Jul
10
Otros mundos
por Emilio Silvera ~
Clasificado en Otros mundos ~
Comments (0)
El sistema, bautizado como HD 131399 y a 326 años luz de la Tierra, se comporta distinto a todo lo visto hasta la fecha.
Los modelos tradicionales de formación de sistemas planetarios se basaban en el nuestro, es decir, un puñado de planetas dando vueltas a una única estrella. Todo lo demás pertenecía al ámbito de la ciencia ficción, como en Solaris, el planeta imaginado por Stanisław Lem que contaba con dos soles, uno azul y otro rojo.
La noción clásica era que un sistema con más de dos soles suele ser inestable, por tanto, tarde o temprano alguna de estas estrellas acaba siendo expulsada. Sin embargo, el avance de los telescopios y otras herramientas demostró que, más allá de nuestro sistema solar, casi cualquier tipo de organización de estrellas y planetas es potencialmente posible.
En los últimos años se ha llegado a la conclusión de que las estrellas que se agrupan en tandas de dos o más son tan numerosas como las individuales. Sin embargo, en pocas ocasiones hemos sido capaces de observar de forma directa estos sistemas múltiples, debido a la dificultad de detectar un planeta en mitad de la contaminación lumínica procedente de varias estrellas.
Esta semana, un grupo de astrónomos dirigido por Kevin Wagner, de la Universidad de Arizona, ha publicado en Science la detección de forma directa de un planeta dentro de un sistema de tres estrellas. Este sistema, bautizado HD 131399, tiene características muy raramente observadas hasta ahora, como el tamaño del exoplaneta (unas cuatro veces la masa de Júpiter) o su temperatura (entre 575ºC y 625ºC). Estos científicos lograron obtener estas imágenes empleando el Very Large Telescope instalado en el desierto chileno de Atacama y el instrumento SPHERE-9, especializado en la búsqueda de planetas más allá del Sistema Solar.
“Aunque las estrellas binarias suelen aparecer mucho más a menudo en los medios, las estrellas triples no son tan raras, de hecho son bastante comunes en el cosmos”, dice a EL ESPAÑOL Wagner. “Lo realmente sorprendente fue encontrar un planeta que orbita de esa forma entre ellas”. El astrónomo se refiere a que lo más común es que los planetas en este tipo de sistemas estén más cerca de una de las estrellas que de las otras.
Sin embargo, en este sistema, “el planeta está en una órbita amplia alrededor de una de las estrellas, que la atrae usando la influencia gravitatoria de las otras dos”, explica el investigador. Lo normal sería que ese planeta fuese expulsado del sistema debido a la influencia gravitatoria irregular de las tres estrellas, pero de alguna forma logró sobrevivir.
Hasta ahora, se había descrito la existencia de cuatro planetas de estas características. Hace apenas tres meses, se anunció en un artículo de The Astronomical Journal la detección del último de ellos, bautizado KELT 4-AB.
Lo relevante de este nuevo hallazgo es que HD 131399 es el primer exoplaneta con tres soles del que se han obtenido imágenes. La detección directa de planetas fuera de nuestro sistema solar es relativamente reciente y ahora agrupa una veintena de objetos, el primero fue 2M1207b, en 2004.

Wagner confiesa que al principio se planteó otras hipótesis, como que no fuese un planeta sino quizá una estrella que aparecía más al fondo, “pero ahora que tenemos los datos podemos asegurar que es realmente un planeta en una configuración exótica y nunca antes vista”.
“Me parece muy improbable que el planeta se formara en el mismo sitio donde lo vemos, debido al simple hecho de que las otras estrellas probablemente inhibirían la formación del planeta interrumpiendo el disco protoplanetario de gas y polvo en la región donde actualmente vemos el planeta”, añade Wagner. “Creo que es más probable que el planeta se formara cerca de una de las estrellas y luego migrara a su órbita actual mediante una interacción con, o bien otro planeta aún no visto, o con una de las estrellas”.
Jul
9
Nuestro lugar en el Universo…¿cuál será?
por Emilio Silvera ~
Clasificado en El Universo ~
Comments (0)
Antes en otra entrada que titulé “Observar la Naturaleza… da resultados”, comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.
