viernes, 23 de febrero del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Física es la llave del futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El Físico puede mirar la bella rosa y contemplarla desde otra perspectiva que sería independiente de su hermosura, su delicado color y su perfume embriagador. Ellos miran el objeto y ven los átomos que lo conforman, sus moléculas y todo lo que ahí está presente.

El nuestro Universo (no sabemos si habrá otros), podemos contemplar bellas galaxias, púlsares que, como faros cósmicos iluminan el vacío espacial hasta la lejanía, estrellas de neutrones que generan campos electromagnéticos inmensos, bellas Nebulosas de figuras arabescas que se forman por la violencia de los vientos estelares de las estrellas jóvenes, multitud de mundos de distintos pelajes, Agujeros negros y otros objetos exóticos, y, sobre todo eso, podemos contemplar una inmensa cantidad de especies de seres vivos, y, todo ello, regido por las cuatro fuerzas fundamentales y las constantes universales.

No sabemos todo lo que pueda existir en tan asombroso universo pueda estar presente y nos aguardan infinidad de sorpresas en todos los ordenes de la materia, de las fuerzas que lo rigen, de los objetos que lo pueblan…

 

 

Alguna vez he leído alguna historia en las que había hadas en el frondoso jardín. Es cierto, no existen pruebas de que así pudiera ser. Sin embargo, tampoco las hay de que no las haya, y, el hecho cierto de que nosotros, los humanos, no la hayamos podido ver, no es prueba de su inexistencia. Hay que tener una imaginación abierta a todo y, de esa manera, evitamos sobresaltos y sorpresas inesperadas que, dicho sea de paso, pueden estar a cada paso que damos.

 

Crea excelentes avatares gif animados o avatares estáticos en línea y sin cargo. Water Reflection . | Fairy pictures, Fairy art, Fantasy fairyFondo digital de hadas / Estanque mágico / Arco lila en el - Etsy España

 

El Universo es eso, un océano de maravillosas sorpresas que nos habla del comportamiento de las grandes energías y de la materia, unas veces disfrazada de estrella, otras de emisiones gamma y no en pocas ocasiones de agujeros negros y púlsares.

 

Un vistazo rápido al Modelo Estándar de Física de Partículas | Acelerando la Ciencia

El modelo estándar de partículas fundamentales y sus interacciones

Esta imagen representa todo lo que conocemos, y que se ha podido verificar experimentalmente, sobre la estructura de la materia de la que estamos hechos nosotros y todo lo que hasta ahora hemos observado en el universo, con el nivel de precisión que podemos alcanzar utilizando los instrumentos que tenemos.

De alguna manera, esto es tan fantástico como la (posible) existencia de las Hadas.

 

Representación del Modelo Estándar con los Leptones, Quarks y Bosones emisarios de tres fuerzas

 

 

En el Universo, el equilibrio se alcanza debido a dos fuerzas contrapuestas que, se nivelan y contrarrestan mutuamente. Pasa en el átomo,  el núcleo está cargado positivamente y los electrones lo contrarrestan con sus cargas negativas, en las estrellas la energía de fusión tiende a expandir a la estrella y la fuerza de Gravedad a contraerla.

Por ahí deambula uno de mis trabajos sobre este mismo tema que titulé ¡La perfección imperfecta! En referencia al Modelo Estándar que no incorpora la Gravedad, y, se ha construido un edificio que nos habla de cómo funciona el universo y, sin embargo, le falta uno de sus pilares, precisamente, ese que nos dice como es su geometría espacial en presencia de grandes masas.

 

“Colisión del Bosón de Higgs desintegrándose en fermiones”. Primeras evidencias de un nuevo modo de desintegración del bosón de Higgs. Las primeras evidencias de la desintegración del recién descubierto bosón de Higgs en dos partículas denominadas tau, pertenecientes a la familia de partículas que compone la materia que vemos en el Universo. Hasta ahora los experimentos del LHC habían detectado la partícula de Higgs mediante su desintegración en otro tipo de partículas denominadas bosones, portadoras de las fuerzas que actúan en la Naturaleza, mientras las evidencias de desintegraciones en fermiones no eran concluyentes. Esta es la primera evidencia clara de este nuevo modo de desintegración del bosón de Higgs.”

