martes, 29 de noviembre del 2022 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Disfrutemos un rato

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Adele, una gran cantante del presewnte.

La Buena Música

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  Me puedo pasar horas oyendo, una detrás de otra, las composiciones musicales que aquí se ejecutan. 

“Hablando de la música soy de los que opinan que, si la música no existiera, habría que inventarla, porque la música es más que una secuencia de sonidos concatenados. La música tiene el potencial capaz de provocar desde la depresión hasta el éxtasis, y se ha convertido en parte clave de nuestro comportamiento como especie. Disfrutar la música es algo que nos diferencia de los animales, condiciona nuestro ser. Seríamos muy diferentes si la música, algo tan efímero, no formara parte de nuestra vida.

Hace años que se descubrió en neurología y psicología que escuchar melodías agradables no solo modifica el estado de ánimo, sino que puede influir positivamente en el desarrollo cognitivo humano, en el estímulo de la inteligencia y la salud.”

¡La Física! Que en su apartado cuántico…¡es extraña!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Sí, muy extraña pero…funciona. Cuando nos sumergimos en el mundo cuántico somos conscientes de que todo ese mundo fantástico de lo muy pequeño va contra la intuición, en nada se parece a nuestro mundo macroscópico y, allí, suceden cosas que nos parecen imposibles. Allí, en el “universo cuántico” se sustituye la continuidad por lo discreto. Se podría decir que no es el agua compacta que forma un todo, sino que, es como la fina arena que está formada por muchos granos que logran pasar desapercibidos en ese conjunto total.

 

Young.gif

 

¿Cómo podríamos suponer el carácter fantasmagórico del experimento de la doble rendija?

 

“El experimento de Young, también denominado experimento de la doble rendija, fue realizado en 1801 por Thomas Young, en un intento de discernir sobre la naturaleza corpuscular u ondulatoria de la luz. Young comprobó un patrón de interferencias en la luz procedente de una fuente lejana al difractarse en el paso por dos rejillas, resultado que contribuyó a la teoría de la naturaleza ondulatoria de la luz.

Posteriormente, la experiencia ha sido considerada fundamental a la hora de demostrar la dualidad onda corpúsculo, una característica de la mecánica cuántica. El experimento también puede realizarse con electrones, protones o neutrones, produciendo patrones de interferencia similares a los obtenidos cuando se realiza con luz.”

Otro fenómeno que va contra la intuición es el “efecto túnel”.  Los electrones son capaces de atravesar un túnel a través de una barrera de potencial estrecha hacia una región que estaría prohibida si los electrones fuesen tratados como partículas clásicas. El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra surge como consecuencia de la mecánica cuántica. El efecto túnel es usado en el diodo túnel. La desintegración alfa es un ejemplo de proceso de efecto túnel.

Nuestra descripción de lo que les pasa a los electrones que se dirigren hacia una barrera de energía o a un electrón atrapado entre dos barreras debe tener en cuenta las ondas probabilistas. Hay una probabilidad finita de que la partícula atrapada aparezca fuera de la trampa. Esto no sólo va contra la intuición, sino que se puede considerar una paradoja de orden mayor, pues el electrón a su paso por la barrera debía tener una energía cinética negativa, lo que, desde el punto de vista clásico, es absurdo.

Claro que, cuando se desarrolla la intuición cuántica, uno puede responder que la condición de que el electrón “esté en el túnel” no mes aobservable y por lo tanto no es un problema de la física. Lo que uno observa es que se sale fuera. Este fenómeno, el paso por efecto túnel, se utilizó (como ya he dicho) para explicar la radiactividad Alfa. Por fantasmagórico que sea,  este “efecto túnel” les es esencial a los ordenadores modernos y a otros muchos dispositivos electrónicos.

Partículas puntuales, paso por efecto túnel, radiactividad, la tortura de la rendija doble: todo esto contribuyó a las nuevas intuiciones que los físicos cuánticos necesitaron a medida que fue posible desplegar todo su armamento intelectual a la búsqueda de fenómenos inexplicables.

 

Los ríos de montaña. Ecología, régimenes hidrológicos y caudales ecológicos. – Luces de Montaña

Todo son átomos: Los mundos con sus ríos y montañas, los seres vivos, las estrellas y las galaxias, todo sin excepción… ¡átomos! Y, lo sorprendente es que, nosotros, hayamos podido llegar tan lejos y conocer lo que la materia es (al menos en parte), poder dilucidar entre esos dos “universo” de lo grande y lo pequeño.

