lunes, 26 de octubre del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Revoluciones científicas ¡La Relatividad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

 

La Escuela Jónica Fundada por Tales de Mileto en el siglo VI a.C. TALES DE MILETO (625-546)

 

 

 

 

[stephan_quinteto_2009_hubble.jpg]

 

 

Hemos tenido que construir máquinas inmensas para poder comprobar los efectos que se producen en un cuerpo cuando éste quiere ir más rápido que la luz. Lo predijo la teoría de la relatividad especial de Einstein y se ha comprobado despuès en los aceleradores de partículas: Nada va más rápido que la luz en nuestro Universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

La única respuesta que podemos dar hoy es que así es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes –si es una nave– se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.

Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

En el futuro, grandes estaciones sumergidas en el océano y ciudades en otros mundos rodeadas de campos de fuerza que impedirán la radiación nosiva mientras tanto se va consiguiendo terraformar el planeta. La tecnología habrá avanzado tanto que nada de lo que hoy podamos imaginar estará fuera de nuestro alcance y, viajar a mundos situados a decenas de años-luz de la Tierra será para entonces, lo cotidiano

Eso es lo que imaginamos pero… ¿Qué maravillas tendremos dentro de 150 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Qué planetas habremos colonizado? ¿Habrá sucedido ya ese primer contacto del que tanto hablamos? ¿Cuántas “Tierras” habrán sido encontradas? ¿Qué ordenadores utilizaremos? ¿Será un hecho cotidiano el viaje espacial tripulado? ¿Estaremos explotando las reservas energéticas de Titán? ¿Qué habrá pasado con la Teoría de Cuerdas? Y, ¿Habrá, por fín aparecido la dichosa Gravedad cuántica y sabremos si realmente, existe esa materia oscura de la que tanto se habla? Haciendo todas estas preguntas de lo que será o podrá ser, nos viene a la memoria todo lo que fue y que nos posibilita hacer estas preguntas.

http://4.bp.blogspot.com/_4FNQ5M5FnsQ/TNB34uRv8UI/AAAAAAAAACY/rF-VVLCpPfc/s1600/ciencias1.jpg

Una cosa nos debe quedar bien clara, nada dentro de 250 años será lo mismo que ahora. Todo habrá cambiado en los distintos ámbitos de nuestras vidas y, a excepción del Amor y los sentimientos que sentiremos de la misma manera (creo), todo lo demás, habrá dado lugar a nuevas situaciones, nuevas formas de vida, nuevas sociedades, nuevas maneras y, podríamos decir que una Humanidad nueva, con otra visión y otras perspectivas.

La Ciencia habrá avanzado tanto que, la media de vida de los seres de nuestra especie habrá alcanzado el siglo y más: Nuevos medicamentos y tratamientos, el “universo de lo nano” habrá entrado con fuerza en nuestras vidas y en nuestras tecnologías, la computación que tendremos dentro de un siglo sería irreconocible para los usuarios de hoy, y, los avances en el conocimiento de los materiales, de la Astrofísica y de la Mecánica cuántica nos dejarían más que asombrados. Sin embargo, aunque estamos contribuyendo a ello, ese será otro mundo que no podremos diusfrutar y, con imaginarlo, nos conformaremos.

Ilustración abstracto con líneas y flashes  Foto de archivo - 8141891

Nuevas maneras de sondear la Naturaleza y desvelar los secretos

Todo eso ha podido y podrá ser posible gracias a los que antes que nosotros estuvieron aquí. Pero echemos una mirada al pasado. Dejando a un lado a los primeros pensadores y filósofos, como Tales, Demócrito, Empédocles, Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

https://cnho.files.wordpress.com/2010/09/comprendiendo-la-mecanica-cuantica.gif

La cuántica nos habla del “universo” de las partículas subatómicas, de los cuantos de Planck, la Gravesad lo hace del macromundo, de como ésta fuerza de la Naturaleza dibuja la geometría del espacio, mantiene unidos los planetas alrededor de las estrellas en los sistemas planetarios, o, conforma estrellas supermasivas que dejan la secuencia principal en Agujeros negros.

Nuestra Física actual está regida y dominada por dos explosiones cegadoras ocurridas en el pasado: Una fue aquel artículo de 8 páginas que escribiera Max Planck, en ese corto trabajo dejó sentados los parámetros que rigen la Ley de la distribución de la energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Un amigo físico me decía: cuando escribo un libro, procuro no poner ecuaciones, cada una de ellas me quita diez lectores. Siguiendo el ejemplo, procuro hacer lo mismo (aunque no siempre es posible) pero, en esta ocasión dejaremos el desarrollo de la energía de Planck del que tantas veces se habló aquí, y, ponernos ahora a dilucidar ecuaciones no parece lo más entretenido, aunque el lenguaje de la ciencia, no pocas veces es el de los números.

Allá por el Año 1905, en desconocido Einstein, escribía unos artículos sobr ela Relatividad Especial que hablaba de que la masa y la energía eran la misma cosa, de que la velocidad de la luz nos decía qué límite tiene el universo para transmitir información o viajar, que los objetos se contraen el en sentido de la marcha si van a una velocidad relativista, o que el Tiempo, se puede ralentizar cuando marcha a velocidades cercanas a la de la luz.

En mayo de 1905, Einstein publicó, también en la revista gran alemán “Annalen der Physik”, un segundo artículo, más sutil, sobre el movimiento browniano, descrito por Robert Brown en 1827. El famoso botánico en la naturaleza, que las piedras contienen agua, en el que hay granos de polen. Estos granos de polen están en movimiento mientras están encerrados durante millones de años.

¿Cómo es que estos granos de polen se mueven?

De la misma manera las gotas de tinta en un líquido, se diluyen debido a la constante agitación de las partículas. Este es el movimiento browniano. Durante más de 70 años, no físico, no podría explicar este fenómeno como la existencia de las moléculas, estas pequeñas partículas no fueron encontrados. El movimiento browniano se explica en 1900 por Einstein, y Marian Smoluchowski por Louis Bachelier. El movimiento realizado por el polen suspendido en el aire, por ejemplo, en un rayo de Sol a través de un bosque sombrío, debido a la existencia de las moléculas. Einstein explica el movimiento browniano de la hipótesis atómica y molecular, y calcula el tamaño de las moléculas.

Para el astrónomo Christian Huygens,  esta sustancia se llamaba “éter”, y lo permeaba todo en el universo. Por supuesto, el éter –aunque aceptado como una hipótesis muy probable– no podía ser como cualquier material. Para permitir el traslado de la onda electromagnética propuesta por Maxwell debía ser más denso que el acero, pero al mismo tiempo carecer de masa y viscosidad, para no obstruir el paso de los planetas. También debía ser perfectamente transparente, y mantenerse completamente estático y uniforme en todo el cosmos (para explicar que la velocidad de la luz fuera siempre constante, como revelaban las mediciones).