Los filamentos de un remanente de Supernova que, mirándolos y pensando de donde vienen… Te hacen recorrer unos caminos alucinantes que comenzaron con una unmensa aglomeración de gas y polvo que se constituyó en una estrella masiva que, después de vivir millones de alos, dejó, a su muerte, el rastro que arriba podemos contemplar.
Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear restrospectivamente un tipo de argumento muy similar propuesto por otro personaje, Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.
Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi porm completo en las contribuciones de Darwin.
Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.
Wallace propuso en 1889, la hipótesis de que la selección natural podría dar lugar al aislamiento reproductivo de dos variedades al formarse barreras contra la hibridación, lo que podría contribuir al desarrollo de nuevas especies.
Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).
Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión. La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.
Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.

En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.
Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.
Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.
En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.
“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”
Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las consiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología y la historia de la Tierra. Aquó ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:
“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”
Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.
Siempre hemos tratado de saber, cuál sería nuestro lugar en el Universo, no ya en relación a la situación geográfica, sino referido a esa fascinante historia de la vida que nos atañe a los humanos, la única especie conocida que, consciente de su Ser, libera pensamientos y formula preguntas que, hasta el momento, nadie ha sabido contestar.
emilio silvera
Jul
9
Otra vez… ¡Las Mitocondrias!
por Emilio Silvera ~
Clasificado en Bioquímica ~
Comments (0)
Genética
El mini fragmento de ADN que afecta al envejecimiento
Investigadores españoles demuestran en ratones que el genoma mitocondrial interactúa con el del nucleo y repercute en el envejecimiento.
Ratones que difieren sólo en el ADN mitocondrial. CNIC
El término mitocondria no es demasiado famoso. No mucha gente acertaría a la primera su significado, pero algunos investigadores llevan años reivindicando su importancia. Entre ellos, el zaragozano José Antonio Enríquez, del Centro Nacional de Investigaciones Cardiovasculares (CNIC), en Madrid, que este miércoles ha publicado en Nature un estudio que subraya su papel en algo que, sin duda, preocupa mucho a la población: el envejecimiento.
Las mitocondrias son pequeños órganos celulares que suministran la energía a las mismas y albergan 37 de los más de 20.000 genes humanos. “Es pequeño y codifica pocas cosas”, reconoce Enríquez que, sin embargo, destaca otras características menos conocidas de este ADN secundario: “Es la zona que más varía y es, también, la única que no se ha podido modificar, ni siquiera con la técnica CRISPR/Cas9”, comenta a EL ESPAÑOL.
El hallazgo publicado en Nature revela que variantes no patológicas del ADN mitocondrial impactan en el metabolismo y en la calidad del envejecimiento de los individuos. No lo hacen por sí mismas, sino al interactuar con otro ADN, el más importante, el del núcleo de la célula. “La clave de este estudio ha sido entender cómo la combinación e interacción de nuestros dos genomas, el nuclear y el mitocondrial, desencadena una adaptación celular que tendrá repercusiones a lo largo de toda nuestra vida”, explica la primera firmante del estudio -en el que también participan las universidades de Zaragoza y Santiago de Compostela y el Medical Research Council, en Reino Unido-, la también investigadora del CNIC Ana Latorre.
Mejor envejecimiento
Lo que los investigadores han demostrado es que al cambiar únicamente el ADN mitocondrial se desencadenan en los animales jóvenes que han protagonizado los experimentos una serie de mecanismos adaptativos celulares que les permiten un envejecimiento más saludable.
En concreto, los ratones intervenidos mostraban más cantidad de pelo -más lustroso y con menos canas-, mayor robustez, más masa muscular y mayor actividad. Se observó, así, que dos variantes distintas y sanas del ADN mitocondrial afectan de modo sustancial a la calidad del envejecimiento.

Pero de este experimento se podrían, además, sacar más efectos prácticos. Como desvela Enríquez, puede servir desde para estratificar la población hasta para ver por qué hay fármacos beneficiosos para unas personas y no para otras.
