jueves, 09 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Hiperdimensionalidad! ¡Qué cosas nos cuentan!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El modelo estándar | Lleida.comHadrón - Wikipedia, la enciclopedia libre

https://www.youtube.com/watch?v=4FQzg6HDRfA&t=86s

 

 

Neurociencia: Descifrando los Secretos del Cerebro Humano

         El cerebro tiene secretos que… ¡Nunca nos contará!

Neurociencia: Descifrando los Secretos del Cerebro Humano

 

La complejidad de la mente: “El cerebro recuerda lo que queremos según el  estado de ánimo”
Maravillar a los lectores con la complejidad de la mente humana es uno de los objetivos que la neuróloga catalana Isabel Güell persigue en su libro “Un mundo extraño”, en el que revela que “el cerebro no es una grabadora, sino un mecanismo mucho más imaginativo; organizado para recordar lo que queremos y olvidar el resto”.

La neurociencia, un campo multidisciplinario que estudia el sistema nervioso y el funcionamiento del cerebro humano, ha estado en constante evolución a lo largo de los años. A medida que avanzamos en nuestra comprensión de este órgano increíblemente complejo, descubrimos secretos y misterios que han desconcertado a la humanidad durante siglos.

                         Afganistán: vimana del “Pozo de Tiempo” | Este blog se mudoOM OD: El Misterio de los Vimanas en el Desierto de Afganistán

                                               Vimana, un pozo de tiempo en Afganistán

                   El Misterio de los Vimanas en el Desierto de Afganistán

El 21 de diciembre de 2010 científicos estadounidenses descubrieron “un vimana atrapado en un pozo del tiempo“ (un campo gravitatorio electromagnético, que sólo puede ocurrir en una dimensión invisible del espacio) en la ciudad de Balkh, Afganistán, lugar que alguna vez Marco Polo catalogó como “una de las ciudades más nobles y grandiosas” del mundo”.

 

Los intentos por retirar el misterioso Vimana de la cueva donde había estado oculto durante por lo menos 5.000 años, causaron la “desaparición” de por lo menos 8 soldados norteamericanos, atrapados por el vórtex temporal ( nuestros cuerpos no pueden desplazarse como si nada del presente al futuro y del futuro al pasado sin cargarse el peso destructivo de las leyes de la física, salvo si se logra bloquear el campo magnético, algo que aparentemente los científicos norteamericanos tardaron ocho cadáveres en descubrir y solucionar, probablemente con jaulas de Faraday ).

 

La existencia de este tipo de fenómenos no está demostrado por los científicos (caso contrario estaríamos hablando de leyes), pero los físicos teóricos coinciden en general que podrían ser posibles si se acepta la teoría del Multi-universo (un universo de por lo menos 11 dimensiones espaciotemporales) como estructura lógica y matemática. Atravesando esa especie de plasma líquido, nos podríamos trasladar a otros mundos, a otras galaxias.

 

Theodor Kaluza, ya en 1921 conjeturaba que si ampliáramos nuestra visión del universo a 5 dimensiones, entonces no habría más que un solo campo de fuerza: la gravedad, y lo que llamamos electromagnetismo sería tan sólo la parte del campo gravitatorio que opera en la quinta dimensión, una realidad espacial que jamás reconoceríamos si persistiéramos en nuestros conceptos de realidad lineal, similar a un holograma.

Bueno, independientemente de que todo esto pueda ser una realidad, lo cierto es que, nosotros, ahora en nuestro tiempo, hablamos de un universo con más dimensiones y, la carrera de las más altas dimensiones la inicio (como arriba se menciona) en el año 1919 (no el 1921) por Theodor Kaluza, un oscuro y desconocido matemático,  cuando le presentó a Einstein mediante un escrito una teoría unificada que podía unificar, las dos grandes teorías del momento, la Relatividad General con el Magnetismo y podía realizarse si elaboraba sus ecuaciones  en un espacio-tiempo de cinco dimensiones.

 

Resultado de imagen de La quinta dimensión de Kaluza

 

Así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:

 

Resultado de imagen de Oskar Klein

                     Klein

Así que, como hemos dicho, ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.

Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.

 

 

Einstein al principio se burló de aquella disparatada idea pero, más tarde, habiendo leído y pensado con más atenci`´on en lo que aquello podía significar, ayudó a Kaluza a publicar su idea de un mundo con cinco dimensiones (allí quedó abierta la puerta que más tarde, traspasarían los teóricos de las teorías de más altas dimensiones). Algunos años más tarde, , el físico sueco Oskar Klein publicó una versión cuántica del artículo de Kaluza. La Teoría Kaluza-Klein que resultó parecía interesante, pero, en realidad, nadie sabía que hacer con ella hasta que, en los años setenta; cuando pareció beneficioso trabajar en la supersimetría, la sacaron del baúl de los recuerdos, la desempolvaron y la tomaron como modelo.