En septiembre de 1905, y todavía en la revista alemana “Annalen der Physik”, aparece el tercer artículo de Einstein.  El tercer artículo titulado “la electrodinámica de cuerpos en movimiento”, es aún más revolucionario, porque la intuición de Einstein se rompe con la física newtoniana. Einstein ataca a la asunción de un espacio y tiempo absoluto, tal como se define por la mecánica newtoniana.

También se ocupa de la existencia del éter, medio interestelar inerte debe apoyar a la luz, como el agua o el aire las ondas de sonido de apoyo a medida que avanzan.  Este artículo es el creador de la teoría de la relatividad. AE = Δmc2, Einstein redefinió ciertas leyes de la naturaleza, pero su teoría tiene límites, es por eso que se llama teoría de la relatividad.  Sólo cuando los objetos se mueven a gran velocidad en línea recta cerca del observador, se encogen y los relojes de reducir la velocidad.

El último artículo, se deriva del artículo anterior, que contiene sólo dos páginas y se publica inmediatamente después de la tercera en septiembre de 1905.  En este artículo se titula “La inercia de la energía”, y no de fines, con E = mc2, pero AE = Δmc2.

La variación del contenido energético de un sistema es igual a la variación de la masa multiplicada por c2, la velocidad de la luz. Esta idea explica que cuando un cuerpo masivo absorbe la energía, su masa ha cambiado. Esta energía se calcula multiplicando la masa por el cuadrado de la velocidad de la luz. Ahora sabemos que el poder de la energía contenida en la materia es enorme, incluso cuando un cuerpo es inerte. E es la energía expresada en julios, m la masa en kilogramos, y c es la velocidad de la luz en m/s. Los físicos entienden como la masa contiene una energía oculta, enorme. La energía oculta, lo que corresponde a 1 kg de la materia es importante, ya que es de 9 x 1016 julios (1 kW / h = 3.600.000 J). Esto corresponde a la energía producida por un reactor nuclear con una capacidad de 1400 MW durante dos años.

En cualquier evento de Ciencia, ahí aparecen esos galimatias de los números y letras que pocos pueden comprender, dicen que es el lenguaje que se debe utilizar cuando las palabras no pueden expresar lo que se quiere decir. Y, lo cierto es que, así resulta ser.

Después de lo de Planck y su radiación de cuerpo negro, cinco años más tarde, irrumpió en escena otra  revolución de la Física se produjo en 1.905, cuando Albert Einstein publicó su trabajo sobre la relatividad Especial especial nos dio un golpecito  en nuestras cabezas para despertar en ellas nuestra comprensión de las leyes que gobiernan el Universo.

Nos dijo que la velocidad de la luz es la máxima alcanzable en nuestro universo, que la masa y la energía son la misma cosa, que si se viaja a velocidades cercanas a la de la luz, el tiempo se ralentiza pero, el cuerpo aumentará su masa y se contraerá en el sentido de la misma…Y, todo eso, ha sido una y mil veces comprobado. Sin embargo, muchas son las pruebas que se realizan para descubrir los fallos de la teoría, veamos una:

Los científicos que estudian la radiación gamma de una explosión de rayos lejanos han encontrado que la velocidad de la luz no varía con la longitud de onda hasta escalas de distancia por debajo de la relatividad(longitud de Planck. Ellos dicen que esto desfavorece a algunas teorías de la gravedad cuántica que postulan la violación de la invariancia de Lorentz.

La invariancia de Lorentz se estipula que las leyes de la física son las mismas para todos los observadores, independientemente de dónde se encuentren en el universo. Teoría de la Relatividad de Einstein, utilizó este principio como un postulado de la relatividad especial especial, en el supuesto de que la velocidad de la luz en el vacío, no depende de que se esté midiendo, siempre y cuando la persona esté en un sistema inercial de referencia. En más de 100 años la invariancia de Lorentz nunca ha sido insuficiente.

 http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

El mundo moderno de la física se funda notablemente en dos teorías principales, la relatividad general y la mecánica cuántica, aunque ambas teorías parecen contradecirse mutuamente. Los postulados que definen la teoría de la relatividad de einstein  y la teoría del quántum estan incuestionablemente apoyados por rigurosa y repetida evidencia empiríca. Sin embargo, ambas se resisten a ser incorporadas dentro de un mismo modelo coherente.

La Teoría de cuerdas nos habla de las vibraciones que éstas emiten y que son partículas cuánticas. En esta teoría, de manera natural, se encuentran las dos teorías más importantes del momento: La Gravedad y la Mecánica cuántica, allí, subyacen las ecuaciones de campo de la teoría de la relatividad de Einstein que, cuando los físicas de las “cuerdas” desarrollan su teoría, aparecen las ecuciones relativista, sin que nadie las llame, como por arte de magia. Y, tal aparición, es para los físicos una buena seña.

Sin embargo, los físicos siguen sometiendo a pruebas cada vez más rigurosas, incluyendo versiones modernas del famoso experimento interferométrico de Michelson y Morley. Esta dedicación a la precisión se explica principalmente por el deseo de los físicos para unir la mecánica cuántica con la relaticidad  general, dado que algunas teorías de la gravedad cuántica (incluyendo la teoría de cuerdas y la gravedad cuántica de bucles) implica que la invariancia Lorentz podría romperse.

Granot y sus colegas estudiaron la radiación de una explosión de la relatividad y los rayos gamma (asociada con una explosión de gran energía en una galaxia distante) que fue descubierto por la NASA relatividad/Fermi Gamma-Ray Space Telescope, el 10 de mayo de este año. Se analizó la radiación en diferentes longitudes de onda para ver si había indicios de que los sucesos relativistas producían fotones con energías diferentes llegaron a los detectores de relatividad/Fermi en diferentes momentos.

Tal difusión de los tiempos de llegada parece indicar que la invariancia Lorentz efectivamente había sido violada, es decir que la velocidad de la luz en el vacío depende de la energía de la luz y no es una constante universal. Cualquier dependencia de la energía sería mínima, pero aún podría resultar en una diferencia mensurable en los tiempos de llegada de relatividad/fotones debido a los miles de millones de años luz de a la que se encuentran las explosiones relativistas de rayos gamma.


Cuando nos acercamos a la vida privada del genio… ¡también, como todos, era humano!

De la calidad de Einstein como persona nos habla un detalle: Cuando el Presidente Chaim Weizmann de Israel murió en 1952, a Einstein,  se le ofreció la presidencia, pero se negó, diciendo que no tenía “ni la habilidad natural ni la experiancia para tratar con seres humanos.” Luego escribió que se sentía muy honrado por el ofrecimiento del estado de Israel, pero a la vez triste y avergonzado de no poder aceptarla.

