobre las partíoculas elementales que conforman la materia bariónica, es decir, los átomos que se juntan para formar moléculas, sustancias y cuerpos… ¡La materia! Pero, no sabemos si, pudiera haber algo más elemental aún más allá de los Quarks y, ese algo, pudieran ser esas cuerdas vibrantes que no tenemos capacidad de alcanzar.

 

                   ¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas. Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

 

Resultado de imagen de Con 7 TeV ha sido suficiente para encontrar la famosa partícula de Higgs pero...

                Con 7 TeV ha sido suficiente para encontrar la famosa partícula de Higgs pero…

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

 

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

 

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad si se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pietez Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

 

 

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa -los W+, W, Zº y fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

 

La teoría que explica este tipo de interacciones dentro del protón es la cromodinámica cuántica (QCD, de sus siglas en inglés), que modela como los quarks

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “re-normalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs de masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

 

 

32 vectores de stock y arte vectorial de Quark arriba | Shutterstock

       Basta con cambiar un quark tipo U a uno tipo D.

Pues justamente esto es lo que ocurre en la naturaleza cuando entra en acción la fuerza nuclear débil.  Un quark tipo U cambia a uno tipo D por medio de la interacción débil así

 

 

Interacción débil para Niños

Las otras dos partículas que salen son un anti-electrón y un neutrino. Este mismo proceso es el responsable del decaimiento radiactivo de algunos núcleos atómicos. Cuando un neutrón se convierte en un protón en el decaimiento radiactivo de un núcleo, aparece un electrón y un neutrino. Este es el origen de la radiación beta (electrines).

 

La interacción débil, recordareis, fue inventada por Enrico Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? Como s su partícula, nos cabe esperar que la veamos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

 

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de lo que un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10′5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

 

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que, algunos, han llegado a llamar, de manera un poco exagerada:

¡La partícula Divina! (Como la llamó Lederman en su libro. Bueno, en realidad no fue Lederman sino el editor, el que se empeññó en el nombrecito que ni a Lederman le gustaba-)

 

 

¡Ya veremos en que termina todo esto! Y que explicación se nos ofrece desde el CERN en cuanto al auténtico escenario que según ellos, existe en el Universo para que sea posible que las partículas tomen su masa de ese oceáno de Higgs (porque dicen haberla encontrado pero, las explicaciones han sido escasas), en el que, según nuestro amigo Ramón Márquez, las partículas se frenan al interaccionar con el mismo y toman su masa, el lo llama el “efecto frenado”.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolos todos, exponer su teoría relativista. (Mach, Maxwell, Lorentz… y otros).

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no tenemos la menor prueba experimental de ese campo de higgs donde (dicen) que encontraron el bosón dichoso que da masa a las partículas.

 

LHC: La maquina que explora la Terra incognita de lo infinitamente pequeño  - Naukas

Ahora, por fin la tenemos con el LHC, y ésta pega, se la traspasamos directamente a la teoría de supercuerdas y a la materia oscura que, de momento, están en la sombra y no brillan con luz propia, toda vez que ninguna de ellas ha podido ser verificada, es decir, no sabemos si el Universo atiende a lo que en ellas se predice.

El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Resultado de imagen de Materia oscura

Resultado de imagen de Teoría de cuerdas

 

Después de todo esto, llego a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo pudo surgir  el Universo no dependen de que se encontró el bosón de Higgs o se averigüe si realmente existe la materia oscura, Aunque sepamos llegar al fondo de la Teoría de Cuerdas y confirmarla, Poder crear esa Teoría cuántica de la Gravedad…Y, en fín, seguir descubriendo los muchos misterios que no nos dejan saber lo que el Universo es.  Ahora, por fin, tenemos grandes aceleradores y Telescopios con la energía necesaria y las condiciones tecnológicas suficientes para que nos muestre todo eso que queremos saber y nos digan dónde reside esa verdad que incansables perseguimos. Sin embargo, siempre seguiremos haciendo preguntas y siempre, también, serán insuficientes, los aparatos que podamos construir para que nos digan como es el Universo y cómo funciona la Naturaleza. Saberlo todo, nunca sabremos.

¡La confianza en nosotros mismos, no tiene límites! Pero, no siempre ha estado justificada.

Emilio Silvera V.