Gracias a los acontecimientos que están recogidos en el período que va desde 1923 a 1927, se pudo comprender el átomo. Aún así, en esos días previos a los ordenadores, sólo se podían utilizar adecuadamente los átomos simples -el hidrógeno, el helio, el litio y los átomos a los que se les han quitado algunos electrones (ionizado)-. Aquí, no cabe más remedio que reconocer el gran avance debido a Wolfgan Pauli, él entendió la mecánica cuántica desde muy joven, con 19 años ya era todo un experto y supo, intuir, dónde estaba la “materia perdida”.

Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo.  En realidad, los electrones no eran igualmente deficitarios.  Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado.  Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas.  En ese caso, ¿Qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?

                                          Tipos de Radiaciones Ionizantes - Rincón educativo

                                    Todo parece indicar que los neutrinos…¡sí tienen masa!

En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas.  En 1.931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.

Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida.  Esa misteriosa segunda partícula tenía propiedades bastante extrañas.  No poseía carga ni masa.  Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía.  A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y se liberaba un electrón, que, como en la decadencia beta, portaba insuficientes cantidades de energía.  Enrico Fermi dio a esta partícula putativa el nombre de “neutrino”, palabra italiana que significa “pequeño neutro”.

 

GNEI Terapias - DIFERENCIAS ENTRE LOS RAYOS ALFA, BETA Y GAMMA LOS ALFA: son núcleos de átomos de helio, con carga eléctrica positiva, que no penetran mas allá de la superficie de

               La partícula gamma es la más potente y dañina para la vida

 

“Las partículas gamma son radiaciones electromagnéticas de la misma naturaleza que los rayos X pero de menor longitud de onda. Su poder de penetración es muy elevado frente al de las partículas alfa o beta, pudiendo atravesar el cuerpo humano. Quedan frenadas con espesores de 1 m de hormigón o unos pocos cm de plomo, por lo que cuando se utilizan fuentes radiactivas que emiten este tipo de radiación, hay que utilizar blindajes adecuados.”

Pero sigamos con nuestro trabajo de hoy. El neutrón dio a los físicos otra prueba palpable de la existencia del neutrino.  Como ya he comentado en otras ocasiones, casi todas las partículas describen un movimiento rotatorio. Esta rotación se expresa, más o menos, en múltiples de una mitad según la dirección del giro.  Ahora bien, el protón, el neutrón y el electrón tienen rotación de una mitad. Por tanto, si el neutrón con rotación de una mitad origina un protón y un electrón, cada uno con rotación de una mitad, ¿qué sucede con la ley sobre conservación del momento angular? Aquí hay algún error. El protón y el electrón totalizan una mitad con sus rotaciones (si ambas rotaciones siguen la misma dirección) o cero (si sus rotaciones son opuestas); pero sus rotaciones no pueden sumar jamás una mitad. Sin embargo, por otra parte, el neutrino viene a solventar la cuestión.

Supongamos que la rotación del neutrón sea +½. Y admitamos también que la rotación del protón sea +½ y la del electrón -½, para dar un resultado neto de o. Demos ahora al neutrino una rotación de +½, y la balanza quedará equilibrada.

+½(n)=+½(p)-½(e)+½(neutrino)

Pero aun queda algo por equilibrar.  Una sola partícula (el neutrón) ha formado dos partículas (el protón y el electrón), y, si incluimos el neutrino, tres partículas.  Parece más razonable suponer que el neutrón se convierte en dos partículas y una antipartícula.  En otras palabras: lo que realmente necesitamos equilibrar no es un neutrino, sino un antineutrino.

“25 noviembre 2011. Físicos investigadores trabajando en el experimento Double Chooz han detectado la desaparición de antineutrinos electrónicos durante su recorrido desde el núcleo de los reactores hasta el detector situado a algo mas de 1 Km de distancia.

Este resultado, que ha sido presentado en la Conferencia LowNu de Seul, en Corea, servirá para determinar el valor del hasta ahora desconocido ángulo de mezcla q13, que es un parámetro fundamental con importantes implicaciones para la física de partículas y de astro-partículas.”

Pero sigamos con lo nuestro. El propio neutrino surgiría de la conversación de un protón en un neutrón.  Así, pues, los productos serían un neutrón (partícula), un positrón (antipartícula) y un neutrino (partícula). Esto también equilibra la balanza.

En otras palabras, la existencia de neutrinos y antineutrinos debería salvar no una, sino tres, importantes leyes de conservación: la conservación de la energía, la de conservación del espín y la de conservación de partícula/antipartícula.