Pero sigamos con la segunda revolución de su teoría que se dio en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general que varió por completo el concepto del Cosmos y nos llevó a conocer de manera más profunda y exacta la Gravedad de Newton que mejoró. En realidad, a partir de la relatividad General nació la verdadera Cosmología con objetos antes inexistentes como agujeros negros y de gusano entre otros muchos fenómenos que dicha teoría nos trajo.

http://www.cosmonoticias.org/wp-content/uploads/2011/05/energia-oscura-y-gravedad.jpg

      La Relatividad de Einteins  nos decía que el espacio se curva en presencia de grandes masas

En la Teoría Especial de la Relatividad, se refirió a sistemas de referencias inerciales (no acelerados). Asume que las leyes de la física son idénticas en todos los sitemas de referencia y que la velocidad de la luz en el vacío, c, es constante en el todo el Universo y es independiente de la velocidad del obervador.

La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una de las conclusiones de la teoría es que la masa de un cuerpo, aumenta con la velocidad (hay una ecuación quer así lo demuestra), y, tal hecho, ha sido sobradamente comprobado en los aceleradores de partículas donde un muón, ha aumentado más de diez veces su masa al circular a velocidades cercanas a la de la luz. Y el muón que tiene una vida de dos millonésimas de segundo, además, al desplazarse a velocidades relativistas, también ven incrementado el tiempo de sus vidas.

El Acelerador de Partículas LHC es una Obra inmensa que ha construido el SER Humano para saber sobre la Naturaleza de la materia y…

Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura

La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación; es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto que incluye, en cada experimento, los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías, el resultado finalmente obtenido. Es un proceso largo y muy complejo, la consecuencia de muchos años de investigación de muchos equipos diferentes.

Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. Y generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).

Otras de las conclusiones de la teoría de Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.

Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.

http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

       Todo lo grande está hecho de cosas pequeñas

Fue Max Planck, el Editor de la Revista que publicó el artículo de Albert Einstein, quien al leerlo se dió cuenta de la enorme importancia de lo que allí se decía. A partir de aquel momento, se convirtió en su valedor, y, en verdad, Einstein  reconoció publicamente tal ayuda.

En la segunda parte de su teoría, la Relatividad General, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.

 Image of the sky in the region of the centre of the Milky Way

¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia. La gravedad presente en un agujero negro gigante hace que en ese lugar, el tiempo deje de existir, se paralice y el espacio, se curve en una distorsión infinita. Es decir, ni espacio ni tiempo tienen lugar en la llamada singulariudad.

Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann ) sobre la distorsión del espaciotiempo.

Un Agujero Negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del Agujero Negro.


             Las ecuaciones de campo de la relatividad general de Einstein… ¡Nos dicen tántas cosas!

Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m.: л = 3,14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿ Cómo puede ser esto ? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.

 

     Con Einstein llegó la cosmología moderna, otra manera de mirar el Universo

Con esta teoría de la Relatividad General, entre otros pasos importantes, está el hecho de que dió lugar al nacimiento de la Cosmología que, de alguna manera, era como mirar con nueva visión a lo que l Universo podía significar, Después de Einstein,  el Universo no fue el mismo.

El análisis de la Gravitación que aquí se miuestra interpreta el Universo como un continuo espacio-tiempo de cuatro dimensiones en el el que la presencia de una masa (como decía antes) curva el espacio para crear un campo gravitacional.

De la veracidad y comprobación de las predicciones de ésta segunda parte de la Teoría Relativista, tampoco, a estas alturas cabe duda alguna, y, lo más curioso del caso es que, después de casi un siglo (1.915), aún los físicos están sacando partido de las ecuaciones de campo de la teoría relativista en su versión general o de la Gravedad.

Tan importante es el trabajo de Einstein que, en las nuevas teorías, en las más avanzadas, como la Teoría M (que engloba las cinco versiones de la Teoría de Cuerdas), cuando la están desarrollando, como por arte de magía y sin que nadie las llame, surgen, emergen, las ecuaciones de Einstein de la Relatividad General.

La luz se propaga en cualquier medio pero en el vacío, mantiene la mayor velocidad posible en nuestro Universo, y, hasta el momento, que se sepa, nada ha corrido más que la luz en ese medio. Algunos han publicado ésta o aquella noticia queriendo romper la estabilidad de la relatividad especial y han publicado que los neutrinos o los taquiones van más rápidos que la luz. Sin embargo, todo se quedó en eso, en una noticia sin demostración para captar la atención del momento.

La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:

3×1010 × 3×1010, ó 9×1020.

Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías.  Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

Emilio Silvera

Buena entrevista en El Mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en Entrevista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

James Peebles, profesor emérito de Física en la Universidad de Princeton:

“Fue emocionante escuchar los primeros latidos del Big Bang” 

ANGEL NAVARETE

Miguel G. Corral

 

James Peebles (Winnipeg, Canadá, 1935) ya no se ocupa de los grandes temas de moda en Física. Prefiere investigar asuntos que atraen menos la atención del público. Pero hace 50 años, él mismo fue parte de la Historia de la Física durante el descubrimiento del Fondo Cósmico de Microondas, o lo que es lo mismo, de los primeros latidos del Big Bang, que aún pueden escucharse en el Universo. El hallazgo, la fama y el premio Nobel (1978) fue a parar a dos jóvenes físicos que estaban construyendo una enorme antena para los Laboratorios Bell, Arno Penzias y Robert Wilson. Pero Peebles, junto con el grupo de Bob Dicke en la Universidad de Princeton, fueron los verdaderos encargados de comprobar la importancia de aquel hallazgo fortuito. Peebles, que ocupa el puesto de profesor Emérito Albert Einstein de Ciencia en Princeton, acaba de visitar Madrid para impartir la conferencia El descubrimiento y la expansión del Universo en la Fundación BBVA.