Pronto, Kaluza y Klein estuvieron en los labios de todo el mundo  (con Murray Gell-Mann, en su papel de centinela lingüistico, regañando a sus colegas que no lo sabían pronunciar “Ka-wu-sah-Klein”.

 

                           

                  Pero, ¿Existen en nuestro Universo dimensiones ocultas?

Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mayores dimensiones, las cuerdas tenian un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la Teoría de cuerdas sólo sería eficaz, en dos, diez y veintiseis dimensiones, y sólo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta hacia algo tan tajante, los científicos prestan atención, y a finales de los años ochenta había decenas de ellos que trabajaban en las cuerdas. Por aquel entonces, quedaba mucho trabajo duro por hacer, pero las perspectivas era brillantes. “Es posible que las décadas futuras -escribieron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten- sea un excepcional período de aventura intelectual.” Desde luego, la aventura comenzó y, ¡qué aventura!

 

El mundo está definido por las Constantes adimensionales de la Naturaleza que hace el Universo que conocemos

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Puesto que el radio de compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de Planck Mp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.

¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?

 

Desintegración beta - Wikipedia, la enciclopedia libre

 

En este proceso llamado desintegración beta y debido a la interacción débil, un neutrón se transforma en un protón, un electrón y un antineutrino electrónico cuando uno de los quarks del neutrón emite una partícula W–. Aquí queda claro que el término “interacción” es más general que “fuerza”; esta interacción que hace cambiar la identidad de las partículas no podría llamarse fuerza (todo representado en uno de los famosos diagramas de Feynman).

 

Diagrama de Feynman y ecuación de la desintegración β del muón por medio del bosón W − extraido de [12]  

Diagrama de Feynman y ecuación de la desintegración β del muón por medio del bosón W

La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cinco dimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-KleinYang-Mills en el que el espacio extra contenía más de una dimensión.

El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.

 

Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.

Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión super-simétrica de la Relatividad General es lo que se conoce como super-gravedad (supersimetría local).

 

 

Joël Scherk (1946-1980) (a menudo citado como Joel Scherk) fue un francés teórico físicoque estudió la teoría de cuerdas ysupergravedad[1] .Junto con John H. Schwarz , pensaba que la teoría de cuerdas es una teoría de la gravedad cuántica en 1974.En 1978, junto con Eugène Cremmer y Julia Bernard , Scherk construyó el lagrangiano y supersimetría transformaciones parasupergravedad en once dimensiones, que es uno de los fundamentos de la teoría-M .

 

Teoria M

Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la supergravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.

No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.

 

Gabriele Veneziano - Wikipedia, la enciclopedia libre

 

El origen de la teoría de supercuerdas data de 1968, cuando Gabriele Veneziano introdujo los modelos duales en un intento de describir las amplitudes de interacción hadrónicas, que en aquellos tiempos no parecía provenir de ninguna teoría cuántica de campos del tipo de la electrodinámica cuántica. Posteriormente, en 1979, Yaichiro Nambu, Leonard Susskind y Holger Nielsen demostraron de forma independiente que las amplitudes duales podían obtenerse como resultado de la dinámica de objetos unidimensionales cuánticos y relativistas dando comienzo la teoría de cuerdas.

En 1971, Pierre Ramona, André Neveu y otros desarrollaron una teoría de cuerdas con fermiones y bosones que resultó ser supersimétrica, inaugurando de esta forma la era de las supercuerdas.

 

      David Jonathan Gross

Sin embargo, en 1973 David Gross, David Politzer y Frank Wilczek descubrieron que la Cromodinámica Cuántica, que es una teoría de campos gauge no abeliana basada en el grupo de color SU(3)c, que describe las interacciones fuertes en términos de quarks y gluones, poseía la propiedad de la libertad asintótica. Esto significaba que a grandes energías los quarks eran esencialmente libres, mientras que a bajas energías se encontraban confinados dentro de los hadrones en una región con radio R de valor R ≈ hc/Λ ≈ 10-13 cm.

Dicho descubrimiento, que fue recompensado con la concesión del Premio Nobel de Física a sus autores en 2.004, desvió el interés de la comunidad científica hacia la Cromodinámica Cuántica como teoría de las interacciones fuertes, relegando casi al olvido a la teoría de supercuerdas.