 

 

La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeñas que las que ahora podemos contemplar.

 

                                   

 

Ahora el LHC se prepara para nuevas aventuras y experimentos mayores, con mayores energías. ¿Podeis imaginar conseguir colisiones a 70.000 TeV? ¿Que podríamos ver? Y, entonces, seguramente, podríamos oir en los medios la algarada de las protestas de algunos grupos:  “Ese monstruo creado por el hombre puede abrir en el espacio tiempo agujeros de gusano que se tragará el mundo y nos llevará hacia otros universos”

 

 

¿Justifica el querer detectar las partículas que conforman la “materia oscura”, o, verificar si al menos, podemos vislumbrar la sombra de las “cuerdas” vibrantes de esa Teoría del Todo, el que se gasten ingentes cantidades de dinero en esos artilugios descomunales? Bueno, a pesar de todos los pesares, la respuesta es que SÍ, el rendimiento y el beneficio que hemos podido recibir de los aceleradores de partículas, justifica de manera amplia todo el esfuerzo realizado, toda vez que, no solo nos ha llevado a conocer muchos secretos que la Naturaleza celosamente guardaba, sino que, de sus actividades hemos tenido beneficios muy directos en ámbitos como la medicina, las comunicaciones y otros que la gente corriente desconocen.

 

                                                   

¿Implica el ajuste fino un diseño con propósito? ¿Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión?

Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas. Cuando tenemos la posibilidad de llegar más lejos, con sorpresa podemos descubrir que aquello en lo que habíamos creído durante años, era totalmente diferente. El “mundo” cambia a medida que nos alejamos más y más de lo grande y nos sumergimos en ese otro “mundo” de lo muy pequeño, allí donde habitan los minúsculos objetos que conforman la materia desde los cimientos mismos de la creación.

                                     Introducción a la Física de Partículas: El Modelo Estándar

Así el modelo que tenemos de la física de partículas se llama Modelo Estándar y, nos habla de las interacciones entre partículas y las fuerzas o interacciones que están presentes, las leyes que rigen el Universo físico y que, no hemos podido completar al no poder incluir una de las fuerzas: La Gravedad. Claro que, no es esa la única carencia del Modelo, tiene algunas más y, a estas alturas, se va necesitando un nuevo Modelo, más completo y audaz, que incluya a todas las fuerzas y que no tengá parámetros aleatorios allí donde nuestros conocimientos no llegan.

La fealdad del Modelo Estándar puede contrastarse con la simplicidad de las ecuaciones de Einstein, en las que todo se deducía de primeros principios. Para comprender el contraste estético entre el Modelo Estándar y la teoría de la relatividad general de Einstein debemos comprender que, cuando los físicos hablan de “belleza” en sus teorías, realmente quieren decir que estas “bellas” teorías deben poseer al menos dos características esenciales:

  1. Una simetría unificadora.
  2. La capacidad de explicar grandes cantidades de datos experimentales con las expresiones matemáticas más económicas.

E = mc2 . Esta es la mejor prueba de lo que decimos arriba.

 

 

El Modelo Estándar falla en ambos aspectos, mientras que la relatividad general los exhibe, ambos, de manera bien patente. Nunca una teoría dijo tanto con tan poco; su sencillez es asombrosa y su profundidad increíble.De hecho, desde que se publicó en 1.915, no ha dejado de dar frutas, y aún no se han obtenido de ella todos los mensajes que contiene.

El principio director del modelo estándar dicta que sus ecuaciones son simétricas. De igual modo que una esfera ofrece el mismo aspecto desde cualquier punto de vista, las ecuaciones del modelo estándar subsisten sin variación al cambiar la perspectiva desde la que son definidas. Las ecuaciones permanecen invariables, además, cuando esta perspectiva se desplaza en distinta magnitud a diferentes puntos del espacio y el tiempo.