¿Cómo vivió el descubrimiento del Fondo Cósmico de Microondas de Penzias y Wilson?
Bueno, Penzias y Wilson no encontraron el Fondo Cósmico de Microondas. Encontraron en un experimento una fuente de radiación extra que no se podía explicar, esto fue en 1959. Durante mucho tiempo, hicieron enormes esfuerzos para identificar la fuente de esa radiación, y sólo lograron establecer que no se podía haber originado por la antena o por el entorno físico. Estaban totalmente perdidos, no sabían qué hacer. Fue en Princeton donde les dieron una solución a su problema. Tomamos medidas y teníamos que analizarlas. Había algo nuevo que hacer, eso fue lo más fascinante al principio y llevó mucho tiempo confirmarlo. No hubo un día en el que se gritó ¡Eureka!, sino que fue un descubrimiento después de otro.
¿Penzias y Wilson comprendieron realmente lo que habían encontrado cuando lo leyeron en The New York Times?
Más o menos. Estos dos jóvenes físicos no se habían formado en Astronomía ni en Cosmología. Sabían que tenían la detección de algo, pero sí creo que no entendieron completamente lo importante que podía ser hasta que lo leyeron en The New York Times, quizá, o en conversaciones con nosotros, no lo sé. Fue algo bastante inesperado para ellos imaginar que podían haber detectado radiación procedente del Big Bang.
¿No fue decepcionante para ustedes en Princeton que unos advenedizos descubrieran lo que ustedes llevaban años buscando?
No puedo hablar por Dicke, lo cierto es que nunca le hice esa pregunta. Puedo contarle mis sentimientos y diría: emoción. Fue emocionante poder escuchar los primeros latidos del ‘Big Bang’. Y genial para nosotros tener datos que medir y que analizar. Yo era joven, pero no tuve ninguna sensación de decepción de no haber podido realizar el primer descubrimiento. Y no he escuchado nunca entre mis colegas de Princeton ninguna conversación sobre decepción… no, yo creo que fue más emoción.
¿Y cuando ganaron el Nobel?
Bueno, eso fue una torpeza. El Premio Nobel es concedido por gente que hace un gran esfuerzo por ser justo y riguroso. Y después tienen que tomar una decisión. Las decisiones humanas están siempre cargadas de ruido que provocan las decisiones equivocadas. Es obvio que Penzias y Wilson merecían el premio Nobel por enseñar que la antena no estaba produciendo aquel ruido extra. Que lo hubieran ganado Penzias, Wilson y Dicke hubiera sido lo adecuado. Pero en su lugar fueron Penzias, Wilson y Kapitsa, por la física de baja temperatura… ¡Qué combinación es esa! [risas] El comité del Nobel cometió un error, todo el mundo comete errores.
El Universo aún se está expandiendo… ¿sabemos a qué velocidad y cómo lo hace?
                             Uno intuyó la expansión, y, el otro, la verificó
No. Todas nuestras teorías están incompletas. No tenemos una realidad absoluta. ¿Sabemos por qué se está expandiendo el Universo? La respuesta sencilla es no. Sabemos cómo de rápido lo está haciendo con una gran precisión.
¿Y es más rápido que la luz?
¡Sí! ¡Yo mismo lo escribí! Es cierto, se expande a una velocidad mayor que la de la luz. Y, ¿contradice esto a la Relatividad General? ¡No! Claro que no lo hace.
Sería un buen año para vérselas con la teoría de Einstein
       El Universo se curva en presencia de grandes masas
Sí, es fascinante, se cumplen 50 años del hallazgo del Fondo Cósmico de Microondas y 100 de la Teoría de Relatividad General. Pero la Relatividad General nos dice con predicciones bien comprobadas que las velocidades relativas de intersección tienen que ser siempre sublumínicas. Las partículas no pueden superar a otra a velocidades superiores a la de la luz. Pero sí podría hacerlo, según esta teoría, una partícula que se alejase de nosotros en el límite del Universo. Es una parte de la teoría que no ha podido ser comprobada porque no podemos ver esa partícula. Así que, mala suerte.
¿La energía oscura puede estar detrás de la expansión del Universo?
Sí, podría perfectamente. Hemos analizado bien lo que pasó cuando el Universo tenía unos dos segundos de antigüedad, pero no hemos comprobado lo que ocurrió antes de eso. Para mí es convincente que la energía oscura podría estar allí. Lo que no es tan convincente es la naturaleza que pudiera tener esa energía, eso es algo totalmente desconocido. Se suele decir que ese es el puzzle más profundo de la Física actual.
¿La nueva puesta en marcha del LHC será una buena oportunidad para demostrar la existencia de la materia oscura?
Es una buena oportunidad, pero ¿pondría dinero en ello? No

¡Universos paralelos! Pero…, ¿los habrá?

Autor por Emilio Silvera    ~    Archivo Clasificado en Universos paralelos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

Se ha realizado un profundo estudio sobre los efectos del Jamón en la salud

 

El estudio del Ramón y Cajal se hizo con dos tipos de jamones de buena calidad -de cebo y de bellota- y dos grupos de voluntarios. Ambos tipos de jamón mostraron beneficios cardiovasculares, aunque la mejora endotelial fue superior entre los que consumieron bellota, de cerdos criados a la manera tradicional, al aire libre y alimentados de hierbas y bellotas. La explicación está en el mayor contenido de unos compuestos llamados polifenoles, unos potentes antioxidantes y antiinflamatorios a nivel vascular.

 

 

 

Los científicos de la NASA Gerónimo Villanueva y Michael Mumma explican su hallazgo. / NASA

Se dice que un periodista es un vasto océano de conocimiento con un dedo de profundidad, y algo parecido le ocurría a Marte. Hace 4.500 millones de años, nuestro vecino en el universo albergó suficiente agua como para cubrir todo el planeta con un mar extenso pero superficial, con una profundidad media de solo 137 metros, según anunció en su momento la NASA.

 

 

 

Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo. Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

 

 

 

La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

 

 

¿Por qué cuerdas?

“La teoría de cuerdas es física del siglo XXI,  que cayó accidentalmente en el siglo XX.”

Edward  Witten

 

 

 

Cuando explicó la Teoría M, algunos salieron de la conferencia asombrados

Edward Witten, del Instituto para Estudios Avanzados de Princeton,  New Jersey, domina el mundo de la física teórica.  Podríamos decir que Witten, es el que tira del pelotón, el más brillante físico de altas energías que marca las tendencias actuales en la comunidad científica de la física teórica y el que ha sido capaz de plantear la versión más moderna de la teoría de supercuerdas, conocida como teoría M.

En esta avanzada Teoría, subyace una teoría cuántica de la Gravedad, es decir, allí pueden estar juntas la me´canica cuántica y la relatividad de Eintein sin que surjan los dichosos infinitos. Es curioso ver como, cuando los físicos de la Teoría de Cuerdas están desarrollando las ecuaciones de campo, como por arte magia, sin que nadie las llame, allí aparecen las ecuaciones de Einstein de la Relatividad General, y, tal curiosidad nos lleva a pensar que, esta Teoría, aunque no ha podido ser verificada mediante experimentos, está en el buen camino.

Hablémos ahora de los Universos Paralelos, del Multiverso.

Hablando de universos paralelos, Douglas Adams nos dice:

“Lo primero que hay que comoprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que ha comprendido hasta el momento no es verdadero.”

 

 

Claro que nosotros podemos imaginar y plantearnos una serie de escenarios que sean diferentes a éste nuestro, en el que, sólo podemos contemplar un Universo, el nuestro. Tenemos una visión plausible del Universo basada en que hay una sóla forma para las constantes y las leyes de la Naturaleza. Los universos son entidades de una vasta complejidad y no trucos difíciles de hacer, y cuanto más complicado son, más piezas hay que encajar. Además, ¿no tenemos de sobra con el nuestro, al que no hemos llegado a comprender?