 

Resultado de imagen de Cuerdas abiertas, cerradas, lazosResultado de imagen de Cuerdas abiertas, cerradas, lazos

 

Se habla de cuerdas abiertas, cerradas o de lazos, de p branas donde p denota su dimensionalidad (así, 1 brana podría ser una cuerda y 2.Brana una membrana) o D-Branas (si son cuerdas abiertas) Y, se habla de objetos mayores y diversos que van incorporados en esa teoría de cuerdas de diversas familias o modelos que quieren sondear en las profundidades del Universo físico para saber, como es.

En la década de los noventa se creó una versión de mucho éxito de la teoría de cuerdas. Sus autores, los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohn, a quienes se dio en llamar el cuarteto de cuerdas de Princeton.

 

Teoría de cuerdas heteróticas sin supersimetría - La Ciencia de la Mula  Francis

                                                 La cuerda Heterótica

El de más edad de los cuatro, David Gross, hombre de temperamento imperativo, es temible en los seminarios cuando al final de la charla, en el tiempo de preguntas, con su inconfundible vozarrón dispara certeros e inquisidoras preguntas al ponente. Lo que resulta sorprendente es el hecho de que sus preguntas dan normalmente en el clavo.

Gross y sus colegas propusieron lo que se denomina la cuerda heterótica. Hoy día, de todas las variedades de teorías tipo Kaluza-Klein que se propusieron en el pasado, es precisamente la cuerda heterótica la que tiene mayor potencial para unificar todas las leyes de la naturaleza en una teoría. Gross cree que la teoría de cuerdas resuelve el problema de construir la propia materia a partir de la geometría de la que emergen las partículas de materia y también la gravedad en presencia de las otras fuerzas de la naturaleza.

Resultado de imagen de Ecuaciones de campo de la relatividad general

Como por arte de magia, las ecuaciones de campo de la Teoría de la relatividad, emergen, sin que nadie las llame, cuando los físicos desarrollan las matemáticas de la Teoría de cuerdas. ¿Por qué será?

El caso curioso es que, la Relatividad de Einstein, subyace en la Teoría de cuerdas, y, si eliminamos de esta a aquella y su geometría de la Gravedad…todo resulta inútil. El gran Einstein está presente en muchos lugares y quizás, más de los que nos podamos imaginar.

Es curioso constatar que si abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió atraído inicialmente hacia la teoría de cuerdas. En 1.982 leyó un artículo de revisión de John Schwarz y quedó sorprendido al darse cuenta de que la gravedad emerge de la teoría de supercuerdas a partir solamente de los requisitos de auto consistencia. Recuerda que fue “la mayor excitación intelectual de mi vida”.

 

Las diez frases reales de Albert Einstein que han pasado a la Historia

Allá donde esté el viejo Einstein, sonreirá al ver que llevaba razón en todo

Gross se siente satisfecho pensando que Einstein, si viviera, disfrutaría con la teoría de supercuerdas que sólo es válida si incluye su propia teoría de la relatividad general, y amaría el hecho de que la belleza y la simplicidad de esa teoría proceden en última instancia de un principio geométrico, cuya naturaleza exacta es aún desconocida.atividad general de Einstein. Nos ayuda a estudiar las partes más grandes del Universo, como las estrellas y las galaxias. Pero los elementos diminutos los átomos y las partículas subatómicas se rigen por unas leyes diferentes denominadas mecánica cuántica.

 

Una explosión de <a href=

 

Claro que, como todos sabemos, Einstein se pasó los últimos treinta años de su vida tratando de buscar esa teoría unificada que nunca pudo encontrar. No era consciente de que, en su tiempo, ni las matemáticas necesarias existían aún. En la historia de la física del siglo XX muchos son los huesos descoloridos de teorías que antes se consideraban cercanas a esa respuesta final que incansables buscamos.

Hasta el gran Wolfgang Pauli había colaborado con Heisenberg en la búsqueda de una teoría unificada durante algún tiempo, pero se alarmó al oír en una emisión radiofónica como Heisenberg decía: “Está a punto de ser terminada una Teoría unificada de Pauli-Heisenberg, en la que sólo nos queda por elaborar unos pocos detalles técnicos.”

 

Wolfgang Pauli ETH-Bib Portr 01042.jpg

            Wolfgang Pauli

Enfadado por lo que consideraba una hipérbole de Heisenberg que se extralimitó con aquellas declaraciones en las que lo involucraba sin su consentimiento,  Pauli envió a Gamow y otros colegas una simple hija de papel en blanco en la que había dibujado una caja vacía. Al pie del dibujo puso estas palabras: “Esto es para demostrar al mundo que yo puedo pintar como Tiziano. Sólo faltan algunos detalles técnicos.”

