Mar
4
¡Los pensamientos! Nos hacen saber y crear
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
emos viajar desde el núcleo atómico hasta las galaxias
El núcleo atómico es la parte central del átomo y tiene el 99,999% de la masa atómica, su carga es positiva por los protones y, los electrones de masa negativa que orbitan a su alrededor, hace que se compensen y se consigue la estabilidad. En esa parte infinitesimal de los átomos está presente todo un “universo”: Tripletes de Quarks que conforman los nucleones (protones y neutrones) con los quarks confinados por la fuerza nuclear fuerte que está asistida por los bosones que llamamos Gluones que sirven de pegamento.
Las galaxias están en el otro extremo, es decir, son los objetos más grandes del Universo, de hecho, se podría decir que una galaxia es un Universo en miniatura. En las galaxias están las estrellas y los mundos, los Quásares y los Púlsares, los Agujeros negros y las Nebulosas, y, muy probablemente… ¡La Vida!

¿Qué es el tiempo en física? En física se llama tiempo a una magnitud que sirve para medir la duración o la separación de uno o más acontecimientos. Esto permite ordenarlos en una secuencia (pasado, presente, futuro) y determinar si ocurren o no en simultáneo.
“Tiempo. … El tiempo es una magnitud física con que se mide la duración o separación de acontecimientos. El tiempo permite ordenar los sucesos en secuencias, estableciendo un pasado, un futuro y un tercer conjunto de eventos ni pasados ni futuros respecto a otro”. Sin embargo, siendo esta una definición de las muchas que existen, podríamos decir que, el Tiempo, podría ser una abstracción de la Mente, y, el Presente, el Pasado, y, el Futuro… ¡Podrían ser una simple Ilusión!
El transcurrir del Tiempo lo cambia todo
Claro que, cuando vemos los estragos causados por su transcurrir… Tenemos que convenir en el hecho cierto de que, el Tiempo, es mucho más de lo que podemos comprender, de hecho, nadie, a lo largo de nuestra Historia, ha podido explicar de manera convincente lo que el Tiempo es.


Es curioso cuando mi mente está libre y divagando sobre una gran diversidad de cuestiones que sin ser a propósito, se enlazan o entrecruzan las unas con las otras, y lo mismo estoy tratando de sondear sobre el verdadero significado del número 137 (sí, ese número puro, adimensional, que encierra los misterios del electromagnetismo, de la luz y de la Constante de Planck (se denomina alfa (α) y lo denotamos 2πe2/hc),o, que me sumerjo en las profundidades del número atómico para ver de manera clara y precisa el espesor de los gluones que retienen a los quarks.
Sin embargo, mi visión mental no se detiene en ese punto, continúa avanzando y se encuentra con una sinfonía de colores que tiene su fuente en miles y miles de cuerdas vibrantes que, en cada vibración o resonancia, producen minúsculas partículas que salen disparadas para formar parte en otro lugar, de algún planeta, estrella, galaxia e incluso del ser de un individuo inteligente.
Me pregunto por el verdadero significado de la materia, y cuanto más profundizo en ello, mayor es la certeza de que allí están encerradas todas las respuestas. ¿Qué somos nosotros? Creo que somos materia evolucionada que ha conseguido la conquista de un nivel evolutivo en el que ya se tiene conciencia de ser, de estar, de comprender para poder generar ideas propias sobre las cuestiones que plantea la Naturaleza que nos creó.
Las dos imágenes representan la materia: Una es Naturaleza “inerte” y, la otra, de pensamientos
Pienso que toda materia en el universo está cumpliendo su función para conformar un todo que, en definitiva, está hecho de la misma cosa, que interaccionan con las fuerzas que rigen el cosmos y toda la naturaleza del universo que nos acoge. La luz, la gravedad, la carga eléctrica y magnética, las fuerzas nucleares, todo, absolutamente todo, se puede entender a partir del comportamiento de la materia en sus distintos estadios y situaciones, tanto a niveles microscópicos como en nuestro más cotidiano mundo macroscópico, todo son aspectos y escenarios distintos, en los que la materia, se pone distintos ropajes para representar su papel en la más grande función del Teatro del Universo: para que existan estrellas y galaxias, planetas, árboles, desiertos, océanos y multitud de espacies de seres vivos y, algunas como la nuestra por ejemplo, hemos podido evolucionar hasta alcanzar la Conciencia de Ser.
Todos somos iguales pero… ¡Con pensamientos tan diversos! ¡Culturas tan distintas! ¿Conocimientos tan distantes! Finalmente, tenemos que aceptar que, como el Universo mismo (del que provenimos), nuestra especie es también una amalgama de situaciones diferentes que, en la práctica, será difícil hacer que puedan converger.