Es importante conservar esas leyes puesto que parece estar presentes en toda clase de reacciones nucleares que no impliquen electrones o positrones, y sería muy útil si también se hallasen presentes en reacciones que incluyesen esas partículas.

 

Nuclear Energy Fusion GIF by MIT - Find & Share on GIPHY

Las más importantes conversiones protónneutrón son las relaciones con las reacciones nucleares que se desarrollan en el Sol y en los astros.  Por consiguiente, las estrellas emiten radiaciones rápidas de neutrinos, y se calcula que tal vez pierdan a causa de esto el 6 u 8 % de su energía.  Pero eso, sería meternos en otra historia y, por mi parte, con la anterior explicación solo trataba de dar una muestra del ingenio del hombre que, como habréis visto, no es poco.

Desde que puedo recordar, he sido un amante de la Física. Me asombran cuestiones como la luz, su naturaleza de un conglomerado de colores, ondas y partículas, su velocidad que nos marca el límite del máximo que podemos correr en nuestro Universo, y en fin, muchos otros misterios que encierra esa cosa tan cotidiana que nos rodea y lo inunda todo haciendo posible que podamos ver por donde vamos, que las plantas vivan y emitan oxígeno o que nos calentemos.  Realmente, sin luz, nuestra vida no sería posible.

Entonces, ¿Qué es realmente la luz?

 

      Sí, hemos llegado a saber muchas cosas pero… lo que realmente es la luz…queda lejos aún

Generalmente es sabido que “todos” opinan que la luz,  es algo inmaterial. Los objetos materiales, grandes o muy pequeños como las galaxias o los electrones, son materia.  La luz, sin embargo, se cree que es inmaterial, dos rayos de luz se cruzan sin afectarse el uno al otro. Sin embargo, yo opino que la luz es simplemente una forma de energía lumínica, otra forma en la que se puede presentar la materia. Ya nos lo dijo Einstein: E = mc2, y, si materia es energía y energía materia… ¿Qué es el fotón?

Está claro que, los estudiosos de la época antigua y medieval estaban por completo a oscuras acerca de la naturaleza de la luz. Especulaban sobre que consistía en partículas emitidas por objetos relucientes o tal vez por el mismo ojo. Establecieron el hecho de que la luz viajaba en línea recta, que se reflejaba en un espejo con un ángulo igual a aquel con el que el rayo choca con el espejo, y que un rayo de luz se inclina (se refracta) cuando pasa del aire al cristal, al agua o a cualquier otra sustancia transparente.

Cuando la luz entra en un cristal, o en alguna sustancia transparente, de una forma oblicua (es decir, en un ángulo respecto de la vertical), siempre se refracta en una dirección que forma un ángulo menor respecto de la vertical.  La exacta relación entre el ángulo original y el ángulo reflejado fue elaborada por primera vez en 1.621 por el físico neerlandés Willerbrord Snell.  No publicó sus hallazgos y el filósofo francés René Descartes descubrió la ley, independientemente, en 1.637.

 

                                                   

Los primeros experimentos importantes acerca de la naturaleza de la luz fueron llevados a cabo por Isaac Newton en 1.666, al permitir que un rayo de luz entrase en una habitación oscura a través de una grieta e las persianas, cayendo oblicuamente sobre una cara de un prisma de cristal triangular. El rayo se refracta cuando entra en el cristal y se refracta aún más en la misma dirección cuando sale por una segunda cara del prisma. (Las dos refracciones en la misma dirección se originan por que los dos lados del prisma de se encuentran en ángulo en vez de en forma paralela, como sería el caso en una lámina ordinaria de cristal.)

Newton atrapó el rayo emergente sobre una pantalla blanca para ver el efecto de la refracción reforzada.  Descubrió que, en vez de formar una mancha de luz blanca, el rayo se extendía en una gama de colores: rojo, anaranjado, amarillo, verde, azul, y violeta, en este orden.

Newton dedujo de ello que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores.  La amplia banda de sus componentes se denominó espectrun (palabra latina que significa “espectro” fantasma). Newton llegó a la conclusión de que la luz se componía de diminutas partículas (“corpúsculos”), que viajaban a enormes velocidades.

Le surgieron y se planteó algunas inquietudes cuestiones. ¿Por qué se refractaban las partículas de luz verde más que los de luz amarilla? ¿Cómo se explicaba que dos rayos de luz se cruzaran sin perturbase mutuamente, es decir, sin que se produjeran colisiones entre partículas?