La idea de que haya otros universos no es nueva. En los siglos XVIII y XIX se especuló con esa idea como parte del problema de la existencia de otros mundos.  Charles Pantin decía: “La aparente unicidad del universo depende básicamente del hecho de que podamos concebir muchas alternativas para él.”

De todas las maneras, estaría bien que algún día lejos aún en el futuro, los científicos pudieran descubrir que sí existe la posibilidad de pasar de un Universo a otro, y a otro, y a otro. De tal manera que, llegado el momento, pudiéramos trasladarnos de casa para evitar, ciertos escenarios desfavorables para nosotros y que, en un Universo relativiamente apacible como lo es el nuestro ahora, estaría la solución de poder hacer la mudanza.

Pasear por las playas de otros mundos

Claro que nuestras excursiones por los nuevos senderos que han abierto los intentos de entender y aplicar los valores de las constantes universales plantean muchas grandes preguntas sobre la Naturaleza de las cosas. Hemos comprobado que los cosmólogos contemplan activamente la Naturaleza de “otros mundos” en los que las constantes de la naturaleza toman otros valores diferentes que en el nuestro. Parece que cambios muy pequeños en muchas de nuestras constantes harían la vida imposible. esto plantea la cuestión más profunda de si estos “otros mundos” -universos- existen en algún sentido y, si es así, qué los hace diferentes del universo que nosotros vemos y conocemos.

También ofrece una alternativa al viejo argumento de que el aparente buen ajuste del mundo para ue posea todas aquellas propiedades requeridas para la vida es prueba de alguna forma de diseño espcial. Pues si existen todas las alternativas posibles, debemos encontrarnos necesariemente habitando en una de las que permiten la vida. U podríamos ir aún más lejos y aventurar la conjetura de que podríamos esperar encontrarnos en el tipo más probable de universo que sustenta vida. La primera persona que parece haber expresado este enfoque de los muchos universos, fue el biólogo Charles Pantin, quien trató de encontrar un contexto más atractivo para reflexionar sobre propiedades especiales de la estructura, constantes y leyes del universo introduciendo la idea de un conjunto de muchos “mundos” -universos-, cada uno de ellos con una serie diferenciada de propiedades físicas.

 Multiverso Nature 438_7069_739.jpeg

Si pudiéramos saber que nuestro propio Uiverso era sólo uno entre un número indefinido con propiedades cambiantes quizá podríamos invocar una solución análoga al principio de selección natural; que sólo en ciertos universos, entre los que se incluye el nuestro, se dan las circunstancias especiales para la existencia de la vida, y al menos que se satisfaga esta condición, no habrá observadores para advertir tal hecho.

Claro que, concebir siquiera tal multiverso de todos los universos posibles es que hay muchas cosas qu podrían ser diferentes. De nuestro estudio de las matemáticas sabemos que existen lógicas diferentes a la que utilizamos en la práctica, en la que los enunciados son o verdaderos o falsos. Análogamente, hay diferentes estructuras matemáticas; diferentes leyes de la Naturaleza posibles; diferentes valores para las constantes de la naturaleza; diferentes números para los valores de espacio y de tiempo; diferentes condiciones de partida para el universo; y diferentes resultados aleatorios para secuencias complejas de suscesos. Frente a ello, la colección de todos los mundos posibles tendría que incluir, como mínimo, todas las permutaciones y combinaciones posibles de estas diferentes cosas. Obtener una comprensiòn de tal galimatías es pedir demasiado.

 

Un multiverso cuajado de pompas cristalinas, cada una un universo lleno de galaxias, de mundos… ¿de vida?

Ya nos podemos hacer una idea de lo que podría suceder si realmente existieran esos otros universos posibles, en los que unos tendrían más dimensiones que el nuestro, la Gravedad sería diferente, la fuerza electromagnética tendría otros parámetros o escalas, y, la radiación a la que lleva la fuerza nuclear débil podría ser más fuerte y devastadora, mientras que, la fuerzxa nuclear fuerte, sería diferente y, la materia que conformaría tendría propiedades desconocidas en nuestro universo. Claro que, no podemos saber si realmente esos universos serían posibles y, siendo asó (que lo es), la pregunta es: ¿hay realmente universos alternativos permitidos o, en realidad son tan posibles como la existencia de círculos cuadrados?

No me extrañaría que cuando la Teoría de Todo sea un hecho, nos muestre también que es muy restrictiva cuando se trate de dar “permiso” para la existencia de esos universos “paralelos” que nuestras mentes soñaron como consecuencia de una ignorancia que sólo se puede permitir, ciertas licencias, por medio de la imaginación infinita en la que, la ciencia, no puede poner barreras.

Universos Paralelos ¿ tiene el nuestro un gemelo ? (4 de 4)

Como no sabemos, como la ignorancia nos lleva a la especulación y a la conjetura, pensamos y pintamos esos universos paralelos de mil maneras distintas y, en cada uno de ellos, podríamos encontrar un “mundo” diferente. En unos, como en el nuestro estará presente la vida, en otros, por no haberse producido expansión alguna, todas las galaxias conformarán una sólo y enorme galaxia universal que será la portadora de las estrellas y los mundos, otros universos habrán nacido muertos, y, también los habrá en los que, al ser diferentes las fuerzas, no reunirán las condiciones para que, ninguna clase de vida pueda estar allí presente. Otros muchos también, aunque estarán allí formando parte del Multiverso, no podrán ni consioderar universo al ser sistemas cerrados estáticos, en los que, ni la materia ni la energía tienen actividad para formar estrellas, galaxias y mundos…¿Para qué serviría un universo así?

¡Qué nos gusta imaginar! En realidad tenemos una Imaginación creadora, lo que no es posible hacer de manera física, hasta que lo podamos concebir, antes, lo hemos hecho una y otra vez xon nuestra imaginación y, de ahí, surgen las ideas quen nos llevan a plasmar en hechos lo imaginado. ¡No sería la primera vez que tal cosa ocurre!.

Estas pequeñas fantasías muestran de qué forma es concebible que el comportamiento que podríamos estimar consciente pudiera emerger de una simulación por ordenador. Pero si preguntamos dónde está “este” compartamiento consciente parce que nos vemos empujados a decir que vive en el programa. Es parte del software que se está ejecutando en la máquina y que consiste en una colección de deducciones muy complejas (“teoremas”) que se siguen de las reglas de partida que definen la lógica de la programación. esta vida “existe” en el formalismo matemático.

 

De todas las maneras, de existir esos otros universos, surgieron de la misma manera que surgió el nuestro, ya que, las leyes de la Naturaleza son las mismas en todas partes pero… ¿Serán las mismas en potros universos que podrían ser distintos al nuestro? No sabemos ni podemos imaginar como sería la física de esos otros universos que, en algunos las cosas serían una repetición de este nuestro y, en otros, podrían tener otras leyes fundamentales y hasta la química y la física serían otras, no hablemos, de qué formas de vida podrían estar en ellos presente.