Cada pueblo vive en su propio mundo particular y, todos los demás les resultan extraños
Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo está compuesto por una variedad de personas que, siendo iguales en su origen de especie, son totalmente distintas en sus mentes, en sus costumbres, en sus creencias y en sus conocimientos del mundo que nos rodea localmente y en ese otro que saliendo de nuestras fronteras nos lleva hasta el microscópico mundo del átomo, o, alextremo opuesto, el de las grandes estructuras de las galaxias. Desgraciadamente, no todos conocemos de cuestiones esenciales que conforman el “mundo” y, consecuentemente, también a nosotros.
La mayor parte, se aplica en sus vidas cotidianas y sin grandes sobresaltos: al trabajo, la familia y dejar transcurrir el tiempo. Es la mayoría silenciosa. Una parte menor, conforman el grupo de los poderosos; sus afanes están centrados en acumular poder, dirigir las vidas de los demás y de manera consciente o inconsciente, dañan y abusan de aquella mayoría. Son los grandes capitalistas y políticos, que con sus decisiones hacen mejor o peor las vidas del resto. Por último, existe una pequeña parte que está ajena y “aislada” de los dos grupos anteriores; se dedican a pensar y a averiguar el por qué de las cosas. La mayor preocupación de este grupo de “elegidos” es saber, quiero decir ¡SABER!, de todo y sobre todo; nunca están satisfechos y gracias a ellos podemos avanzar y evitar el embrutecimiento de nuestra especie que, a pesar de todo… ¡Se puede salvar!
Su trabajo es pensar, experimentar, buscar la verdad de la Naturaleza para saber, el por qué de las cosas
Pensando en el cometido de estos tres grupos me doy cuenta de lo atrasados que aún estamos en la evolución de la especie. El grupo mayor, el de la gente corriente, es muy necesario; de él se nutren los otros dos. Sin embargo, el grupo de mayor importancia “real”, el de los pensadores y científicos, está utilizado y manejado por políticos, militares y capitalistas que, en definitiva, aprueban los presupuestos y las subvenciones de las que se nutren los investigadores. Si el dinero empleado en inútiles ejercitos y armas, se empleara en investigación y desarrollo… ¿Dónde estaríamos ya?
La II Guerra Mundial de mal recuerdo. ¿Qué sacamos de ella? ¿Destrucción y muerte? En las dos grandes guerras mundiales (sobre todo en la segunda), tenemos un ejemplo de cómo se utilizaron a los científicos con fines militares. Los que no se prestaron a ello, lo pasaron mal y fueron marginados en no pocos casos.
Es una auténtica barbaridad el ínfimo presupuesto que se destina al fomento científico en cualquiera de los niveles del saber. Cada presupuesto, cada proyecto y cada subvención conseguida es como un camino interminable de inconvenientes y problemas que hay que superar antes de conseguir el visto bueno definitivo, y lastimosamente, no son pocos los magníficos proyectos que se quedan olvidados encima de la mesa del político o burócrata de turno, cuyos intereses particulares y partidistas miran en otra dirección.
La I+D española no solo sufre los ajustes presupuestarios, sino que además tiene partidas sin utilizar. La ciencia y la tecnología, incluidas actividades civiles y militares, sufrirán el año próximo una reducción de la financiación de un 8,4% respecto a 2010, según el proyecto presupuestario, lo que se acumula al 5,5% de recorte de este año respecto a 2009. “Esto entierra definitivamente la etapa de crecimiento del gasto en I+D+i de la anterior legislatura”, señala un análisis sobre la política de investigación realizado por CC OO a partir de datos oficiales.
España partió de un retraso en este ámbito respecto a los países más desarrollados, “atraso que se corrige muy lentamente y, al ritmo actual, la convergencia con Europa tardará aún muchos años”, advierte el estudio. Igualmente se aleja el ansiado cambio del modelo productivo.
¡Qué lastima! Haber llegado a esta situación tiene un motivo de todos conocido. Sin embargo, muchos son los interesados en que el tiempo pase y no se hable de ello. Los responsables están bien instalados, tienen muy alta e inmerecidas pensiones y, mientras tanto, el Pueblo llano, la Ciencia, y la gente de la calle en general, padecen y sufren lo que otros hicieron que, además, no sólo no pagaron su culpa, sino que se encuentran tan ricamente en sus mansiones, sus viajes, sus abultadas cuentas corrientes… ¡Qué canallas y miserables! Es la peor condición humana a la que podemos llegar.
A pesar de ello, milagrosamente, el avance continúa implacable gracias a personajes que, como Ramón y Cajal -en su momento-, con medios insuficientes pero con sacrificio e inteligencia, triunfan sobre estas adversidades materiales que superan por amor a la ciencia, con trabajo y con ingenio.
Einstein nos decía algo parecido a:
“el hombre encuentra su verdad detrás de cada puerta que la ciencia logra abrir”.
Ese encuentro maravilloso con la luz suprema del saber es un momento mágico, que reciben y el precio que pagan al científico por sus esfuerzos, y es el incentivo que necesitan para seguir trabajando en la superación de los muchos secretos que la naturaleza pone ante sus ojos para que sean desvelados.