Los críticos del concepto de supercuerdas señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría aún  no había repetido siquiera los logros del Modelo Estándar, ni había hecho una sola predicción que pudiera someterse a prueba mediante el experimento. La Supersimetría ordenaba que el Universo debería estar repleto de familias de partículas nuevas, entre ellas los selectrones (equivalente al electrón super-simétrico) o el fotino (equivalente al fotón).

 

Fotones y electrones 'dialogan' en la nanoescala. Asturias MundialSimetrías de las fuerzas y la materia | Instituto de Física Corpuscular

Lo cierto es que, nada de lo predicho ha podido ser comprobado “todavía” pero, sin embargo, la belleza que conlleva la teoría de cuerdas es tal que nos induce a creer en ella y, sólo podemos pensar que no tenemos los medios necesarios para comprobar sus predicciones, con razón nos dice E. Witten que se trata de una teoría fuera de nuestro tiempo, las supercuerdas pertenecen al futuro y aparecieron antes por Azar.

Y, a todo esto, ¿Dónde están esas otras dimensiones?

emilio silvera

Lo que no induce a duda alguna… ¡Es nuestra Ignorancia!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Seguimos ante las dudas que no podemos despejar, nos faltan conocimientos y medios para ello. Mientras tanto, seguiremos especulando, creando teorías e imaginando lo que pudo pasar.

Ya decía el Filósofo: “Cuanto más profundizo en el conocimiento de las cosas, más consciente soy de lo poco que se. Mis conocimientos son limitados, mi ignorancia infinita.”

¿Qué puede existir dentro de un agujero Negro?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestro contertulio y amigo Kike, en uno de sus comentarios nos viene a comunicar la noticia que ha dado algún medio sobre un hecho insólito: “Un científico dice haber demostrado que dentro de los agujeros negros se forman grandes cantidades de estrellas”. La Incredulidad fue lo primero que sentí cuando leí tal cosa.

 

Representación gráfica del agujero negro GRO J1655-40, en el Sistema Solar

Siempre creí que los A. N. se “comían” a las estrellas vecinas pero, no que dentro de ellos se formaran

Si pensamos un poco en el interior de los agujeros negros, encontramos un lugar en el que, los físicos, han machacado sus sesos luchando con las ecuaciones de Einstein de la  Relatividad General, para buscar el secreto mejor guardado del Universo, ya que, nada que haya entrado en uno de estos exóticos objetos ha podido nunca salir para contarnos lo que allí pueda existir. Unos creen que podríamos encontrar un camino hacia otro universo y, lo más probable es que encontremos una singularidad con gravedad de marea infinita. Es decir, el fin del espacio y del tiempo, el nacimiento de la espuma cuántica.

 

Resultado de imagen de Espuma cuántica

 

“Recientemente, a partir de la observación del comportamiento de los fotones procedentes de los rayos cósmicos, se han obtenido límites para la granularidad del espacio-tiempo, y se ha encontrado que en escalas en las que ya deberían observarse trazas de la espuma cuántica, éste se muestra completamente suave. A la espera de más resultados de este tipo, pues aún son preliminares, surgen preguntas apasionantes. ¿De confirmarse la suavidad del espacio-tiempo implicaría que la mecánica cuántica no se aplica a los campos gravitatorios? ¿Es la escala de Planck inadecuada para resolver la espuma cuántica, y por qué es así, pues la deducción se basa en principios fundamentales bien establecidos? ¿Qué falla entonces en nuestros modelos?

 

Agujero negro de M87

“Los agujeros negros han sido unos de los fenómenos astronómicos más intrigantes y atractivos durante más de un siglo, cautivando nuestra imaginación con su física extrema y el hecho de que lo que entra nunca sale. Pero estos socavones cósmicos han empezado a cobrar importancia recientemente, gracias a la imagen del EHT, así como a estudios ganadores del Nobel sobre objetos que se mueven alrededor del agujero negro supermasivo en el núcleo de la Vía Láctea y el caudal de información derivado de la observación de colisiones de agujeros negros.”

 

Captada la primera imagen de un agujero negro y su chorro de ...

Esta es la primera imagen captada de un agujero negro pero… ¡Del interior…!

No sabemos en realidad lo que puede existir dentro de un agujero Negro. ¿Cómo poder saberlo? sabemos que ninguna señal puede salir nunca de un lugar como ese para poder darnos la respuesta. sea lo que fuese que pudiera existir allí dentro, nunca podrá, ningún intrépido viajero,  volver al exterior para contarnos tal maravilla, un lugar de infinita curvatura y densidad, allí donde el tiempo deja de existir, un lugar que lo que pueda contener nunca podrá influir en nuestro Universo, toda vez que allí estará confinado para siempre.