Estos ejemplos tratan de captar unos aspectos de la Naturaleza que están reflejados, de manera perfecta, en un programa de ordenador,  que es, actualmente, la única manera que tenemos de poder reproducir lo que podría ser. Físicamente estamos imposibilitados para comprobar dicha existencia y, hacemos un buen modelo de lo que debería ser un multiverso, insertamos dentro del programa todos y cada uno de los ingredientes necesarios y, cuando podemos contemplar en la pantalla los resultados definitivos ya refinados, la sensación que podemos percibir, si el programa es bueno y está bien diseñado, es que estamos visitando un auténtico multiverso, la reunicón de muchos mundos que podrían ser y, cada cual, con sus características propias.

Claro que, si todo es tan subjetivo como algunos creen que es, podríamos estar en un  universo que no es un universo sino una simple idea fugaz, pero, sales del momentaneo desvarío cuando en la vida cotidiana, sientes la sacudida muy real, al tener que dar la entrada de una casa para vivir, es en ese momento, y, en una prosaica situación, cuando te das cuenta de que hay una realidad que no resulta tan bella como todas aquellas otras que nos transportan a esos mundos soñados que están alumbrados por brillantes y azuladas estrellas. El “universo” de la vida cotidiana…¡Es otra cosa!

emilio silvera

Tragedia en Chile

Autor por Emilio Silvera    ~    Archivo Clasificado en Caos y Complejidad    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Vista general del volcán activo Calbuco en Puerto Montt, ubicado a 1000 kilómetros de Santiago de Chile (Chile)

 

La erupción del Volcan Cabulco ha obligado a la evacuación de miles de personas. Estas imágenes nos hablan de la indefensión a la que estamos sometidos cuando la Naturaleza habla y se recicla evolucionando con el transcurrir del tiempo. Las placas tectónicas son dinámicas y producen catástrofes naturalez que no podemos dominar.

Veamos algunas imágenes del suceso.

Unos niños contemplan el volcán en erupción desde Puerto Varas, Chile

El volcán visto desde Puerto Montt

Vista desde el lago Llanquihue en Puerto Varas

Las autoridades han declarado alerta roja

Cuando la Naturzleza bosteza… ¡Nosotros a temblar!

Sólo deseamos desde aquí que la buena gente afectada por el suceso, regresen a sus hogares lo antes posible. La catástrofe que afecta a una parte infinitesimal de la población del mundo, es, sin embargo, una gran tragedia para esos pocos afectados que, en no pocas ocasiones, ven como les cambia la vida.

¡Estamos con ellos!

emilio silvera

Fuente de las imágenes: El diario La Razón.

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Aquí cada día, elegimos una cuestión distinta que se relaciona, de alguna manera, con la ciencia que está repartida en niveles del saber denominados: Matemáticas, Física, Química,Astronomía, Astrofísica, Biología, Cosmología… y, de vez en cuando, nos preguntamos por el misterio de la vida, el poder de nuestras mentes evolucionadas y hasta dónde podremos llegar en nuestro camino, y, repasamos hechos del pretérito que nos trajeron hasta aquí. Bueno, de hecho, también especulamos con eso que llamamos futuro, y, nos preguntamos si estamos haciendo bien las cosas para evitar que, podamos crear alguna especie artificial que nos esclavice.

info

Algunos postulan que el Universo surgió de la nada, y, desde luego, la Nada, como la Eternidad o la Infinito, ¡no existen! Tengo claro que, si surgió… ¡Es porque había! Hablamos de una singularidad, un punto de densidad y energías infinitas de donde pudo surgir todo lo que existe, le llamamos Big Ban y, al menos por el momento, es el Modelo más aceptado. Sin embargo, seguros seguros de que así sea… ¡No lo podemos estar! Existen muchas incognitas y preguntas sin contestar sobre ese supuesto suceso que… más de diez millones de años más tarde, nos trajo hasta aquí.

Lo que sucede primero, no es necesariamente el principio. Antes de ese “Principio”, suceden algunas cosas que nosotros no hemos podido o sabido percibir. Sin embargo, hay cosas que no cambian nunca. Hace tiempo, los sucesos que constituían historias eran las irregularidades de la experiencia. Sabemos que lo que no cambia son las Constantes de la Naturaleza pero, tampoco cambia el Amor de una madre por un hijo, la salida y la puesta del Sol, nuestra curiosidad, y otras muchas cosas que conviven con nosotros en lo cotidiano.

                                                                    Hay cosas en la Naturaleza que son inmutables

Poco a poco, los científicos llegaron a apreciar el misterio de la regularidad y lo predecible del mundo. Pese a la concatenación de movimientos caóticos e impredecibles de átomos y moléculas, nuestra experiencia cotidiana es la de un mundo que posee una profunda consistencia y continuidad. Nuestra búsqueda de la fuente de dicha consistencia atendía primero a las leyes de la Naturaleza que son las que gobiernan como cambian las cosas. Sin embargo, y al mismo tiempo, hemos llegado a identificar una colección de números misteriosos arraigados en la regularidad de la apariencia. Son las Constantes de la Naturaleza que, como la carga y la masa del electrón o la velocidad de la luz, le dan al Universo un carácter distintivo y lo singulariza de otros que podríamos imaginar. Todo esto, unifica de una vez nuestro máximo conocimiento y también, nuestra infinita ignorancia.

http://extremisimo.com/wp-content/uploads/2009/09/swift-m31.jpg

                              En esta galaxia también  están presentes las constantes de la Naturaleza

Esos números misteriosos (el valor de esas constantes fundamentales), son medidos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invariancia. Sin embargo, no podemos explicar sus valores. ¿Por qué la constante de estructura fina vale 1/137? Nadie puede contestar a esa “simple” pregunta. Sabemos que ahí, en esa constante, están involucrados los tres guarismos h, e, y c. El primero es la constante de Planck (la mecánica cuántica), el segundo el Electrón (el electromagnetismo), y, el tercero, la velocidad de la luz (la relatividad especial de Eisntein).

A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos misteriosos del ritmo del Universo que son inquebrantables en su constancia, así lo podemos comprobar en la fuerza gravitatoria o en la velocidad de la luz en el vacío entre otros. Son estas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distingue de otros muchos que pudiéramos imaginar. Existe un hilo invisble que teje incesante una continuidad a lo largo y a lo ancho de toda la Naturaleza: Algunas cosas cambian para que todo siga igual.

 Mira, la estrella cometa

Allí lejos, en esos otros mundos que, situados en galaxias lejanas son parecidos al nuestro, seguramente también, pasarán las mismas cosas que aquí.

