miércoles, 12 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Física relativista, la cuántica y… ¡El futuro!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

                        File:Spacetime curvature.png

Esta es una analogía bidimensional de la distorsión del espacio-tiempo debido a un objeto de gran masa

            Hay que entender que el espacio-tiempo es la única descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que sucesos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.

 

Una representación del paraboloide de Flamm, cuya curvatura geométrica coincide con la del plano de la eclíptica o ecuatorial de una estrella esféricamente simétrica

 

Resultado de imagen de La teoría cuántica de campos en espacio-tiempo curvo

 

          El tiempo puede ser medido, por tanto, de manera relativa, como los son las posiciones en el espacio tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

 

                                          El Espacio-Tiempo se curva entorno al Observador | Textos Científicos

                                El Espacio-Tiempo se curva entorno al Observador

  Einstein descubrió que la presencia de la masa curvaba al espacio-tiempo pero lo demostró en la relatividad general con un observador que se mueve igual que en la relatividad especial es decir, se mueve en un espacio-tiempo plano. En este artículo, además de confirmar la curvatura que origina la masa, se demuestra además que la presencia de un observador origina también a su alrededor la curvatura del espacio-tiempo, quien entonces se desenvuelve además en un espacio-tiempo totalmente curvo. Gracias a esta aplicación se resuelve el problema hasta de los cuatro cuerpos y en este artículo se logra encontrar a cuatro variables cuánticas distintas, que describen una ecuación en la relatividad general que es diferente a la descrita en la mecánica cuántica pero, son dependientes de las mismas cuatro variables cuánticas. Esas cuatro variables cuánticas son la masa de la partícula, la carga eléctrica de la partícula, el radio de la respectiva partícula y el ángulo que describe la dirección de la velocidad resultante del observador.

 

N

 

                                   Apariencia del espacio-tiempo a lo largo de una línea de universo

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadr-itensor energía-impulso. Las componentes de dicho tensor representan entre otras la densidad de energía y la densidad de momentum y dichas componentes están relacionadas localmente con las componentes del curvatura. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein:

 

{\displaystyle {\text{G}}_{\mu \nu }={8\pi {\text{G}} \over {\text{c}}^{4}}T_{\mu \nu }}

 

Es una fuerza atractiva que en la comunidad científica actual es concebida como la pensó Einstein: como un efecto de la curvatura del espacio-tiempo en presencia de de objetos masivos y, cuanto más masa tenga el objeto más se curvará el espacio a su alrededor.

 

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

donde:

R_{\mu\nu}\,, es el tensor de curvatura de Ricci
R\, es el escalar de curvatura de Ricci
T_{\mu\nu}\,, es el tensor de energía-impulso

Ejemplo:

 

                     Espacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.
Una representación del paraboloide de Flamm, cuya curvatura geométrica coincide con la del plano de la eclíptica de una estrella esféricamente simétrica. El campo gravitatorio solar viene dado de manera aproximada por la métrica de Schwarzschild, que a distancias muy grandes se aproxima a geometría plana del espacio de Minkowski. La figura de la derecha muestra aproximadamente el plano de la eclíptica del Sistema solar modelizado mediante la métrica de Schwarzschild, una órbita planetaria es una curva cuasi-elíptica alrededor del centro de dicha eclíptica.

          Así, la curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias…

 

                                   

        En realidad, es la presencia de la materia la que determina la geometría del espacio-tiempo

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es en esencia, lo que ocurre en relatividad general.

 

                                     

 

Lo cierto es que, desde que llegó Einstein con sus versiones de la teoría relativista, muchas fueron las cosas que cambiaron y, nuestros conceptos del mundo…, también. Fenómenos que se crean en la naturaleza y que son la consecuencia de la presencia de masas o de velocidades muy grandes.

¡Los efectos de c -la velocidad de la luz en el espacio vacío-! Recordad la paradoja de los gemelos: Uno de ellos, que es astronauta, hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa, cuando baja de la nave espacial, tiene 8,6 años más que cuando partió de la Tierra. Sin embargo, su hermano gemelo que le esperó en el planeta Tierra, era ya un anciano  jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. La velocidad ralentiza el transcurrir del tiempo.