 

Qué pasaría si fueses succionado hacia un agujero negro? - Quora

No mtiene que ser agradable caer en un Agujero Negro, el efecto espagueti será muy doloroso

Está claro que la curiosidad que llevamos con nosotros, no puede quedar satisfecha con éstas sencilla explicaciones, necesita más argumentación para poder comprender, a ciencia cierta, lo que en el agujero negro se pueda esconder. sin embargo, John Archibal wheeler nos enseñó la importancia de la búsqueda para comprender el “corazón” de un agujero Negro.  Él creía  que el estado final de la materia dentro del agujero Negro, lo que quedaba después de la Implosión de una estrella masiva, era el “Santo Grial” de la física teórica, un conocimiento tan valioso que nos podría llevar a la comprensión final de lo que la materia es.

Intenso campo magnético de agujero negro supermasivo

 

Astrónomos de la Universidad Tecnológica Chalmers han utilizado el telescopio gigante Alma para revelar un extremadamente poderoso campo magnético muy cerca de un agujero negro supermasivo en una galaxia distante. Los resultados aparecen en la edición del 17 de abril de 2015 de la revista Science.
Claro que hablar de agujeros negros sería incomprensible sin escuchar lo que nos decía sobre ellos algunos físicos que dedicaron su vida al estudio de estos extraños objetos cosmológicos. J. Robert Oppenheimer fue el que nos dijo que la singularidad quedaba oculta por el Horizonte de sucesos, y, de esa manera, el interior del agujero quedaba oculto desde el exterior.
Representación de una estrella, el chorro de materia que va hacia el agujero negro y el disco que se forma en torno a este
Lo cierto es que, de lo que no podemos tener ninguna duda es del hecho cierto de que, la fuerza gravitatoria generada por la Singularidad del agujero negro, es tan potente que atrae hacia sí el material circundante que engulle y se hace cada vez mayor.
Está claro que cuando hablamos de los agujeros negros lo hacemos de algo que aún esconde muchos misterios, lo que sucede cuando se forma un agujero negro es muy semejante a lo que dicen que sería el final del universo mediante el Big Crunch, es decir, todo el material de una estrella masiva al final de su vida, al quedar sin material nuclear de fusión que está agotado, se queda a merced de la gravedad e implosiona sobre sí misma, de manera tal que su ingente masa se va contrayendo más y más hasta el punto de que desaparece literalmente de nuestra vista, se ha convertido en una singularidad de energía y densidad infinitas, la curvatura cierra el círculo y el tiempo desaparece.
“Para conservar la “monogamia” cuántica, Polchinski sugirió que el enlazamiento agujero negro-fotón se rompe. Esto produce un muro de energía en el horizonte de sucesos del agujero negro que echa por tierra la relatividad debido a que cualquiera que caiga se quemaría en lugar de volverse espagueti. Bienvenido a la paradoja del muro de fuego (“firewall”) del agujero negro.

Abundan las posibles soluciones, pero ahora dos físicos, Juan Maldacena del Instituto de Estudio Avanzado en Princeton, y Leonard Susskind de la Universidad Stanford, California, han presentado una más audaz: una nueva clase de agujero de gusano en que el enlazamiento no necesita romperse. “
           Nobel de Física: qué es la singularidad, el corazón de los agujeros negros  donde se rompen todas las leyes conocidas de la naturaleza - BBC News Mundo
La Singularidad del Agujero Negro es su “corazón”, y, allí se rompen todas las leyes de la Naturaleza, el Espacio se curva hasta el infinito y el Tiempo se detiene.
Cuando la estrella Implosiona bajo el peso de su propia masa y la fuerza gravitatoria que ésta genera, se crea un horizonte de sucesos alrededor del agujero negro en formación, la estrella esférica original sigue implosionando, inexorablemente, hasta alcanzar la densidad infinita y el volumen cero, después de lo cual crea y se funde en una singularidad espacio-temporal.
La singularidad es una región donde -según las leyes de la relatividad- la curvatura del espacio-tiempo se hace infinitamente grande y el espacio-tiempo deja de existir. Puesto que la gravedad de marea es una manifestación de la curvatura espacio-temporal. Así, podemos decir que una singularidad es también una región de gravedad de marea infinita, es decir, una región en donde la gravedad ejerce un tirón infinito sobre todos los objetos a lo largo de algunas direcciones y una compresión infinita a lo largo de otras.
                    El teorema de singularidad de Penrose de 1965 - La Ciencia de la Mula  Francis
“En 1965 se cumplían 50 años del nacimiento de las ecuaciones de Einstein para la gravitación. Penzias y Wilson publicaron el descubrimiento de la radiación cósmica de fondo (Nobel 1978) y Penrose publicó su famoso teorema de la singularidad en relatividad general (Nobel 2020). Las singularidades, resultado de la existencia de curvas geodésicas incompletas, son una predicción robusta; como lo es la aparición de superficies atrapadas cerradas (compactas y sin borde) y, con ellas, los agujeros negros.”
Fuente: La Ciencia de la Mula Francis
Después de estas sencillas explicaciones, mal podemos comprender lo que dice el científico del que nos habla Kike en su comentario ¡formar estrellas en el interior de un agujero negro! La idiosincrasia del agujero lo impide.
Me gustaría seguir y hacer mucho más largo el trabajo sobre el apasionante tema de los agujeros negros y lo que de ellos podemos esperar pero, sinceramente creo que, encontrar en su interior cúmulos de estrellas… No parece lo más acertado.
emilio silvera