Cuando me pongo a escribir sin un programa previamente establecido, vuelco sobre el papel en blanco todo lo que va fluyendo en mis pensamientos, y a veces me sorprendo a mí mismo al darme cuenta de cómo es posible perder la noción del tiempo inmerso en los universos que la mente puede recrear para hacer trabajar la imaginación sin límites de un ser humano.
¡Nuestra Imaginación! ¿Dónde estará el límite? NO, no hay límites, el único límite está impuesto por el conocimiento que podamos tener de la propia Naturaleza. En ella, en la Naturaleza están todas las respuestas que buscamos a esas preguntas planteadas que nadie ha sabido contestar y, debemos persistir en el estudio y la observación, el experimento y el método científico para desvelar los secretos que nos lleven a esos conocimientos necesarios para nuestra especie si es que, realmente, queremos tener un futuro.
Aunque es cierto que nuestras limitaciones son enormes y enorme nuestra ignorancia, también lo es que, son inmensamente enormes las posibilidades que tenemos de poder ir desvelando los secretos del Universo. Las carencias se pueden compensar con la también enorme ilusión de aprender y la inagotable curiosidad y espíritu de sacrificio que tenemos en nuestro interior, que finalmente, van ganando pequeñas batallas en el conocimiento de la naturaleza, y que sumados hacen un respetable bloque de conocimientos que, a estas alturas de comienzos del siglo XXI, parecen suficientes como punto de partida para despegar hacia el interminable viaje que nos espera.
A veces tengo que sonreír al ver el esfuerzo de mi esposa, mi mujer, mi compañera: Pone delante de mí un reloj para que sea consciente del tiempo. Sin embargo, sumergido en las cuestiones que me inquietan, el tiempo transcurre tan lentamente que… ¡No parece que se mueva! Lo que no deja de ser una maravilla si consideramos que, estoy en total reposo y es, únicamente mi mente, la que desbocada, corre mucho más rápido que lo pueda hacer la luz. Y, ya sabéis, si se viaja a la velocidad de la luz… ¡El Tiempo se ralentiza!
Es tal la pasión que pongo en estas cuestiones que, literalmente, cuando estoy pensando en el nacimiento y vida de una estrella y en su final como enana blanca, estrella de neutrones o agujero negro (dependiendo de su masa), siento cómo ese gas y ese polvo cósmico estelar se junta y gira en remolinos, cómo se forma un núcleo donde las moléculas, más juntas cada vez, rozan las unas con las otras, se calientan e ionizan y, finalmente, se fusionan para brillar durante miles de millones de años y, cuando agotado el combustible nuclear degeneran en enanas blancas, veo con claridad cómo la degeneración de los electrones impide que la estrella continúe cediendo a la fuerza de gravedad y queda así estabilizada. Lo mismo ocurre en el caso de las estrellas de neutrones, que se frena y encuentra el equilibrio en la degeneración de los neutrones, que es suficiente para frenar la enorme fuerza gravitatoria. Y, cuando llego a la implosión que dará lugar a una singularidad, ahí quedo perdido, mi mente no puede, como en los casos anteriores, “ver” lo que realmente ocurre en el corazón del agujero negro, ya que, lo que llamamos singularidad, parece como si desapareciera de este mundo.
Emilio Silvera V.
Mar
4
El límite de la información está dado por las constantes de la...
por Emilio Silvera ~
Clasificado en Sin categoría ~
Comments (5)
Einstein hizo más que cualquier otro científico por crear la imagen moderna de las leyes de la Naturaleza. Desempeñó un papel principal en la creación de la perspectiva correcta sobre el carácter atómico y cuántico del mundo material a pequeña escala, demostró que la velocidad de la luz introducía una relatividad en la visión del espacio de cada observador, y encontró por sí solo la Teoría de la Gravedad que sustituyó la imagen clásica creada por Isaac Newton más de dos siglos antes que él.
Su famosa fórmula de E = mc2 es una fórmula milagrosa, es lo que los físicos definen como la auténtica belleza. Decir mucho con pocos signos y, desde luego, nunca ningún físico dijo tanto con tan poco. En esa reducida expresión de E = mc2, está contenido uno de los mensajes de mayor calado del universo: masa y energía, son la misma cosa.
Einstein siempre estuvo fascinado por el hecho de que algunas cosas deben parecer siempre iguales, independientemente de cómo se mueva el que las ve, como la luz en el vacío, c.
Él nos dijo el límite con que podríamos recibir información en el universo, la velocidad de c.
Él reveló todo el alcance de lo que Stoney y Planck simplemente habían supuesto: que la velocidad de la luz era una constante sobrehumana fundamental de la naturaleza. También sabía el maestro que, en el proceso de nuevas teorías, la búsqueda de la teoría final que incluyera a otras fuerzas de la naturaleza distintas de la Gravedad, daría lugar a teorías nuevas y cada vez mejores que irían sustituyendo a las antiguas teorías.