 

El Universo es todo energía que se manifiesta de distintas maneras: bien como masa, o, bien como radiación.

          Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E= mc2 que, nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. Todos sabemos lo que ocurre cuando se desintegra un átomo de materia y la enorme cantidad de energía que tiene concentrada.

          Hay otras implicaciones dentro de esta maravillosa teoría de la relatividad especial, ahí está presente también la contracción de Lorentz. Un objeto que se mueve a velocidad de cercana a c, se achata o contrae en el sentido de la marcha, y, además, a medida que se acerca a la velocidad de la luz (299.752,458 Km/s), su masa va aumentando y su velocidad disminuyendo.

          Así se ha demostrado con muones en los aceleradores de particulas que, lanzados a verlocidades relativista, han alcanzado una masa en 10 veces superior a la suya. Esto quiere decir que la fuerza de inercia que se le está transmitiendo a una nave (por ejemplo), cuando se acerca a la velocidad de la luz, se convierte en masa.

          Así queda demostrado que, masa y energía son dos aspectos de la misma cosa E=mc2. Pero no olvidemos que…

 

                                     http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

 

    Todos hemos llegado a comprender que, todo lo grande está hecho de cosas pequeñas. Sin emnbargo hay cosas que aún no tenemos claras, y, un ejemplo de ello es, ¡El Hiperespacio!

    Esta idea interesante ha sido utilizada en diversas teorías físicas prometedoras que han recurrido formalmente a la introducción de nuevas dimensiones formales para dar cuenta de fenómenos físicos. Así Kaluza y Klein trataron de crear una teoría unificada (clásica) de la gravedad y del electromagnetismo, introduciendo, a las cuatro dimensiones de la teoría relativista, una quinta dimensión adicional. En esta teoría la carga podía relacionarse con la quinta componente de la “pentavelocidad” de la partícula, y otra serie de cuestiones interesantes. El enfoque de varias teorías de supercuerdas es aún más ambicioso y se han empleado esquemas inspirados remotamente en la ideas de Einstein, Kaluza y Klein que llegan a emplear hasta diez y once dimensiones, de las cuales seis o siete estarían compactificadas y no serían detectables más que indirectamente.

 

                                 

Nuestra inmensa imaginación nos ha llevado a buscar teorías que no podemos comprobar de manera experimental y, dentro de esas teorías, están, o, pudieran estar, las claves para viajar a otras regiones del espacio muy distantes de la nuestra por ese medio que intuimos, que pudiera ser accesible para nosotros y que hemos llamado Hiperespacio, que estaría situado en la quinta dimensión.

 

                       Resultado de imagen de Mecánica cuántica relativista

 

Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas y estamos a la búsqueda de otras que intuimos como la “materia oscura”, o, ¿por qué no? la quinta dimensióny el hiperespacio. No cejamos en el desarrollo de la “imposible” teoría de cuerdas y también, buscamos bosones dadores de masa en un espacio profundo, de cuyo contenido sabemos poco.

 

                               

 

Con los conocimientos de la mecánica cuántica que tenemos, hemos conseguido teletransportar  las propiedades de la materia. Las películas de ciencia ficción -desde Star Trek hasta La Mosca- nos han mostrado un futuro donde las personas pueden teletransportarse sin problemas. Y aunque los científicos aún no logran transferir materia… Creo que, ¡todo se andará!

 

                                   Resultado de imagen de Teleportación cuántica

 

La teleportación cuántica no consiste en transportar instantáneamente objetos, sino de transferir el “estado” de una o varias partículas, los constituyentes íntimos de la materia, de un lugar a otro y sin necesidad de enviar físicamente la partícula a través del espacio.  Este sorprendente logro es posible gracias al “entrelazamiento cuántico”, una extraña y aún poco comprendida propiedad de las partículas subatómicas que permite que dos -o más-,  partículas unan sus destinos de tal forma que cualquier cambio de estado que se produzca en una de ellas se refleje de forma instantánea también en la otra, sin importar la distancia que las separe.No sabemos de qué manera, esas partículas permanecen “unidas” y la física clásica no puede darnos una explicación. Sin embargo, siendo conocedores de tal fenómeno, los científicos llevan veinte años intentando sacar rendimiento a esa realidad extraordinaria que nos envía la promesa de que, con ella, podemos traer una nueva revolución al campo de las comunicaciones por satélite, la informática y… ¿quién sabe qué más?