Al contrario de la relatividad general, la simetría del Modelo Estándar, está realmente formada empalmando tres simetrías más pequeñas, una por cada una de las fuerzas; el modelo es espeso e incómodo en su forma. Ciertamente no es económica en modo alguno. Por ejemplo, las ecuaciones de Einstein, escritas en su totalidad, sólo ocupan unos centímetros y ni siquiera llenaría una línea de esta página. A partir de esta escasa línea de ecuaciones, podemos ir más allá de las leyes de Newton y derivar la distorsión del espacio, el Big Bang y otros fenómenos astronómicos importantes como los agujeros negros. Por el contrario, sólo escribir el Modelo Estándar en su totalidad requeriría, siendo escueto, un par de páginas  y parecería un galimatías de símbolos complejos sólo entendibles por expertos.

 

 

Los científicos quieren creer que la naturaleza prefiere la economía en sus creaciones y que siempre parece evitar redundancias innecesarias al crear estructuras físicas, biológicas y químicas.

 

 

La luz antigua absorbida por átomos de hidrógeno neutro podría usarse para probar ciertas predicciones de la Teoría de Cuerdas, dicen los cosmólogos de la Universidad de Illinois. Realizar tales medidas, sin embargo, requeriría que se construyese un gigantesco conjunto de radio telescopios en la Tierra, el espacio, o la Luna.

El matemático francés Henri Poincaré lo expresó de forma aún más franca cuando escribió: “El científico no estudia la Naturaleza porque es útil; la estudia porque disfruta con ello, y disfruta con ello porque es bella

E. Rutherford, quien descubrió el núcleo del átomo (entre otras muchas cosas), dijo una vez: “Toda ciencia es o física o coleccionar sello”.Se refería a la enorme importancia que tiene la física para la ciencia, aunque se le olvidó mencionar que la física está sostenida por las matemáticas que la explica.

Pero, a pesar de todos sus inconvenientes, el Modelo Estándar, desde su implantación, ha cosechado un éxito tras otro, con sus inconvenientes y sus diecinueve parámetros aleatorios, lo cierto es que es lo mejor que tenemos por el momento para explicar las familias de partículas que conforman la materia y cómo actúan las fuerzas de la naturaleza, todas las fuerzas menos la gravedad; esa nos la explica a la perfección y sin fisuras las ecuaciones de Einstein de la relatividad general.

 

 

 

Hace tiempo que los físicos tratan de mejorar el Modelo Estándar con otras teorías más avanzadas y modernas que puedan explicar la materia y el espacio-tiempo con mayor amplitud y, sobre todo, incluyendo la gravedad. Así que retomando la teoría de Kaluza de la quinta dimensión, se propuso la teoría de super-gravedad en 1.976 por los físicos Daniel Freedman, Sergio Ferrara y Peter van Nieuwenhuizen, de la Universidad del Estado de Nueva York en Stoney Brook que desarrollaron esta nueva teoría en un espacio de once dimensiones.

Para desarrollar la superteoría de Kaluza-Klein en once dimensiones, uno tiene que incrementarenormemente las componentes del interior del Tensor métrico de Riemann (que Einstein utilizó en cuatro dimensiones, tres de espacio y una de tiempo para su relatividad general y más tarde, Kaluza, añadiendo otra dimensión de espacio, la llevó hasta la quinta dimensión haciendo así posible unir la teoría de Einstein de la gravedad, con la teoría de Maxwell del electromagnetismo), que ahora se convierte en el supertensor métrico de Riemann.

 

 

Hasta hoy, no se ha logrado, ni mucho menos, inventar una teoría de campo consistente totalmente unificadora que incluya la gravedad. Se han dado grandes pasos, pero las brechas «científicounificantes» siguen siendo amplias. El punto de partida ha sido siempre la teoría de la relatividad general y conceptos con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria macrocósmica. El problema que se presenta surge de la necesidad de modificar esta teoría sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo los problemas de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza.

 

 

Su tensor métrico es un tensor de rango 2 que se utiliza para definir … Sin embargo, en otras teorías se ha elevado el rango y se pueden definir múltiples universos de dimensiones más altas.