 

En 1.678, el físico neerlandés Christian Huyghens (un científico polifacético que había construido el primer reloj de péndulo y realizado importantes trabajos astronómicos. Hoy, la sonda en Titán, lleva su nombre) propuso una teoría opuesta: la de que la luz se componía de minúsculas ondas. Y si sus componentes fueran ondas, no sería difícil explicar los diversos difracciones de los diferentes tipos de luz a través de un medio refractante, siempre y cuando se aceptara que la luz se movía más despacio en ese medio refractante que en el aire.  La cantidad de refracción variaría con la longitud de las ondas: cuanto más corta fuese tal longitud, tanto mayor sería la refracción.   Ello significaba que la luz violeta (la más sensible a este fenómeno) debía de tener una longitud de onda mas corta que la luz azul, ésta, más corta que la verde, y así sucesivamente.

Lo que permitía al ojo distinguir los colores eran esas diferencias entre longitudes de onda.  Y, como es natural, si la luz estaba integrada por ondas, dos rayos podrían cruzarse sin dificultad alguna.  (Las ondas sonoras y las del agua se cruzan continuamente sin perder sus respectivas identidades.)

 

http://4.bp.blogspot.com/_AGSpYDvydis/Swmu0IX8-fI/AAAAAAAASHI/2cH86nFUE70/s1600/luz+3.jpeg

 

Pero la teoría de Huyqhens sobre las ondas tampoco fue muy satisfactoria. No explicaba por qué se movían en línea recta los rayos luminosos; ni por qué proyectaban sobras recortadas; ni aclaraba por qué las ondas luminosas no podían rodear los obstáculos, del mismo modo que pueden hacerlo las ondas sonoras y de agua.  Por añadidura, se objetaba que si la luz consistía en ondas, ¿Cómo podía viajar por el vacío, ya que cruzaba el espacio desde el Sol y las Estrellas? ¿Cuál era esa mecánica ondulatoria?

Muchos otros han tratado de profundizar en la naturaleza de la Luz, y, aunque sabemos bastante de ella, no por eso podemos decir a ciencia cierta: ¡Sabemos lo que la luz es!, ya que, la Naturaleza, esconde algunos secretos que tenemos que desvelar y, al igual que nos pasa con nuestras mentes, no hemos podido resolver el problema, principalmente, porque nosotros somos parte integrante de él:

 

Somos Universo - Somos energía, luz y esencia, somos partículas de creatividad, somos instante y eternidad, Somos Universo... | FacebookEn Orbita Lunar: SOMOS UNIVERSO

                                          ¡Somos Universo, Somos luz, Somos Pensamientos!

Pero, ¿no estaba hablando de los extraños fenómenos de la mecánica cuántica? No puedo remediarlo, veo pasar una idea por delante de mi mente y…la sigo. Como nos decía el inolvidable Richard Feyman;

Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado.  Nadie sabe como puede ser eso”. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor es que “es indudablemente correcta”.

La física cuántica empezó a enseñarnos que no debemos estar tan seguros de las reglas del espacio y del tiempo, que hasta ese entonces parecían muy confiables e invariables.

Hace algún tiempo que salió la noticia un descubrimiento en la universidad de Oxford que confirma una polémica teoría sobre el espacio y el tiempo. La teoría de los Muchos Mundos, presentada a la comunidad científica hace exactamente 50 años, proponía que existen un número infinito de realidades: una para cada posible escenario producto de cada decisión que cada ser viviente toma en cada momento de su vida.

Esto nos lleva a un escenario con tantos universos como decisiones e interacciones posibles, multiplicado por tantos seres vivientes como existan. La teoría de los Muchos Mundos se planteó como una respuesta al extraño comportamiento que tiene la materia a nivel subatómico. En la primera mitad del siglo XX la ciencia permitió por primera vez observar lo muy pequeño, y la realidad a ese nivel dejó perplejos a los científicos.

En esas dimensiones hay paradojas que chocan contra el sentido común, como por ejemplo el hecho de que una partícula subatómica puede estar en dos sitios al mismo tiempo. Esta revista puede estar en sus manos o en el librero, pero no puede estar en sus manos y en el librero al mismo tiempo. La física cuántica empezó a enseñarnos que no debemos estar tan seguros de las reglas del espacio y del tiempo, que hasta ese entonces parecían muy confiables e invariables.