Sí, es cierto que, tanto la teletransportación de personas, como el viaje por el Hiperespacio es -todavía- cosa de la ciencia ficción pero… Acordáos de cuando Arthur Clarke nos hablaba de satélites que orbitaban la Tierra para recoger y enviarnos datos de alto interés en los diversos campos de la actividad humana. Aquello, parecía una fantasía y, sin embargo ahora, es lo cotidiano.

 

http://3.bp.blogspot.com/_eqb8qL2GKZc/SwWlUSrOYKI/AAAAAAAACTk/EZ68cuxIaAw/s1600/warsp.jpg

 

¿Quién puede decir ahora qué mundo futuro nos espera? Conforme a los conocimientos que actualmente tenemos, podemos intuir el devenir tecnologíco que los avances de la ciencia nos pueden proporcionar y, entre los muchos que están ahí, en ese horizonte futuro, están todos estos de los que hablamos y, seguramente, muchos más que ni podemos imaginar. Seguramente, como tambioén ahora mismo está pasando, no todos los aspectos de la tecnología futura nos gustarán.

Universos paralelos y la interpretación de mundos múltiples | Cosmo Noticias

                                 Si existen deben estar conectados por los hilos invisibles de la Gravedad

La mejor manera de no equivocarse es tener la mente abierta a todo. Negar la existencia de universos paralelos, o, la certeza de la teoría de cuerdas…, ¿A dónde nos lleva? ¡A ninguna parte! Así pues, mantengamos la confianza en nosotros mismos, en lo que nuestras mentes llegan a intuir, y, dejémos, que nuestra “infinita” imaginación siga haciendo su trabajo y dibujando en nuestras mentes esos escenarios de mundos que podrían ser… ¡Una realidad futura!

emilio silvera

También nuestra especie genera maravillas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La banda sonora de una serie famosa que, como otras muchas, es una maravilla

Maravillas de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

25 mravillas

No somos conscientes de la suerte que tenemos .

 

La Vida en nuestro planeta no está por casualidad.

 

Tan sencillo y tan complejo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El beneficio de la naturaleza para la salud mental

          Estar en contacto con la Naturaleza siempre nos hizo bien para los sentidos, para la salud

 

 

Pero viajemos al detalle:

Nunca podremos dejar de maravillarnos ante las “cosas” que puede realizar la Naturaleza para conseguir sus fines. y, como dice Leonard Susskind, para comprender la realidad en sus niveles más elementales, basta con conocer el comportamiento de dos elementos: el electrón y el fotón. Todo el argumento de la Electrodinámica Cuántica gira en torno a un proceso fundamental:

¡La emisión de un único fotón por un único electrón!

 

 

Cuando el movimiento de un electrón es alterado súbitamente, puede responder desprendiendo un fotón. La emisión de un fotón es el suceso básico de la mecánica cuántica.

 

Resultado de imagen de La emisión de un fotónQuantum processes
“Cuando un electrón se encuentra en un nivel de energía elevado, tiende a caer espontáneamente a un nivel de energía inferior con la subsiguiente emisión de luz. … El proceso contrario, aquel en el que el fotón se absorbe induciendo la subida de un electrón a un nivel de energía superior, se llama absorción estimulada.”

Luz visibleOndas de radio - Wikipedia, la enciclopedia libreRadiación infrarroja: qué es y cómo se aplica en fisioterapia ...

Toda la luz visible que  vemos, así como las ondas de radio, la radiación infrarroja y los rayos X, está compuesta de fotones que han sido emitidos por electrones, ya sea en el Sol, el filamento de una bombilla, una antena de radio o un aparato de rayos.