 

 

El tensor métrico se podría adaptar a las necesidades de la búsqueda estableciendo la multiplicidad de dimensiones que la teoría exigía para su desarrollo.

 

                                                                               

Más allá de lo que nos permiten captar nuestros sentidos físicos, hay que tener nuestra mente abierta a la posibilidad de que puedan existir otras realidades diferentes a lo que nos dicta nuestra experiencia, realidades capaces de ser descubiertas por la fuerza del intelecto cuando nos atrevemos a cuestionar aquello que creíamos como absoluto.

Esta nueva teoría de supergravedad pretendía la unificación de todas las fuerzas conocidas con la materia, y, como en un rompecabezas, encajarlas en el Tensor de Riemann tan solo con elevar el número de dimensiones que exigía más componentes y nos daba el espacio necesario para poder ubicar en sus apartados correspondientes, todas las fuerzas fundamentales y también la materia, la que podía satisfacer, casi en su totalidad, el sueño de Einstein.

 

 

 

A partir de aquí, de estas ecuaciones, surgió todo. Este fue el puerto de donde salió el bajel de la de Kaluza-Gleim, la super-gravedad y supersimetría, la cuerda heterótica y la Teoría de cuerdas, todo ello, rematado con la finalmente expuesta, teoría M.

La supergravedad casi consigue satisfacer el sueño de Einstein de dar una derivación puramente geométrica de todas las fuerzas y partículas del universo. Al añadir la supersimetría al Tensor métrico de Riemann, la métrica se duplica en tamaño, dándonos la supersimetría de Riemann. Las nuevas componentes del súper tensor de Riemann corresponden a quarks y leptones, casi todas las partículas y fuerzas fundamentales de la naturaleza: la teoría de la gravedad de Einstein, los campos de Yang-Mills y de Maxwell y los quarks y leptones. Pero el hecho de que ciertas partículas no estén en esta imagen nos obliga a buscar un formalismo más potente:

La materia con todas las fuerzas fundamentales de la naturaleza. Los bosones intermediarios o partículas portadoras de las fuerzas como el fotón para el electromagnetismo, los gluones para la fuerza nuclear fuerte, las partículas W y Z para la nuclear débil y, en la partícula portadora de la gravedad, el gravitón, ponemos el signo de interrogación, ya que se sabe que esta ahí en algún sitio pero hasta la fecha no ha sido detectado.

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

Antes de continuar con la teoría de súper cuerdas, o con su versión más avanzada la teoría M, parece conveniente recordar que hasta el momento los ladrillos del universo eran los quarks, las partículas más pequeñas detectadas en los aceleradores del CERN y FERMILAB. Pero ¿están hechos de cosas más pequeñas?, eso no lo sabemos. El Modelo Estándar, menos avanzado que las otras teorías, nos dice que los quarks son las partículas más pequeñas y forman protones y neutrones constituyendo la formación interna del átomo, el núcleo. En la actualidad, nuestros aceleradores de partículas no tienen capacidad para ahondar más allá de los quarks y averiguar si a su vez, éstos están formados por partículas aún más pequeñas.

 

                                                     

 

No podemos saber (aún) que es lo que pueda haber (si es que lo hay) más allá de los Quarks, los constituyentes de la materia más pequeños conocidos hasta el momento actual. Sin embargo, no se descarta que puedan existir partículas más simples dentro de los Quarks que, al fin y al cabo, no serían tan elementales.

Por otro lado, los físicos están casi seguros de que los leptones no están compuestos de partículas más pequeñas. Sin embargo, esta sospecha no se tiene en el caso de los quarks; no se sabe qué puede haber detrás de ellos. Tan sólo se ha llegado a desconfinarlos junto con los gluones y por un breve periodo de tiempo de los protones y neutrones que los mantenían aprisionados, formando – en esos breves instantes – una materia plasmosa. No es raro oir dentro de la comunidad científica a los físicos teóricos hablando de prequarks.