Buscaba la Teoría con la que explicar todo el Universo, sus ecuaciones se exponían en un escaparate de la Quinta Avenida de Nueva York, la gente se apelotonaba para verlas asombrados sin entender nada.
De hecho, él mismo la buscó durante los 20 últimos años de su vida pero, desgraciadamente, sin éxito. Ahora se ha llegado a la teoría de supercuerdas que sólo funciona en 10. 11 y 26 dimensiones y es la teoría más prometedora para ser la candidata a esa teoría final de la que hablan los físicos. La Teoría es tan adelantada que no tenemos medio para poder verificarla, y, dicen que se necesitaría la energía de Planck (1019 GeV) para poder examinarla, y, esa es la energía de la creación que no puede estar en nuestros pobres dominios.
El físico espera que las constantes de la naturaleza respondan en términos de números puros que pueda ser calculado con tanta precisión como uno quiera. En ese sentido se lo expresó Einstein a su amiga Ilse Rosenthal-Schneider, interesada en la ciencia y muy amiga de Planck y Einstein en la juventud.
Mar
4
¿Es igual el Universo en todas partes?
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (3)
La curiosidad siempre nos ha empujado a querer asomarnos al lugar del suceso, sin pensar en los posibles riesgos, los testigos del acontecimiento se acercan al lugar.
En libros de Ciencia Ficción, no pocas veces hemos leído sobre una nave extraterrestre que cae en la Tierra. La escena que describen era la que se podía esperar después de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a personal especializado en este tipo de investigaciones.¡
“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él, recogía muestras de aquella extraña nave caída y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.
Veamos los materiales más densos del Universo:
El Iridio tiene una Densidad de 22.560 Kg/m3 . Es decir, es más denso que el núcleo terrestre que pesa 13.000 Kgs/m3.
Osmio que tiene una Densidad de 22.570 Kgs/m3 . Es posiblemente el metal más denso del Universo y se utiliza en aleaciones con el Platino.
Densidad de 40.700 Kgs/m3 . No es un elemento Natural
El Núcleo del Sol tiene una Densidad de 150.000 Kgs/m3 . Es la densidad media del núcleo estelar. Sin embargo, a partir de aquí, las cosas parecen de Ciencia Ficción.
Densidad de una Enana Blanca es de 10.000.000.000 kg/m3. El satélite GAIA de la ESA, pudo comprobar por primera vez como se solidifica (o cristaliza) una estrella como el Sol al final de su vida, cuando se convierte en Gigante roja primero y enana blanca después. La enana blanca es 66.000 veces más densa que el Sol.
El punto blanco del centro de la Nebulosa planetaria es la enana blanca que radia en ultravioleta e ioniza el material de la Nebulosa. A este final se llega debido al Principio de exclusión de Pauli.
“Los productos de las reacciones nucleares de fusión que tuvieron lugar durante las etapas previas en la vida de la estrella) junto a trazas de otros elementos químicos, como los isótopos 22Ne (neón), 25Mg (magnesio) y 54Fe (hierro). Las enanas blancas tienen una masa similar a la del Sol, pero un tamaño equiparable al de la Tierra. Su densidad alcanza valores formidables, del orden de una tonelada por centímetro cúbico.”“Su densidad es tan alta que si llenáramos una botella de 1 litro con el material de su corteza y la trajéramos a la Tierra, esa botella pesaría tanto como 71 millones de ballenas azules. En cambio, una botella llena de osmio, el elemento más denso de la tabla periódica, «sólo» pesaría 22,3 kilos.”“Una estrella de neutrones puede contener 500 000 veces la masa de la Tierra en una esfera de un diámetro de una decena de kilómetros.”“Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares,123a con un radio correspondiente aproximado de 12 km.4b En cambio, el radio del Sol es de unas 60 000 veces esa cifra. Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol),c comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³.5 La densidad de una estrella de neutrones varía desde menos de 1×109 kg/m³ en la corteza, aumentando con la profundidad a más de 6×1017 u 8×1017 kg/m³ aún más adentro (más denso que un núcleo atómico).6 Esta densidad equivale aproximadamente a la masa de un Boeing 747 comprimido en el tamaño de un pequeño grano de arena.”“!Una estrella de neutrones es un tipo de remanente estelar resultante del colapso gravitacional de una estrella supergigante masiva después de agotar el combustible en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. Las estrellas de neutrones son muy calientes y se apoyan en contra de un mayor colapso mediante presión de degeneración cuántica, debido al fenómeno descrito por el principio de exclusión de Pauli. Este principio establece que dos neutrones (o cualquier otra partícula fermiónica) no pueden ocupar el mismo espacio y estado cuántico simultáneamente.”