 

                                       e)- LOS FOTONES - 1- SÍNTESIS de la TEORÍA TIEMPO-ESPACIO

Claro que, los electrones no son las únicas partículas que pueden emitir fotones. Cualquier partícula eléctricamente cargada puede hacerlo, incluido el protón. Esto significa que los fotones pueden saltar entre dos protones o incluso entre un protón y un electrón. Este hecho es de enorme importancia para toda la ciencia y la vida en general. El intercambio continuo de fotones entre el núcleo y los electrones atómicos proporciona la fuerza que mantiene unido el átomo.

 

                                                       

Sin estos fotones saltarines, el átomo se desharía y toda la materia dejararía de existir, y, no podemos olvidar que, también nosotros, los seres vivos… ¡Somos materia!

 

Qué es el principio de exclusión de Pauli | El principito ...Los fermiones son partículas cuánticas que se sincronizan como ...condensado de bose-einstein - INFIMIKIMIA



Decía que la Naturaleza hace las cosas más inverosímiles y de la manera más económica posible y, ha sabido crear esos objetos pequeñitos (infinitesimales como lo son las partículas subatómicas) que ha agrupado en familias. Los electrones son de la Familia de los Leptones y son fermiones, mientras que los fotones pertenecen a la familia de los Bosones. Los primeros no quieren estar juntos y se repelen cuando andan cerca los unos de los otros, mientras que los segundos, están encantados de la vida cuando se juntan muchos, de hecho, la Luz es un conjunto de fotones que, realmente, ilumina nuestras vidas.

Veamos el Efecto fotoeléctrico

 

                                Efecto Fotoelectrico y Fotovoltaico. Explicación y Aplicaciones

 

El fenómeno del efecto fotoeléctrico es una forma de mostrar el carácter corpuscular de la radiación electromagnética al interactuar la radiación y la materia, para lo cual se requiere fotoconductividad que hace referencia al aumento de la conductividad eléctrica de la materia o en diodos provocada por la luz y la presencia del efecto fotovoltaico que implica una transformación parcial de la energía luminosa en energía eléctrica.

 

 

Para que ocurra el efecto fotoeléctrico descubierto por Heinrich Hertz en 1887 (Que Einstein desarrolló en su famoso trabajo de 1.905 que le valió el Nóbel de Física de 1.923), se observa la liberación de los electrones de enlaces de átomos y moléculas de la sustancia bajo acción de la luz: visible, infrarroja y ultravioleta; en sus experimentos halla un arco que se forma entre dos electrodos conectados a alta tensión alcanzando distancias mayores cuando se ilumina con luz ultravioleta que cuando se deja en la oscuridad.

Se caracteriza por:

 

                                                                 
Placa A cuando el trabajo del campo eléctrico eV0, que frena a los electrones, se hace igual a su energía cinética inicial (la energía cinética máxima) Ec,máx= (mυ2)/2.

El experimento consiste en colocar una placa metálica en un recipiente de vidrio al cual que se ha realizado un vacio, existe otra placa que hace de colectar de partículas cargadas. Al hacer incidir un haz monocromático de radiación electromagnética se produce un desprendimiento de electrones de ella. Si se presenta una diferencia de potencial positivo entre el colector y la placa los electrones serán acelerados hacia él y se registrará una corriente: fotocorriente; sin embargo si se aplica un potencial negativo al colector, los fotoelectrones serán repelidos y llegarán solamente los que alcancen una energía mayor que el potencial.

La energía mínima necesaria para arrancar un electrón (trabajo de extracción) de una lámina de plata es 7,52 10-19 J.

Es así que es la energía mínima necesaria para que un electrón escape del metal.

El electrón absorbe una energía E (energía cinética del electrón emitida).