En regiones lejanas del Universo, por muy extrañas que nos pudieran parecer, también estarían regidas por las mismas constantes de la Naturaleza que en la nuestra, el Sistema solar. Esas constantes están presentes en todas partes y, al igual que las cuatro fuerzas fundamentales, disponen que todo transcurra como debe ser.

Así que, tomando como patrón universal esas constantes, podemos esperar que ciertas cosas sean iguales en otros lugares del espacio además de la Tierra, lo único que in situ, conocemos. Hasta donde nuestros conocimientos han llegado también parece razonable pensar que dichas constantes fueron y serán las mismas en otros tiempos además de hoy, ya que, para algunas cosas, ni la historia ni la geografía importan. De hecho, quizá sin un substrato semejante de realidades invariables no podrían existir corrientes superficiales de cambio ni ninguna complejidad de mente y materia. Todos sabemos, por ejemplo que, si la carga del electrón variara aunque sólo fuese una diez millonésima parte de la que es, la vida no podría existir.

                       Esas constantes hacen posible nuestra presencia aquí

La invariancia de las constantes hace posible que nuestro Universo contenga las maravillas que podemos en él observar. Sin embargo, a lo largo de la historia muchos se han empeñado en hacerlas cambiar…pero no lo consiguieron. No pocas veces tenemos que leer en la prensa o revistas “especializadas” noticas como estas:

“Nueva evidencia sostiene que los seres humanos vivimos en un área del Universo que está hecha especialmente para nuestra existencia. ¿Según los cientificos? Esto es lo que más se aproxima a la realidad. El controversial hallazgo se obtuvo observando una de las constantes de la naturaleza, la cual parece ser diferente en distintas partes del cosmos.”

 

Desde luego, no estoy muy conforme con esto, ya que, si es verdad que nosotros no podríamos vivir junto a un Agujero negro gigante, que por otra parte, no deja de ser un objeto singular que se sale de lo corriente. La normalidad son estrellas y planetas que, en las adecuadas circunstancias, tendrán las mismas cosas que aquí podemos observar mirando al Sol y los planetas que lo circundan, donde unos podrán contener la vida y otros no, dado que la presencia de una atmósfera y agua líquida determina lo que en ellos pueda estar presente.

 

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que Lo que ocurra en la Naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

 

Los posibles futuros de nuestro universo

 

Yo aconsejaría a los observadores que informaron y realizaron “el estudio” (que se menciona más arriba) que prestaran más atención o que cambiaran los aparatos e instrumentos de los que se valieron para llevarlo a cabo, toda vez que hacer tal afirmación, además de osados, se les podría calificar de incompetentes.

De estar en lo cierto, tal informe se opondría al principio de equivalencia de Albert Einstein, el cual postula que las leyes de la física son las mismas en cualquier región del Universo. “Este descubrimiento fue una gran sorpresa para todos”, dice John Webb, de la Universidad de New South Wales, en Sidney (Australia ), líder del estudio que sigue diciendo: Aún más sorprendente es el hecho de que el cambio en la constante parece tener una orientación, creando una “dirección preferente”, o eje, a través del Universo. Esa idea fue rechazada más de 100 años atrás con la formulación de la teoría de la relatividad de Einstein que, de momento, no ha podido ser derrocada (aunque muchos lo intentaron).

profesor diseño grafico, profesor diseño web, curso illustrator, curso photoshop, curso dreamweaver, diseno grafico, diseño web

                                Los autores de tal “estudio” se empeñaron en decir que:

“La Tierra se ubica en alguna parte del medio de los extremos, según la constante “alpha”. Si esto es correcto, explicaría por qué dicha constante parece tener un valor sutilmente sintonizado que permite la química, y por lo tanto la vida, como la conocemos.

Con un aumento de 4% al valor de “alpha”, por ejemplo, las estrellas no podrían producir carbón, haciendo nuestra bioquímica imposible, según información de New Scientist.”

 

Siendo cierto que una pequeña variación de Alfa, no ya el 4%, sino una simple diezmillonésima, la vida no podría existir en el Universo. Está claro que algunos, no se paran a la hora de adquirir una efímera notoriedad, ya que, finalmente, prevalecerá la verdad de la invariancia de las constantes que, a lo largo de la historia de la Física y la Cosmología, muchas veces han tratado de hacerlas cambiantes a lo largo del tiempo, y, sin embargo, ahí permanecen con su inamovible estabilidad.

Veamos por encima, algunas constantes:

La Constante de Gravitación Universal: G

La primera constante fundamental es G, la que ponemos delante de la fórmula de la gravedad de Newton. Es una simple constante de proporcionalidad pero tambien ajusta magnitudes: se expresa en N*m2/Kg2.

G = (6{,}67428\pm 0{,}00067) \cdot 10^{-11}~\mathrm{\frac{m^3}{kg \cdot s^2}}

Es tal vez la constante peor medida (sólo se está seguro de las tres primeras cifras…), y como vemos la fuerza de la gravedad es muy débil (si no fuera porque siempre es atractiva ni la sentiríamos).

La Constante Electrica: K

                                             No confundir con la constante K de Bolzman para termodinamica y gases…

La ley de Coulom es practicamente igual a la de la gravitación de Newton, si sustituimos las masas por las cargas, es inversa al cuadrado de la distancia y tiene una constante de proporcionalidad llamada K.  La constante es la de de Coulomb y su valor para unidades del SI es K = 9 * 109Nm2C2

La velocidad de la luz c = 299.792.458 m/s y se suele aproximar por 3·10^8m/s

Según la teoría de la relatividad de Einstein, ninguna información puede viajar a mayor velocidad que la luz. Científicos australianos afirman, sin embargo, haber desarrollado las fórmulas que describen viajes más allá de este límite. ¡Será por soñar!

Que la velocidad de la luz es una constante se comprobó hasta la saciedad en diversos experimentos, como el famoso experimento Michelson-Morley que determinó mediante un interferómetro que la velocidad de la luz no dependía de la velocidad del objeto que la emitía, esto descartó de golpe la suposición de que hubiera un “eter” o sustancia necesaria por la que se propagara la luz.

En su lugar aparecieron las famosas transformaciones de Lorentz. La contracción de Lorentz explicaba el resultado del experimento. La rapidez constante de la luz es uno de los postulados fundamentales (junto con el principio de causalidad y la equivalencia de los marcos de inercia) de la Teoría de la Relatividad Especial.

Así que, amigos míos, esas cantidades conservarán su significado natural mientras la ley de gravitación y la de la propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos. A tal respecto Max Planck solía decir:

“Por lo tanto, al tratarse de números naturales que no inventaron los hombres, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos” .

 

 

 

 

En sus palabras finales alude a la idea de observadores situados en otros lugares del Universo que definen y entienden esas cantidades de la misma manera que nosotros, sin importar que aparatos o matemáticas pudieran emplear para realizar sus comprobaciones.