Plasma de quarks: 10^19 kg/m3
“Seguimos con cosas increíbles. Y a partir de ahora son tan asombrosas que su presencia de forma natural no se ha observado. Empecemos esta nueva etapa con el conocido como “plasma de quarks”. Se trata de un estado de la materia que se cree que era la forma en la que se encontraba el Universo apenas unos milisegundos después del Big Bang.Todo lo que daría lugar al Cosmos estaba contenido en este plasma asombrosamente denso. Su posible existencia en los orígenes del Universo se demostró cuando, en 2011, científicos del Gran Colisionador de Hadrones consiguieron crear la sustancia en cuestión haciendo colisionar (valga la redundancia) átomos de plomo entre ellos a la (casi) velocidad de la luz.”“Llegamos a la densidad de Planck. La partícula de Planck es una hipotética partícula subatómica que se define como un agujero negro en miniatura. Y muy miniatura. Para entenderlo “fácilmente”, imaginemos esta partícula como un protón, pero 13 millones de cuatrillones de veces más pesada y varios trillones de veces más pequeña.”Partícula de Planck: 10^96 kg/m3
Y como un agujero negro es un punto del espacio en el que la densidad es tan alta que genera una gravedad de la que ni siquiera la luz puede escapar, de ahí que digamos que una partícula de Planck es un “agujero negro en miniatura”.
“El agujero negro es el objeto más denso del Universo. Y nunca nada le quitará este trono porque, básicamente, las leyes de la física impiden que haya algo más denso. Un agujero negro es una singularidad en el espacio, es decir, un punto de infinita masa sin volumen, por lo que, por matemáticas, la densidad es infinita. Y esto es lo que hace que genere una fuerza gravitacional tan alta que ni la luz puede escapar de su atracción. Más allá de esto, no sabemos (y seguramente nunca lo haremos) qué sucede en su interior. Todo son suposiciones.”

Sabiendo todo esto sobre los materiales que existen en nuestro Universo, también sabemos que lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra, llevando a cabo aleaciones con técnicas para nosotros desconocidas. Porque, en última instancia ¿es en verdad inerte la materia?
¿Os podéis imaginar que pudiéramos manejar el material de la estrella de neutrones para hacer vehículos espaciales indestructibles?
Sí, son muchas las cosas que nos quedan por aprender e incluso, el agua tan familiar en nuestras vidas esconde secretos que ahora se están desvelando, Algún día conoceremos la verdadera “personalidad” de éste líquido elemento y de la luz, y, entonces, seremos un poco más sabios,
El Agua y la Luz son esenciales para la Vida. Sin embargo, aún esconden secretos que debemos desvelar
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos. Los que están más allá del Uranio y que son artificiales, no se encuentran libres en el Universo.
Algunos son:
ATÓMICO | NOMBRE | SÍMBOLO | MASA ATÓMICA |
92 | uranio | U | 283,03 |
93 | neptunio | Np | 237,048 |
94 | plutonio | Pu | 244 |
95 | amercio | Am | 243 |
96 | curio | Cm | 247 |
97 | berquelio | Bk | 247 |
98 | californio | Cf | 252 |
99 | Einstenio | Es | 254 |
100 | fermio | Fm | 257 |
101 | mendelevio | Md | 258 |
102 | nobelio | No | 259 |
103 | laurencio | Lr | 260 |
104 | rutherfordio | Rf | 261 |
105 | dubnio | Db | 262 |
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico: no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora para poder construir conjuntos tan bellos como el que abajo podemos admirar.
¡No por pequeño, se es insignificante! La enorme complejidad del átomo lo hace importante
Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.
A la izquierda la imagen captada de un fotón, la otra imagen es una conjetura de como sería
El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.
Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.
Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es o, su carga es o, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.
Agujeros negros binarios. Mejor no pasar por allí
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.
La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.
Espuma cuántica
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.
Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.
De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿Qué cosa es?
El modelo estándar considera que las partículas elementales son entes irreductibles y cuantos cuya cinemática está regida por las cuatro interacciones fundamentales conocidas, excepto la gravedad, que no encaja en los modelos matemáticos del mundo cuántico.
Antes se denominaba éter luminífero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vino a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándar de la Física de Partículas se afiance más.
Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.
Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.
Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas.
Emilio silvera V.
Mar
3
El enigma de la presencia de la Vida en el Universo
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
La Tierra… ¿Es un entorno único para la vida entre 700 trillones de planetas? So en todo el Universo rigen las mismas leyes y Constantes… ¿^pt qué sería la Tierra el único planeta elegido para la presencia de formas de Vida?
He leído en alguna parte:
“La vida y la Tierra misma es el producto de una inmensa casualidad, casi de un milagroso azar. Es el resultado de una lotería cósmica en la que se introdujeron 700 trillones de planetas y del bombo solo salió una bola: la Tierra. Es un astro único y las posibilidades de encontrar otro parecido en el universo con capacidad de sostener condiciones para la vida son muy remotas. Es lo que se deduce de un estudio de la Universidad de Upssala y de los Observatorios Carnegie de California que se publicará en Astrophysical Journal y cuyos resultados fueron avanzados por Scientific American.”