Hijos de tres padres
Aunque a veces situada en el ostracismo, la mitocondria sí ha saltado en los últimos años a los medios de comunicación y lo ha hecho gracias al desarrollo y aprobación de la transferencia mitocondrial, un procedimiento que permite prevenir la transmisión de las enfermedades mitocondriales, patologías muy graves que normalmente carecen de tratamiento y se transmiten siempre a través del ADN mitocondrial de los ovocitos, o gametos femeninos.
La transferencia mitocondrial, de la que Enríquez se declara partidario y sobre la que descarta cualquier preocupación ética, consiste en cambiar las mitocondrias de las células con alteraciones de la madre por otras de una donante sana.
El trabajo recién publicado puede tener impacto en esta técnica -aún en fase de experimentación, ya que todavía no se ha implantado ningún embrión con ella hecha-porque resalta la importancia de escoger bien a la donante mitocondrial, ya que su ADN se mezclará con el de la receptora e interactuarán de distinta forma según sean ambos.
La imagen refleja el cambio en la forma de las mitocondrias de fibroblastos de ratón dentro de la célula cuando se elimina el gen OPA1. CNIC.
“Es un tema que hay que estudiar”, comenta a este diario Enríquez, que adelanta que su grupo está haciendo experimentos en ratones con la técnica de reemplazo mitocondrial, que permitirán analizar la interacción de ambos tipos de ADN de receptor y donante.
Lo que el científico considera aún lejano es la posibilidad de realizar transferencias mitocondriales para poner un ADN mitocondrial “de mejor calidad” en un embrión. “No podemos categorizar este tipo de ADN en bueno o malo, porque depende mucho del contexto”, concluye el investigador del CNIC.
Publicado: El Español
Jul
9
La Nebulosa de Orión (y sus alrededores)
por Emilio Silvera ~
Clasificado en Orion ~
Comments (0)



Jul
8
¿Y si el paso del tiempo no fuera más que una ilusión?
por Emilio Silvera ~
Clasificado en ¡El Tiempo! ¿Qué será? ~
Comments (6)
ABC – Ciencia
Los investigadores creen que la unidad mínima de tiempo posible puede superar al tiempo de Planck
¿Hasta dónde es posible subdividir el tiempo? O, dicho de otro modo, ¿cuál es la unidad mínima de tiempo que permite la Naturaleza? La respuesta tiene profundas implicaciones tanto para la Ciencia como para la Filosofía, y un equipo internacional de investigadores acaba de demostrar que la unidad mínima de tiempo posible va mucho más allá de lo que se pensaba. El trabajo acaba de publicarse en The European Physical Journal.
Pero veamos. Aunque a simple vista puede parecer posible dividir el tiempo en intervalos cada vez más pequeños, incluso hasta el infinito, la Física nos dice que que no es así, y que el menor intervalo temporal físicamente representativo posible es el llamado tiempo de Planck, que equivale a 10-43 segundos, es decir, a la diez septillonésima parte de un segundo. Este es, pues, en intervalo temporal más breve en el que las leyes de la Física pueden seguir usándose para estudiar la Naturaleza del Universo. El límite implica que dos eventos cualesquiera no pueden estar separados por un intervalo temporal inferior a éste.
O por lo menos esto es lo que se pensaba hasta ahora. Pero Mir Faizal, de las Universidades de Waterloo y Lethbridge en Canadá, Mohammed M. Khali, de la Universidad de Alejandría en Egipto y Saurya Das, también de la Universidad de Lethbridge, proponen, en efecto, que el menor intervalo de tiempo posible podría superar, incluso en varios órdenes de magnitud, al tiempo de Planck. Además, los físicos han demostrado que la mera existencia de este nuevo “tiempo mínimo” puede alterar las ecuaciones básicas de la Mecánica Cuántica. Y dado que la Mecánica Cuántica describe los sistemas físicos a una escala muy pequeña (la de las partículas subatómicas), el resultado sería un cambio profundo en la descripción de la realidad tal y como la conocemos.
“Podría ser -explica Faizal- que la escala mínima de tiempo posible en el Universo vaya mucho más allá del tiempo de Planck. Y esto, además, puede ser probado experimentalmente”.