Como antes hemos comentado de pasada, el Modelo Estándar agrupa las partículas en familias:

 

Fermiones y Bosones

Cada leptón grande, es decir, el electrón, el muión y el tau, tiene un primo pequeño. Así el electrón tiene un neutrino electrónico, el muón un neutrino muónico y el tau un neutrino tau. Como se puede ver en la tabla anterior la única diferencia entre el electrón, el muón y el tau es la masa, que va creciendo. Todos tienen carga eléctrica negativa. Los neutrinos en cambio no tienen carga y tienen una masa muy pequeña (pero tienen y es una de las razones por la que se dice que los neutrinos cambian de sabor, es decir cuando salen, por ejemplo, del sol salen en forma de neutrinos electrónicos pero cuando los detectamos en la tierra, vemos que llegan menos neutrinos electrónicos de los que deberían, porque durante el viaje han cambiado de sabor y se han convertido en neutrinos muonicos o tau).

Los bariones se componen de tres quarks o tres anti-quarks. En este último caso se denominan anti-bariones.

Los mesones se componen de dos quarks y obligatoriamente uno es un quark y el otro un anti-quark.

 

Buscando las reglas de la QCD para los hadrones exóticos - La Ciencia de la Mula Francis

 

Claro, son muchos más. Además de los Bariones, también forman parte de la familia hadrónica los mesones y la lista de unos y otros es larga y cada individuo, como es natural, tiene sus propias características que lo hacen único.

Los bariones se componen de tres quarks o tres anti-quarks. En este último caso se denominan anti-bariones. Los mesones se componen de dos quarks y obligatoriamente uno es un quark y el otro un anti-quark.

Se llaman bosones porque, al contrario que los fermiones, éstos obedecen la estadística de Bose-Einstein que dice que pueden existir en el mismo estado cuántico muchas bosones al mismo tiempo (recordad que en el caso de los fermiones sólo podía haber dos en el mismo estado cuántico). Algunos bosones tienen la peculiaridad de que son los portadores de las fuerzas fundamentales de la naturaleza, es decir, cada vez que ocurre una interacción entre dos partículas, lo que realmente ocurre es que intercambian un bosón. Estas fuerzas son el electromagnetismo, la fuerza débil y la fuerza fuerte (vienen a continuación). Existe otro bosón, aunque sólo a nivel teórico, conocido como el gravitón que sería el responsable de la fuerza gravitatoria. La fuerza gravitatoria no está explicada por el modelo estándar y por lo tanto el gravitón, no forma parte del mismo.

 

La fuerza débil y la vida de las estrellas - YouTube

 

La fuerza débil es la responsable de las desintegraciones radiactivas, es decir, que una partícula se convierta en otra a través de la emisión de una o más partículas adicionales. Esta interacción es mediada por los bosones W+, W- y Z0. Estos bosones tienen la particularidad de que tienen masa, al contrario que el resto de bosones.

La fuerza fuerte hace que los quarks que componen los núcleos atómicos se mantengan unidos y no se rompan espontáneamente. El bosón encargado de hacer esto es el gluón.

La fuerza electromagnética es la que más conocemos todos, ya que se compone de la fuerza eléctrica y la fuerza magnética (en realidad es una única fuerza que se manifiesta de dos maneras diferentes, de ahí que reciba el nombre de fuerza electromagnética). El bosón portador de esta fuerza es el fotón. Nuestra experiencia diaria se basa principalmente en sufrir los efectos de esta fuerza y cada vez que vemos la luz, sentimos calor, calentamos la comida en el microondas, etc., lo que estamos haciendo es interaccionar con fotones de diversas energías.

 

https://acelerandolaciencia.files.wordpress.com/2014/01/decaimientos.jpg

                                                                                                    Interacciones entre partículas

En la imagen de la izquierda se representa como un neutrón se desintegra para dar un protón, un electrón y un antineutrino electrónico. Esta desintegración es conocida como desintegración beta.

En la imagen central se muestra la colisión entre un electrón y un positrón que da lugar a una desintegración de materia en energía pura, otra vez a través de la ecuación de Einstein E=mc2. La energía se convierte, por la misma ecuación, otra vez en otras partículas diferentes. En este caso se forma un mesón B0 y un antimesón B0.