Siguen diciendo:
“Los investigadores, a partir del conocimiento que se tiene de los cerca de 5.000 exoplanetas descubiertos hasta el momento, localizados fundamentalmente por el telescopio Kepler, crearon un modelo en el que se simula por ordenador la formación de galaxias y planetas desde hace unos 13.800 millones de años y en el que llegaron a la conclusión de, al menos en el universo visible, existen unos 700 trillones de exoplanetas. Luego aplicaron las leyes de la física para descubrir cómo fue su evolución. Y ahí es donde advirtieron que la Tierra es, prácticamente, un lugar único, una anomalía cósmica que en poco o en nada se asemeja al resto de los astros de la Vía Láctea y de las demás galaxias conocidas.
¿Es privilegiada la situación del Sistema Solar para poder contener la Vida en el planeta Tierra?
«Ningún otro cuerpo del espacio puede acercarse a su capacidad para sustentar vida», explica el astrofísico Erik Zackrisson, de la Universidad de Upssala.
El estudio desafía el denominado principio de Copérnico, según el cual nuestro planeta no ocupa, ni mucho menos, un lugar privilegiado en el universo. De ahí que la ciencia se haya lanzado en las últimas décadas a la búsqueda de planetas potencialmente habitables más allá de nuestro sistemas.”
Saber si existe vida en otros planetas, incluso los que se ubican fuera del sistema solar (exoplanetas), es una de las preguntas abiertas de la ciencia, en especial de la astrobiología, que estudia el origen, evolución, distribución y futuro de la vida en el universo.
“Nuestra idea de la habitabilidad planetaria está basada en la vida terrestre, que de manera general requiere de la química del carbono y de agua líquida, lo que, por otra parte, están presentes en miles de millones de mundos.
Si existen miles de millones de mundos como la Tierra (o, parecidos)… ¿Qué impide allí la presencia de Vida?
Pero también es verdad que los futuros descubrimientos puedan hacer variar el modelo ahora descrito. «Es cierto que existe una gran cantidad de incertidumbre en nuestros cálculos, porque nuestro conocimiento de todas las piezas es imperfecto», advierte Andrew Benson, de los Observatorios Carnegie. El trabajo se realizó a partir de la extrapolación de los datos aportados por los cerca de 2.000 exoplanetas descubiertos, de los que una parte muy pequeña parte son rocosos y pequeños como la Tierra.
«El modelo se hizo a partir del conocimiento que tenemos. Pero el telescopio Kepler no tiene tecnología para detectar cuerpos pequeños. La muestra es muy escasa y habrá que esperar a los próximos años para que con la entrada en funcionamiento de los nuevos telescopios tengamos más datos», corrobora el astrofísico y divulgador Borja Tosar.
Creo, amigos míos, que la vida es imparable por todo el Universo, y, allí donde un planeta se sitúe en la zona habitable, el agua líquida corra rumorosa, tenga una atmósfera, reciba la radiación de su estrella y su calor… ¡La Vida estará presente!
Emilio Silvera V.
Mar
3
No, no es fácil… ¡Comprender la Naturaleza!
por Emilio Silvera ~
Clasificado en Constantes universales ~
Comments (0)

¿Cuántas veces habremos hablado aquí de las constantes de la naturaleza? Han sido muchas y todas ellas, han estado influidas por el profundo interés que en mí causan estos números misteriosos que hacen del Universo el que nosotros conocemos. Es posible, que en otros universos que pudieran ser, y, en los que las constantes fuesen diferentes a las del nuestro, hubieran nacido muertos y sin vida.
En este Universo nuestro, las constantes y el Tiempo hicieron posible que durante 10.000 millones de años las estrellas “fabricaran” el material del que están hechos los seres vivos.
Está claro que este interés que las constantes han despertado, no solo en mí, sino en muchos científicos del mundo, es que, existen muchas maneras en las que los valores reales de esas constantes ayudan a que sea posible que la vida esté presente en nuestro Universo. Más aún, a veces parece permitir su existencia por un pequeño margen. Su aumentáramos la constante de estructura fina no podría haber átomos y si hacemos mayor la fuerza de la Gravedad las estrellas agotarían sus combustibles muy rápidamente, si reducimos la intensidad de las fuerzas nucleares no habría bioquímica y así sucesivamente.
La vida se pudo formar porque las constantes de la Naturaleza son las que son y no de otra manera
Observamos la Naturaleza y no siempre la podemos comprender. Existen varias coincidencias aparentemente inusuales entre constantes de la Naturaleza no relacionadas en un nivel superficial que parecen ser cruciales para nuestra propia existencia o la de cualquier otra forma de vida concebible. Los inusuales niveles resonantes del Carbono y el Oxígeno del Proceso Triple Alfa de Fred Hoyle, son buenos ejemplos. Hay muchos otros. Cambios pequeñas en las intensidades de las diferentes fuerzas de la Naturaleza y en las masas de las diferentes partículas destruyen muchos de los equilibrios delicados que hacen posible la vida.