Las galaxias y la Vida… ¡Reducen la entropía!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

        La Tierra, un planeta lleno de seres vivos a los que conocer y respetar |  Ciencia Fácil - Blogs hoy.es

     Estamos en un planeta lleno de vida y tal maravilla se nos olvida con frecuencia. ¿Por qué en nuestro planeta hay vida y no la hay en ningún otro del sistema solar? · ¿Todos los seres vivos son iguales?

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos inter-glaciales, así como las extinciones masivas).

 

Cuántas glaciaciones ha tenido la Tierra y los humanos podrían vivir una? -  La Tercera

 

En un sentido real, la Tierra es el lugar que alberga una red de vida multiforme, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

 

                               

            La vida es un signo de entropía negativa cuando se replica

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Ahora, parece que han recapacitado y han enviado a Marte y otros lugares de nuestro entorno, una pléyade de ingenios que ya nos han enviado datos de imágenes de cómo son otros mundos y de las posibilidades que en ellos pueden existir de que la vida esté presente. De momento han encontrado hielo de agua, han diluido porciones de la tierra marciana en agua y debidamente tratada, han hallado la presencia de magnesio, sodio, potasio y cloruros.

 

Hay vida en Titán? La NASA apunta a explorar la luna de Saturno

 

En algunos lugares, como Titán, por ejemplo,  hay más que evidencia de agua porque las sales están allí con otros elementos esperanzadores y una atmósfera prometedora. Además han encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de estos lugares (también Marte) es que no son un mundos extraños, sino que, en muchos aspectos, son iguales que la Tierra fue en el pasado o podrá ser en el futuro. Por eso es importante que los estudiémos.

 

Hot Springs at Yellowstone National Park (animated GIF image) | Yellowstone,  Scenery, Photo reference

 

                                   En alguna ocasión me he referido al comentario que hizo Darwin:

“… los materiales primigenios… en alguna pequeña charca caliente, tendrían la oportunidad de hacer el y organizarse en sistemas vivos…”

 

Encuentran un nuevo sistema de tres exoplanetas con un potencial mundo  habitable

 

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo,  es difícil no conjeturar que allí, junto a esos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas, incluso desconocidas para nosotros como ocurre aquí mismo en nuestro planeta.

 

Identifican más de 100 planetas gigantes que pueden tener lunas habitables

https://www.facebook.com/Ecoosfera/videos/las-super-tierras-existen-y-podr%C3%ADan-ser-mejores-para-la-vida-que-nuestro-planeta/184824347774016/

                                                  Se han identificado cientos de planetas gigantes

Supertierras que son fáciles de detectar por sus grandes masas pero, los planetas terrestres también están por ahí, orbitando a miles y miles de estrellas y a la distancia adecuada poder contener la vida. Los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON). Están ahí, dispersos por las Nebulosas que forman sus materiales en estrellas y mundos.

 

                       

 

Lee Smolin, de la Universidad de Waterloo,  Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas y mundos.

Nuestro hogar dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas – de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por doscientos mil millones de estrellas que describen órbitas en torno al centro del disco.

Desprendiéndose una Protuberancia Solar |

                                      Desprendiéndose una Protuberancia Solar

El Sol, en realidad, sólo es importante para nosotros al ser el cuerpo central de nuestro Sistema Solar, y con mucho, la estrella más cercana al planeta Tierra y la única que se puede estudiar con todo lujo de detalles. Se clasifica como una estrella G2V: una estrella amarilla con una temperatura efectiva de 5.770 K ( espectral G2) y una enana de la secuencia principal (clase de luminosidad V). Los detalles de su composición son sobradamente sabidos por todos y cabe destacar su abundancia de hidrógeno – 71% en masa- y de helio el 27% y elementos más pesados hasta completarlo. Por lo tanto, nuestro Sol no destaca por nada entre esa multitud de de cientos de miles de millones de estrellas.