Estaba claro que Planck apelaba a la existencia de constantes universales de la Naturaleza como prueba de una realidad física completamente diferente de las mentes humanas. Pero él quería ir mucho más lejos y utilizaba la existencia de estas constantes contra los filósofos positivistas que presentaban la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo sería reemplazada por otra mejor. Claro que Planck reconocía que la inteligencia humana, al leer la naturaleza había desarrolado teorías y ecuaciones para poder denotarlas pero, sin embargo, en lo relativo a las constantes de la naturaleza, éstas habían surgido sin ser invitadas y, como mostraban claramente sus unidades naturales (unidades de Planck) no estaban escogidas exclusivamente por la conveniencia humana.

 

La velocidad de c incide en todo el universo

Las constantes de la Naturaleza inciden en todos nosotros y, sus efectos, están presentes en nuestras mentes que, sin ellas, no podrían funcionar de la manera creadora e imaginativa que lo hacen. Ellas le dan el ritmo al Universo y hacen posible que todo transcurra como debe transcurrir.

Es curioso comprobar que, una de las paradojas de nuestro estudio del Universo circundante es que a medida que las descripciones de su funcionamiento se hacen más precisas y acertadas, también se alejan cada vez más de toda la experiencia humana que, al estar reducidas a un ámbito muy local y macroscópico, no puede ver lo que ocurre en el Universo en su conjunto y, por supuesto, tampoco en ese otro “universo” de lo infinitesimal que nos define la mecánica cuántica en el que, cuando nos acercamos, podemos observar cosas que parecen fuera de nuestro mundo, aunque en realidad, sí que están aquí.

 

La revolución de la mecánica cuántica empieza a materializarse, y el qubit es el principal protagonista. Siendo la unidad mínima de información de este extraño mundo, permitirá procesar toda la información existente en segundos. La revolución de la mecánica cuántica empieza a materializarse, y el qubit es el principal protagonista. Siendo la unidad mínima de información de este extraño mundo, permitirá procesar toda la información existente en segundos.


No podemos descartar la idea de que, en realidad, puedan existir “seres también infinitesimales” que, en sus “pequeños mundos” vean transcurrir el tiempo como lo hacemos nosotros aquí en la Tierra. En ese “universo” especial que el ojo no puede ver, podrían existir otros mundos y otros seres que, como nosotros, desarrollan allí sus vidas y su tiempo que, aunque también se rigen por las invariantes constantes universales, para ellos, por su pequeñez, el espacio y el tiempo tendrán otros significados. Si pensamos por un momento lo que nosotros y nuestro planeta significamos en el contexto del inmenso universo… ¿No viene a suponer algo así?

Einstein nos dejó dichas muchas cosas interesantes sobre las constantes de la Naturaleza en sus diferentes trabajos. Fue su genio e intuición sobre la teoría de la relatividad especial la que dotó a la velocidad de la luz en el vacío del status especial como máxima velocidad a la que puede transmitirse información en el Universo. El supo revelar todo el alcance de lo que Planck y Stoney simplemente habían supuesto: que la velocidad de la luz era una de las constantes sobrehumanas fundamentales de la Naturaleza.

 

La luz se expande por nuestro Universo de manera isotrópica, es decir, se expande por igual en todas las direcciones. Así actúan las estrellas que emiten su luz o la bombilla de una habitación. Cuando es anisotrópica, es decir que sólo se expande en una dirección, tendríamos que pensar, por ejemplo, en el foco de un teatro que sólo alumbra a la pianista que nos deleita con una sonata de Bach.

                                         La luz de las estrellas: Podemos ver como se expande por igual en todas las direcciones del espacio (Isotrópica)

Claro que, cuando hablamos de las constantes, se podría decir que algunas son más constantes que otras. La constante de Boltzmann es una de ellas, es en realidad una constante aparente que surje de nuestro hábito de medir las cosas en unidades. Es sólo un factor de conversión de unidades de energía y temperatura. Las verdaderas constantes tienen que ser números puros y no cantidades con “dimensiones”, como una velocidad, una masa o una longitud.

Las cantidades con dimensiones siempre cambian sus valores numéricos si cambiamos las unidades en las que se expresan.

                                                     Las constantes fundamentales determinan el por qué, en nuestro Universo, las cosas son como las observamos.

Y, a todo esto, la teoría cuántica y de la Gravitación gobiernan reinos muy diferentes que tienen poca ocasión para relacionarse entre sí. Mientras la una está situada en el mundo infinitesimal, la otra, reina en el macrocosmos “infinito” del inmenso Universo. Sin embargo, las fuerzas que rigen en el mundo de los átomos son mucho más potentes que las que están presentes en ese otro mundo de lo muy grande. ¡Qué paradoja!

¿Dónde están los límites de la teoría cuántica y los de la relatividad general? Somos afortunados al tener la respuesta a mano, Las unidades de Planck nos dan la respuesta a esa pregunta:

Supongamos que tomamos toda la masa del Universo visible y determinamos la longitud de onda cuántica. Podemos preguntarnos en que momento esa longitud de onda cuántica del Universo visible superará su tamaño. La respuesta es: Cuando el Universo sea más pequeño que la longitud de Planck (10-33 centímetros), más joven que el Tiempo de Planck (10-43 segundos) y supere la Temperatura de Planck (1032 grados). Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender a qué se parece el mundo a una escala menor que la Longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la Gravedad.

El satélite Planck un observatorio que explora el universo lleva el mismo nombre del fundador de la teoría cuántica será pura coincidencia?. Credito: ESA. La Gravedad cuántica queda aún muy lejos de nuestro entendimiento.

La Relatividad General la teoría de Einstein de la gravedad, nos da una base útil para matemáticamente modelar el universo a gran escala -, mientras que la Teoría Cuántica nos da una base útil para el modelado de la física de las partículas subatómicas y la probabilidad de pequeña escala, de la física de alta densidad de energía de los inicios del universo – nanosegundos después del Big Bang – en la cuál la relatividad general sólo la modela como una singularidad y no tiene nada más que decir sobre el asunto.

Las teorías de la Gravedad Cuántica pueden tener más que decir, al extender la relatividad general dentro de una estructura cuantizada del espacio tiempo puede ser que nosotros podamos salvar la brecha existente entre la física de gran escala y de pequeña escala, al utilizar por ejemplo la Relatividad Especial Doble o Deformada.

    ¡Es tanto lo que nos queda por saber!

El día que se profundice y sepamos leer todos los mensajes subyacentes en el número puro y adimensional 137, ese día, como nos decía Heinsemberg, se habrán secado todas las fuentes de nuestra ignorancia. Ahí, en el 137, Alfa (α) Constante de estructura Fina, residen los secretos de la Relatividad Especial, la Velocidad de la Luz, c, el misterio del electromagnetismo, el electrón, e, y, la Mecánica Cuántica, es decir el cuanto de acción de Planck, h.

emilio silvera