 

                                             http://www.oconowocc.com/wp-content/uploads/2011/05/1231.jpg

Es difícil comprender que podamos estar, al mismo tiempo, en este mundo y en otro mucho más lejano que, situado en otra galaxia, nos pueda estar dando acogida al mismo tiempo que lo hace la Vía Láctea. Sin embargo, en el caso de las partículas subatómicas y, según la extraña mecánica cuántica, eso sería posible.

emilio silvera

Principio de localidad (Causa-Efecto)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

       Todo lo que sucede es causa de sucesos anteriores, es lo que los físicos llaman causalidad. Así, el Futuro será el resultado del Presente.

¿Será verdad todo lo que nos cuentan que es… el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los 6 tipos de preguntas para comunicarte mejor, por Daniel Colombo107 preguntas para conocer mejor a tu pareja - Mejor con Salud

Hace mucho tiempo ya, desde que adquirimos consciencia de Ser, comenzamos a hacernos preguntas y plantearlas a otros que tampoco, ellos podían satisfacer nuestra curiosidad. La ignorancia ha sido una fiel compañera de la Humanidad… ‘Y continúa siéndolo!

La Curiosidad no mató al gato: Manual para escépticos eBook : Lorenzo González, Francisco David, Hernández Díaz, Romen: Amazon.com.mx: Tienda KindleHistoria de la navegación (Sucesos N° 20) - Edwin Harrington y Guillermo Galvez

Lo cierto es que, a nuestra especie siempre le pasó lo mismo que al gato del dicho, no pocas veces arriesgaron sus vidas por saber qué podía existir más allá de sus dominios, y, en precarias condiciones de seguridad emprendían aventuras que, no pocas veces, causaron algunas muertes. Ese “ingrediente”, la Curiosidad, ha estado siempre con nosotros y, desde niños comenzamos a plantear preguntas que, no siempre tienen respuestas.

 

La Implosión de una estrella : Blog de Emilio Silvera V.

Cuando una estrella consume todo el combustible nuclear de fusión, queda a merced de la Gravedad, y, en ella se produce una serie de acontecimientos que, al final de todas aquellas transiciones, lo que allí queda es algo muy distinto a lo que había. En la región ha “nacido una Nebulosa producto de una explosión supernova y ha quedado el remanente que, en sus entrañas puede llevar la residual estrella de neutrones o bien un agujero negro, y, si la estrella es como el Sol, una Nebulosa planetaria y una estrella enana blanca-

 

 

Gamma-ray Bursts | National Schools' Observatory

               Con frecuencia son observadas grandes explosiones de rayos Gamma

En realidad, cuando observamos el Universo y vemos los fenómenos que ahí ocurren, las transiciones de fase que se producen en la materia, las energías desatadas que por todas partes son proyectadas en explosiones de supernovas y colisiones de estrellas de neutrones o agujeros negros, cuando dos inmensas galaxias se funden en una y se fusionan mediante un Vals de Gravedad que dura algunos millones de años… Cuando todo eso ocurre, podríamos pensar que, la Vida, no está preparada para ese entorno. Sin embargo, ¡aquí estamos!

 

Optical illusion created by variable sized tiles on a flat floor. | Optical illusions, Flooring, Tile floor

 

Como nos dice la filosofía, nada es como se ve a primera vista, todo depende del punto de vista desde el que miremos las cosas, de la perspectiva que nos permita nuestra posición física y, la intelectual también. No todos podemos ver las cosas de la misma manera. La imagen de abajo que es una Nebulosa como otras tantas, ¿Qué te dice a ti? ¿Qué es lo que ahí puedes ver? ¿Qué deduces de los componentes de la nebulosa? ¿Qué puede surgir de ahí y de otros lugares como este de abajo? ¿Cómo llegó a formarse tal conglomerado de gas y polvo?

 

 fotografías

La estabilidad del espacio-tiempo, de la materia y de la energía tal como los conocemos sería imposible y, a la postre, tampoco sería posible la belleza que esta estabilidad posibilita así como la propia inteligencia y armonía que, en cierta forma, subyace en todo el Universo.

 

Parallel Universes Are Likely Real; Here's Why – TREMG

 

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.

Douglas Adams

 

Ni siquiera estamos seguros de cómo hacer la pregunta sobre el comienzo del universo": la ciencia de los orígenes que busca respuestas a los mayores misterios de la humanidad - BBC News

“El mundo es como es por la necesidad de permitir la existencia de seres que puedan preguntarse por qué es así.” En cosmología el principio antrópico establece que cualquier teoría válida sobre el universo tiene que ser consistente con la existencia del ser humano.”

¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en donde las constantes son diferentes y la vida no puede existir?