 

                                   

 

Recorre su órbita a una distancia del centro que viene a ser más o menos dos tercios del diámetro. En el centro de la Galaxia las estrellas forman una protuberancia, de tal modo que desde el exterior daría la sensación de estar viendo un enorme huevo frito, en el que la protuberancia sería la yema. Sin embargo, el modo en que este disco gira revela que todo el material brillante (materia bariónica) que compone la parte visible de la Vía Láctea queda sujeto por el tirón gravitatorio que la propia masa galáctica genera. Otros hablan de una materia invisible que no brilla ni emite radiación y que viene a ser más o menos diez veces mayor que la materia visible de la Galaxia y que suponen diseminada en un halo situado alrededor de ella, extendiéndose mucho más allá del borde del disco de estrellas brillantes.

¿Qué es la materia oscura?

La nueva teoría sobre la materia oscura: viene de una quinta dimensión y usa un 'puente' para llegar al universo visible

          Dicen que permea todo el Universo pero no se ve

Esto te puede resultar sorprendente, pero no sabemos de qué está compuesta la mayor parte del universo. En serio, no lo sabemos. Seguramente estás pensando: “¡Pero, por supuesto que sabemos! ¡Está compuesto de galaxias, estrellas, planetas, agujeros negros, cometas, asteroides y todas esas cosas interesantes del espacio!”

Sí, existen muchas cosas interesantes en el espacio, pero si sumamos todo, es una porción muy pequeña de todo el universo. Hay mucho más por conocer. Y no podemos comprender con exactitud de qué se trata.

 

una galaxia que dice: 'Mm, bueno, eso es un tanto extraño'.
 

Cuando los científicos estudian nuestro universo, observan que se está expandiendo. Pero si el universo solo estuviera compuesto de galaxias, estrellas, planetas y demás cosas que ya conocemos, no debería estar expandiéndose. Hay algo más allá afuera. Tiene que haber una energía que está haciendo que el universo se expanda. Es solo que no sabemos qué es esa energía. Tampoco sabemos de dónde proviene. Pero sí sabemos que está allí. Los científicos denominan a esta energía energía oscura.

 

Detectan una posible 'estrella oscura' que puede resolver el gran misterio del universo

 

Descubrir qué es realmente esta materia oscura (si existe, yo prefiero llamarla no luminosa o materia escondida) constituye un tema de crucial interés para los astrónomos, pero no entraremos en eso, ya que, para lo que estamos tratando, no tiene importancia. Muchas galaxias en forma de disco se caracterizan por una especie de serpentinas que se alejan en espiral desde su centro, lo que hace que se les aplique el nombre de galaxias espirales. Es fácil estudiar las pautas que siguen los llamados “brazos espirales”, porque las galaxias se encuentran relativamente cerca unas de otras, si comparamos estas distancias con sus tamaños.

 

      Una fuerza misteriosa hace que las figuras se repitan en las formas de los objetos

Andrómeda (que no es la que arriba vemos), la galaxia espiral más cercana comparable a la Vía Láctea, se encuentra con respecto a nosotros a una distancia de poco más de dos millones de años luz; parece una gran distancia, pero la galaxia de Andrómeda es tan grande (un poco mayor que la Vía Láctea) que, incluso a esa distancia, vista desde la Tierra cubre un trozo de cielo del tamaño de la Luna, y puede observarse a simple vista en una noche despejada y sin luz lunar, si nos situamos lejos de las ciudades y de otras fuentes de emisión de luz.

Los brazos espirales, que son una característica tan llamativa en galaxias como la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa.

 

 [M42 - La Gran Nebulosa de Orión]

                                                                              La hermosa Orión

No hay misterio alguno en cuanto al modo en que mantienen esa forma espiral. Se debe exclusivamente a un fenómeno de retroalimentación.  Las nubes gigantescas a partir de las cuales se forman las estrellas pueden contener hasta un millón de veces la masa del Sol cuando empieza a contraerse gravitatoriamente para formar estrellas. Cada nube que se contrae produce, no una sola estrella de gran tamaño, sino todo un conglomerado de estrellas, así como muchas estrellas menores. Cuando las estrellas brillantes emiten luz, la energía de esta luz estelar (especialmente en la parte ultravioleta del espectro) forma una burbuja dentro de la nube, y tiende a frenar la formación de más estrellas. Sin embargo, una vez que las estrellas de gran masa han recorrido sus ciclos vitales y han explotado, sembrando además el material interestelar con elementos de distintos tipos, la onda expansiva ejerce presión sobre las nubes interestelares cercanas y hace que éstas comiencen a contraerse.