Pero volvamos, por ahora, al tiempo de Planck, que de por sí es tan corto que nadie, en ningún laboratorio del mundo, ha conseguido aún examinarlo directamente. Y es que en Ciencia, y más en las ciencias básicas, la práctica va siempre muy por detrás de la teoría. Las mediciones más precisas, en efecto, apenas han logrado resultados con intervalos de cerca 10−17 de segundos, muy lejos de los 10-43 del tiempo de Planck, y lograr avanzar una sola escala más de magnitud puede suponer décadas de esfuerzo, investigación y desarrollo tecnológico.
Sin embargo, a nivel teórico nada impide considerar el tiempo de Planck como algo muy real, una magnitud que funciona muy bien en varios campos de estudio, como la gravedad cuántica o la teoría de cuerdas. Y resulta que todas esas teorías sugieren que no es posible medir una longitud menor que la longitud de Planck, y por extensión un tiempo más breve que el tiempo de Planck. El tiempo de Planck se define como el tiempo que tarda un fotón, en el vacío, en recorrer la longitud de Planck a la velocidad de la luz.
La estructura del tiempo
Pasa el Tiempo y todo evoluciona
Motivados por una serie de estudios teóricos recientes, los investigadores decidieron profundizar más en la cuestión de la estructura del tiempo, en particular en la largamente debatida cuestión de si el tiempo es “discreto” o “continuo”. La diferencia entre ambas posibilidades es enorme. Si el tiempo fuera “discreto”, significaría que estaríamos ante una sucesión de momentos “fijos” e inmóviles, como si se tratara de los fotogramas de una película. En este caso, nuestra percepción del devenir del tiempo sería solo una ilusión, provocada por el paso de los fotogramas uno detrás de otro.
Por el contrario, si el tiempo fuera “continuo”, significaría que entre dos puntos cualquiera de la línea temporal sería posible colocar un número infinito de otros puntos temporales. En este caso, el tiempo no constaría de “fotogramas fijos”, sino que fluiría continuamente.
“En nuestro estudio -asegura Faizal- proponemos que el tiempo es discreto, e incluso hemos sugerido varias formas de demostrarlo experimentalmente”.
Uno de los experimentos propuestos por el equipo de científicos consiste en medir las emisiones espontáneas de un átomo de hidrógeno. Las ecuaciones de la Mecánica Cuántica modificadas con las nuevas ideas de los científicos predicen, en efecto, una sutil diferencia en la tasa de emisiones espontáneas con respecto a las ecuaciones sin modificar. Y los efectos observados en esas mediciones pueden ser observados en las tasas de desintegración de esas partículas y de los núcleos inestables.
Basándose en sus análisis de las emisiones espontáneas del hidrógeno, los investigadores pudieron estimar que el mínimo intervalo de tiempo posible está varias órdenes de magnitud por encima del tiempo de Planck. Faizal y sus colegas sugieren, además, que los cambios que han propuesto en las ecuaciones básicas de la Mecánica Cuántica podrían modificar nuestro concepto mismo de tiempo, así como su definición. Y explican que la estructura temporal podría considerarse similar a una estructura cristalina, que consiste en segmentos discretos que se repiten de forma regular.
En términos más filosóficos, el argumento de que la estructura temporal es “discreta” sugiere que nuestra percepción del tiempo como algo que fluye constantemente no sería más que una ilusión.
“El Universo físico -explica Faizal- es en realidad como una película de imágenes en movimiento, en la que una serie de fotogramas fijos proyectados sucesivamente en una pantalla crean la ilusión de estar ante imágenes que se mueven. Por lo tanto, si este punto de vista se toma en serio, entonces nuestra percepción consciente de la realidad física basada en el movimiento continuo se convierte en una ilusión producida por una estructura matemática discreta subyacente”.
“La propuesta -continúa el investigador- convierte en una realidad la física platónica en la naturaleza”, en referencia al argumento de Platón de que existe una verdadera realidad que es independiente de nuestros sentidos. “Sin embargo, y a diferencia de las teorías del idealismo platónico, nuestra propuesta puede ser probada experimentalmente, y no solo argumentada filosóficamente”.
Noticias Prensa