La fuerza nuclear fuerte “vive” en el núcleo del átomo.
“De acuerdo con la cromodinámica cuántica, la existencia de ese campo de piones que mantiene unido el núcleo atómico es solo un efecto residual de la verdadera fuerza fuerte que actúa sobre los componentes internos de los hadrones, los quarks. Las fuerzas que mantienen unidos los quarks son mucho más fuertes que las que mantienen unidos a neutrones y protones. De hecho las fuerzas entre quarks son debidas a los gluones y son tan fuertes que producen el llamado confinamiento del color que imposibilita observar quarks desnudos a temperaturas ordinarias, mientras que en núcleos pesados sí es posible separar algunos protones o neutrones por fisión nuclear o bombardeo con partículas rápidas del núcleo atómico.”
“Decaimiento β– de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón (β–) y un antineutrino electrónico.
El el Diagrama de Segrè. El color indica el periodo de semidesintegración de los isótopos radiactivos conocidos, también llamado semivida. Obsérvese que un ligero exceso de neutrones favorece la estabilidad en átomos pesados.”
“Campo eléctrico producido por un conjunto de cargas puntuales. Se muestra en rosa la suma vectorial de los campos de las cargas individuales.
La interacción electromagnética es una de las cuatro fuerzas fundamentales del universo conocido. Las partículas cargadas interactúan electromagnéticamente mediante el intercambio de fotones.”
“La gravedad es un fenómeno natural por el cual los objetos con masa son atraídos entre sí, efecto mayormente observable en la interacción entre los planetas, galaxias y demás objetos del universo. Es una de las cuatro interacciones fundamentales que origina la aceleración que experimenta un cuerpo físico en las cercanías de un objeto astronómico. También se denomina interacción gravitatoria o gravitación.”
La ley de la gravitación universal formulada por Isaac Newton postula que la fuerza que ejerce una partícula puntual con masa
sobre otra con masa
es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que las separa:”
Los distintos valores de las constantes de la Naturaleza están “escogidos” de forma bastante fortuita cuando se trata de permitir que la vida evolucione y persista. Echemos una mirada a otros ejemplos: La estructura de los átomos y las moléculas están controlada casi por completo por dos números de los que ya hemos hablado aquí alguna vez: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina α, que es aproximadamente igual a 1/137. Supongamos que permitimos que estas dos constantes cambian su valor de forma independiente y supongamos también (para hacerlo más sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué sucede al mundo si las leyes de la Naturaleza siguen siendo las mismas?
Una maravillas del Universo de la
Si deducimos las consecuencias pronto encontramos que no existe mucho espacio para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares es el pequeño valor de β el que asegura que los electrones ocupen posiciones bien definidas alrededor del núcleo atómico como en la imagen de arriba podéis contemplar y, desde luego, dichas posiciones no son porque sí, todas ellas están bien ubicadas para que todo transcurra como debe transcurrir sin que surjan anomalías que podrían impedir esa estabilidad que vemos en el átomo que forma moléculas. Si esto no fuera así, fallarían también procesos muy bien ajustados como, por ejemplo, la replicación del ADN.
El número β también desempeña un papel en los procesos de generación de energía que alimentan las estrellas. Aquí se une con α para hacer los centros de las estrellas suficientemente caliente como para inicier reacciones nucleares. Si β fuera mayor que aproximadamente 0,005 α2 entonces no habría estrellas. Si las modernas teorías gauge (cualquiera de las teorías cuánticas de campo creadas para explicar las interacciones fundamentales) de gran unificación están en la vía correcta, entonces α debe estar en el estrecho intervalo entre aproximadamente 1/180 y 1/85; de lo contrario los protones se desintegrarían mucho antes de que las estrellas pudieran formarse.
Pero… las estrellas se formaron en las Nebulosas moleculares gigantes, anomalías gravitatorias hicieron posible que surgieran grandes grumos de gas y polvo que atrajeron hacia más mucho más material, y, el núcleo densamente constituido y a grandes temperaturas hizo que surgieron los primeros brotes de luz por la fusión de los protones, así nacieron las estrellas 200 millones de años después del Nig Bang.
He recordado en este punto que tengo algún escrito por ahí con un gráfico que nos explica esto que tratamos. Su línea describe mundos en donde las estrellas tienen regiones extremas convectivas que parecen ser necesarias para formar algunos sistemas de planetas. Las regiones α y β que están permitidas y prohibidas se muestran en el gráfico que os decía y que pongo más abajo con las notas manuscritas originales.