 

Las ondas procedentes de distintas supernovas, al entrecruzarse unas con otras, actúan mutuamente barrer el material interestelar y formar nuevas nubes de gas y polvo que se contraen produciendo más estrellas y supernovas, en un ejemplo clásico de interacción que se mantiene por sí sola en la que intervienen una absorción de energía (procedentes de las supernovas) y una retroalimentación.

Si la nube es demasiado densa, su interna se contraerá gravitatoriamente de manera rápida, formando unas pocas estrellas grandes que recorren sus ciclos vitales rápidamente y revientan la nube en pedazos antes de que puedan formarse muchas estrellas. Esto significa que la generación siguiente de estrellas nace de una nube más delgada, porque ha habido pocas supernovas que barrieran material formando pedazos densos. Si la nube es tan delgada que su densidad queda por debajo de la densidad óptima, nacerán muchas estrellas, y habrá gran cantidad de explosiones supernovas, lo cual producirá gran número de ondas de choque que barrerán el material interestelar, acumulándolo en nubes más densas.

 

     Sí, siento debilidad por esta Nebulosa que, para los astrónomos, es un gran laboratorio espacial

De esta manera, por ambas partes, las retroalimentaciones operan para mantener un equilibrio aproximadamente constante entre la densidad de las nubes y el de supernovas (y estrellas de tipo Sol) que se producen en cada generación. La propia pauta espiral resulta del hecho de que la galaxia realiza movimiento de rotación y está sometida al tirón gravitatorio que crea la fuerza de marea proveniente de esa materia no luminosa.

Claro que, la materia interestelar es variada. Existen nubes de gas y polvo fríos, que son ricas en interesantes moléculas y se llaman nubes moleculares gigantes; a partir de estas nubes se forman nuevas estrellas (y planetas). Hay nubes de lo que consideraríamos gas “normal”, formadas por átomos y moléculas de sustancias tales como el hidrógeno, y quizá tan caliente como una habitación cerrada toda la noche y con la temperatura de dos cuerpos dormidos y emitiendo calor. Además, hay regiones que se han calentado hasta temperaturas extremas mediante la energía procedente de explosiones estelares, de tal modo que los electrones han sido arrancados de sus átomos formar un plasma cargado de electricidad.

 

La densidad de materia entre las estrellas es escasa, dado que estas la absorbieron y la que había están convertidas en cuerpos homogéneos que brillan y generan calor transformando el material más sencillo en otro más complejo y pesado. También, alrededor de estas estrellas se forman los mundos.

Dentro del medio interestelar las densidades varían. En la modalidad más común, la materia existente las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, pocos investigadores destacaron allá por 1.990 en que todos estos aspectos –composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

 

Cómo la Vía Láctea consiguió sus brazos espirales | Astrobites en español

 

Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

Creo que llevan toda la razón. También la Tierra, como sistema cerrado, es “un sistema vivo” (Gaia) que, se recicla y renueva mediante los fenómenos naturales que podemos ahora contemplar y, hasta comprender.

 

Gliese 876 b - Wikipedia, la enciclopedia libre

Imagen artística del sistema planetario Gliese 876. Dos planetas gigantes orbitan la estrella (Imagen de Lynette Cook)

Algunas veces nos preguntamos por qué las cosas son como son y si, cuando obtenemos una respuesta en términos de algún principio científico, seguimos preguntando: ¿por qué ese principio es verdadero? y, si como un crio maleducado, insistimos una y otra vez, preguntando ¿por qué?, ¿por qué?, ¿por qué?, entonces, más tarde o más temprano, alguien nos llamará reduccionista. Algunas personas otorgan diferentes sentidos a esa palabra, sin embargo, supongo que una característica común de la idea que todo el mundo tiene del reduccionismo es un sentido de jerarquía, de que algunas verdades son menos fundamentales que otras a las que las anteriores pueden ser reducidas, como la la química puede ser reducida a la física.

 

Que es C.H.O.N? by Ana Berenice Valdez Mallida

 

Antes comentaba sobre los elementos más abundantes del Universo: Carbono, Hidrógeno, Oxígeno y Nitrógeno (CHON), y os decía que Lee Smolin, de la Universidad de Waterloo, Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas, nuevos mundos y… ¡nuevas formas de vida!

emilio silvera

La Tierra primigenia

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los estudios que se han realizado acerca del “nacimiento” de la Tierra, nos ha llevado a tener una idea aproximada de lo que pudo pasar. En aquel Tiempo, nosotros aún no estábamos aquí, faltaría mucho Tiempo para ello, y, por lo tanto, la presencia de un cronista que nos contara los hechos estaba ausente. Nos hemos valido de la Ciencia que utilizó las disciplinas especiales para saber lo que posiblemente pasó. Aquí nos hacen un resumen de lo que se estima que pudo suceder.