 

La Importancia de las Constantes Universales! No todos las comprenden : Blog de Emilio Silvera V.Fuerzas fundamentales | Humanidades

Estas constantes y estas fuerzas hacen posible que estemos aquí, que el universo sea como lo podemos observar. Sin algunas de ellas, la vida no sería posible.

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno número 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno.

                           

Pero además, la Tabla Periódica, a la que se ha llamado “el alfabeto del Universo” (el lenguaje del Universo), insinuaba que existían todavía elementos por descubrir. Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica (que vemos y detectamos) del universo. Hay más elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales.

 

Ciencias Planetarias y Astrobiología : La constante de estructura fina en nuestro UniversoCuál es la masa de los neutrones?

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. Estas no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El número puro y adimensional, 137!!

 

                                       

Las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y continuar así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. El primero de estos modelos es el universo abierto que será invadido por el frío absoluto, y el segundo modelo es el del universo cerrado que termina en una bola de fuego descomunal.

Todo dependerá de cual sea el valor de la Densidad Crítica de materia que contenga el Universo (lo que los cosmólogos llaman “El Omega Negro”) que, según parece, nos lleva hasta un universo plano, es decir, similar al que sería conforme a la Densidad Crítica ideal.

Los modelos de universo que pudieran ser, en función de la Densidad Crítica (Ω) sería plano, abierto o cerrado. La Materia tiene la palabra.

 

Astronomía en tu bolsillo - ¿El universo es cerrado, abierto o es plano? escoge uno y explica por qué crees que es así. Cabe mencionar que el universo cerrado es un modelo

   En función de la materia que pudiera contener, el universo sería abierto, cerrado o plano

Algunos números que definen nuestro universo

  • El número de fotones por protón.
  • La razón entre densidades de materia oscura” y luminosa.
  • La anisotropía de la expansión.
  • La falta de homogeneidad del universo.
  • La constante cosmológica.
  • La desviación de la expansión respecto al valor “crítico”.

 

Funny Gifs : space GIF - VSGIF.com

 

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la predicción válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

 

                               

         Esa línea divisoria nos salvará de un Big Crunch. No se ve probable que un día la expansión del Universo se frene y comience el camino al revés para que todo se junta de nuevo y se forme una singularidad de la que saldría otro universo.

( Sólo en el modelo de universo que se expande cerca de la divisoria crítica, se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la ideal (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.)

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que marca la “Densidad Crítica” ¡Ese lugar donde se puede formar la Vida!

 

El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página anterior que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de condiciones de partida especiales.

Composición del universo

 

       File:WMAP Leaving the Earth or Moon toward L2.jpgEl telescopio James Webb capta la primera imagen de un exoplaneta

 

La Wilkinson Microwave Anisotropy Probe (WMAP) es una sonda de la NASA cuya misión es estudiar el cielo y medir las diferencias de temperatura que se observan en la radiación de fondo de microondas, un remanente del Big Bang. Fue lanzada por un cohete Delta II el 30 de junio de 2001 desde Cabo Cañaveral, Florida, Estados Unidos.

 

Parámetros de precisión más recientes del modelo cosmológico estándar - La Ciencia de la Mula Francis

Nos dicen que podemos concretar de manera muy exacta con resultados fiables de los últimos análisis de los datos enviados por WMAP. Estos resultados muestran un espectro de fluctuaciones gaussiano y (aproximadamente) invariante frente a escala que coincide con las predicciones de los modelos inflacionarios más generales.

El universo estaría compuesto de un 4 por 100 de materia bariónica, un 23 por 100 de materia oscura”  -sustancia cósmica diría yo- no bariónica y un 73 por 100 de energía oscura. Además, los datos dan una edad para el universo que está en 13’7 ± 0’2 ×109 años, y un tiempo de 379 ± 8×103 años para el instante en que se liberó la radiación cósmica de fondo. Otro resultado importante es que las primeras estrellas se formaron sólo 200 millones de años después del Big Bang, mucho antes de lo que se pensaba hasta ahora.

Al menos eso es lo que creemos saber. Claro que, la realidad de alguno de los conceptos aquí vertidos…pudieran ser muy distintos. Y, mientras tanto pensamos en todos eso…

 

Informe Dune: La Princesa Irulan | Danienlared

                                                      La Princesa Irulan

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede encontrar ese ritmo en la sucesión de las estaciones, en la en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”

De “Frases escogidas de Muad´Dib”, por la Princesa Irulan.

emilio silvera