La energía de un fotón se obtiene:

h = constante de Planck 

v = frecuencia de la radiación electromagnética

El trabajo daría para mucho más pero, como simple referencia, aquí lo dejamos.

emilio silvera

Imaginación sin límite pero… ¿sabremos comprender?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                            cluster-galaxias

A cualquier región del Universo que podamos enfilar nuestros telescopios… Como media, siempre veremos las mismas cosas y se producirán los mismos fenómenos

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar  y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sean cuales fueran las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte del Cosmos por muy remota que se encuentre aquella región; los elementos primordiales que lo formaron fueron siempre los mismos y las fuerzas que intervinieron para formarlo también.

 

El lado oscuro del Universo | ctxt.es¿Qué es una estrella Wolf-Rayet? - Astrofísica y FísicaInteracciones fundamentales : Blog de Emilio Silvera V.Simetrías y fuerzas fundamentales - NUSGREM - Asociacion Nacional ...

                             La materia y las fuerzas que conforman nuestro Universo

Las fuerzas fundamentales son:

 

Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

 

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. En caso contrario… ¿En qué clase de Universo estaríamos?

Lo cierto es que Einstein fue muy afortunado y pudo lanzar al mundo su teoría de la relatividad especial, gracias a muchos apoyos que encontró en Mach, en Lorentz, en Maxwell… En lo que se refiere a la relatividad general, estuvo dando vueltas y vueltas buscando la manera de expresar las ecuaciones de esa teoría pero, no daba con la manera de expresar sus pensamientos.

Sin embargo, fue un hombre con suerte, ya que,  durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

 

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métricoEinstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

 

                                                                                matriz

 

Gracias al Tensor de Riemann, Einstein pudo formular:  T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

Recordando aquellos años de búsqueda e incertidumbre, Einstein escribió:

“Los años de búsqueda en la oscuridad de una verdad que uno siente pero no puede expresar el deseo intenso y la alternancia de confianza y desazón hasta que uno encuentra el camino a la claridad y comprensión sólo son familiares a aquél que los ha experimentado. 

Einstein, con esa aparentemente sencilla ecuación que arriba podemos ver, le dijo al mundo mucho más, de lo que él mismo, en un principio pensaba. En ese momento, se podría decir, sin temor a equivocarnos que comenzó la historia de la cosmología moderna. Comprendimos mejor el universo, supimos ver y comprender la implosión de las estrellas obligadas por la gravedad al salir de la secuencia principal, aparecieron los agujeros negros… y, en fin, pudimos acceder a “otro universo”.

 

                                               

 

Es curioso como la teoría de la relatividad general nos ha llevado a comprender mejor el universo y, sobre todo, a esa fuerza solitaria, la Gravedad. Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que -como tantas veces hemos comentado aquí-, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas galácticas, estelas y de objetos que, como los agujeros negros y los mundos, emiten la fuerza curvando el espacio a su alrededor y distorsionando el tiempo si su densidad llega a ser extrema.

 

                                           

 

Cuando miramos al cielo nocturno -en la imagen de arriba lo hacemos desde Tenerife-  y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

 

Qué galaxia pesa más: la Vía Láctea o Andrómeda?Nuestra Vía Láctea chocará con la galaxia de Andrómeda | Noticias ...El choque entre la Vía Láctea y Andrómeda — Astrobitácora                                                                                                             La Vía Láctea y Adrómeda colisionarán dentro de 4.500 millones de años

 

Finalmente, en unos pocos miles de millones de años, ambas galaxias se fundirán en un abrazo para formar una sóla gran galaxia y nadie sabe que mundos podrán sobrevivir a tan inmenso suceso, y, los miles de millones de seres vivos (algunas e4species inteligentes) si podrán sobrevivir al desastre

Cuando recordamos que la galaxia Andrómeda se está acercando a la Vía Láctea a unos 300 km/s, y sabiendo lo que ahora sabemos, no podemos dejar de preguntarnos ¿Dónde estará la Humanidad dentro de cinco mil millones de años? Si tenemos la suerte de haber podido llegar tan lejos -que es dudoso-, seguramente,  nuestra inmensa  imaginación habrá desarrollado conocimientos y tecnologías suficientes para poder escapar de tan dramático suceso. Estaremos tan ricamente instalados en otras galaxias, en otros mundos. De alguna manera… ¿No es el Universo nuestra casa?

emilio silvera