Si en lugar de α versus β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte αF, junto con la de α, entonces a menos que αF > 0,3 α1/2, los elementos biológicamente vitales como el Carbono no existirían y no habría químicos orgánicos. No podrían mantenerse unidos. Sim aumentamos αF en sólo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo, el helio-2, hecho de dos protones y ningún neutrón, que permite reacciones nucleares directas y muy rápidas de protón + protón → helio-2.
Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si αF decreciera en aproximadamente un 10 por 100, el núcleo de Deuterio dejaría de estar ligado y se bloquearían los caminos astrofísicos nucleares hacia los elementos bioquímicos. Una vez más encontramos una región bastante pequeña en el espacio de parámetros en los que puedan existir los ladrillos básicos de la complejidad química.
Cuantas más variaciones simultáneas de otras constantes se incluyan en estas consideraciones, más restringida es la región donde la vida, tal como la conocemos. Puede existir. Es muy probable que si pueden hacerse variaciones, no todas sean independientes. Más bien, hacer un pequeño cambio en una constante podría alterar también una o más de las otras. esto tendería a hacer que las restricciones sobre la mayoría de las variaciones sean aún más rígidamente limitadas.
Hace más de doscientos mil años que la conciencia se hizo presente en el planeta Tierra al surgir en la Mente de los primeros hombres y mujeres verdaderos. Cuando evolucionados a partir de ancestros más rudimentarios, nuestra especie pudo rememorar el pasado (recordar escenas más allá del Presente atrás en el Tiempo), Cuando comenzó a plantearse preguntas que no podría contestar, En aquellos momentos que intranquilos pensamientos entraron en sus cerebros y una voz interior silenciosa les gritaba ¡Eso NO!
Llegar hasta este punto, no ha sido nada fácil y, ha sido posible gracias a que unas constantes del universo han proporcionado las condiciones bioquímicas necesarias para ello. Si las constantes fueran ligeramente diferentes, como decimos arriba, no estaríamos aquí.
Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo está directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.
Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años-luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundoshasta alcanzar una fase tecnológica avanzada.
La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.
Hemos evolucionado en muchos sentidos
Cuando a solas, pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos… hacer todo eso. y mucho más.
Sí, la Mente es una de las mayores obras del Universo, quería que lo pudiéramos comprender
que, nuestras mentes, se expanden al ritmo del Universo El Universo se expande pero, nuestras consciencias también, somos una parte integrante del todo, y como todo lo demás, evolucionamos al ritmo que el Universo nos impone, de tal manera que cada vez comprendemos con menor dificultad los mecanismos que llevan a todas las cosas a cambiar, a convertirse en otras diferentes de lo que originalmente eran, y, con el paso inexorable del Tiempo, nuestras mentes quedarán unidas, de manera inexorable, a ese todo. Entonces, y sólo entonces, podríamos decir que: ¡Tenemos el mundo en las manos!
Nuestras Mentes se desbocaron por el Universo buscando respuestas y aprendimos a pensar
Está claro que, con alguna dificultad y no con la rapidez que pudiéramos desear, vamos desvelando secretos de la Naturaleza que nos llevan a comprender la inmensidad en la que estamos inmersos y de la que formamos parte. Sabemos de qué no sabemos, y, próximamente ese conocimiento de nuestras carencias, harán posible que avancemos para vencerlas y hacer posible nuestros sueños de un mundo mejor y de un futuro en el que, la muerte del Sol, no sea un impedimento para nuestra especie que, para entonces, estará viajando entre las estrellas y habitará en otros mundos que, como la Tierra, nos ofrezca una Naturaleza de inmensa belleza que, ahora sí, sabremos respetar.
Esta imagen, ubicada en el corazón de la Sierra Macarena, el río Caño Cristales en Colombia es considerado el más bello del mundo debido a los magníficos tonos que refracta, producto de los alucinantes colores de las algas que crecen en el fondo y del agua cristalina. Pero, no nos equivoquemos, como esta belleza existen ¡tantas en nuestra Tierra!
Los 20 lugares más espectaculares del mundo – Skyscanner
- Géiser Fly, Nevada, Estados Unidos. …
- Gran agujero azul, Belice. …
- Los lagos de Plitvice, Croacia. …
- Las montañas de colores de Zhangye Danxia, China. …
- Icebergs con rayas de colores, Antártida. …
- La puerta al Infierno de Darvaza, Turkmenistán. …
- Étretat y la Costa de Albatre, Francia.
Estas son solo una pequeña muestra
Rincones de nuestro mundo que, con su simple contemplación, nos influye en los sentidos, nos transporta, nos eleva y, nos acerca a la Naturaleza de la que, ineludiblemente formamos parte y de ella pudimos surgir mediante los tránsitos de fase que sufrió la materia en las en las estrellas para crear, aquellos ladrillos químico-biológicos que, fueron posibles gracias a que las constantes universales marcaron los límites para que así fuese posible.
emilio silvera