Por último, en la imagen de la derecha aparece la colisión de dos protones (como los que ocurren en el LHC del CERN) para dar lugar a dos bosones Z0 y varios hadrones, es decir, varias partículas compuestas de diferentes quarks (mesones y bariones).

 

                                       

 

.. Han dejado fuera del Modelo estándar a la Gravedad que se resiste a estar junto a las otras tres fuerzas. Así, continúan persiguiendo ese sueño llamado… ¡Teoría cuántica de la gravedad o Gravedad cuántica!

Y describe las interacciones que estas partículas tienen con las cuatro fuerzas fundamentales de la naturaleza, sobre todo con las nucleares fuerte y débil y la electromagnética; la gravedad se queda aparte del Modelo Estándar, ya que su incidencia con las partículas elementales es inapreciable como consecuencia de las infinitesimales masas de éstas, y ya sabemos que la gravedad se deja sentir y se hace presente cuando aparecen las grandes masas como planetas, estrellas y galaxias.

 

21 Universos - gifs con movimiento | Gifmaniacos.es | Galaxy painting, Optical illusions art, Galaxy wallpaper

 

Grandes estructuras que vienen a ser como pequeños ”universos islas” en los que podemos estudiar, a menos tamaño, todo lo que en el Gran Universo puede pasar. Partiendo de la base de que las leyes del universo son las mismas en todas partes, podemos tomar cualquier región del mismo y ver que, allí está ocurriendo lo mismo que aquí ocurre, es decir, están presentes las fuerzas fundamentales: nucleares débiles y fuertes, electromagnetismo y Gravedad y, todo, absolutamente todo, funciona al ritmo que dichas leyes nos marcan.

 

 

 

Una vez se escucha sobre los fundamentos de la teoría cuántica uno no puede mas que sobrecogerse, ampliar la mente y galopar entre las múltiples posibilidades acerca de lo real e imaginario que por momentos y depende que conceptos se entrelazan intercambiables. Lo que llama la atención es que por mucho que hayan sido los físicos cuánticos más prestigiosos entre la sociedad científica los que hayan puesto sobre la mesa conceptos cuanto menos rimbombantes e inverosímiles como las multi-dimensiones, los universos paralelos, los efectos túneles y demás, sean los propios miembros  de la academia los que grandilocuentemente se ofenden cuando se hace alusión al paralelismo evidente del comportamiento y extensión de la energía  en referencia al universo preconizado por los místicos de muchas culturas. No tenemos los conocimientos necesarios para poder decir que no a esto o aquello, cada cosa tiene su lugar y tendremos que analizarlas muy a fondo y adentrarnos en esos mundos de misterio para poder decidir lo que es y lo que no puede ser.

 

 

 

Hasta hoy no se ha logrado, ni mucho menos, inventar una teoría de campo que incluya la gravedad. Se han dado grandes pasos, pero la brecha “científico-unificante” es aún muy grande. El punto de partida, la base, ha sido siempre la relatividad y conceptos en ella y con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria cósmica. El problema que se plantea surge de la necesidad de modificar esta teoría de Einstein sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo el problema de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza. Desde la primera década del siglo XX se han realizado intentos que buscan la solución a este problema, y que han despertado gran interés.

Después de la explosión científica que supuso la teoría de la relatividad general de Einstein que asombró al mundo, surgieron a partir e inspiradas por ella, todas esas otras teorías que antes he mencionado desde la teoría Kaluza-Klein a la teoría M.

emilio silvera

La muerte de una estrella

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las estrellas típicas como el Sol, estrellas enanas amarillas del tipo G2V, tienen una vida media de unos 10.000 M de año. El Sol con 5.000 M de años, está a la mitad de su “vida”. Cuando el combustible nuclear de fusión se le vaya agotando, se convertirá en una Gigant4e Roja que engullirá a Mercurio y a Venus, quedará muy cerca de la Tierra, y, las temperaturas subirán tanto que los mares y los océanos se evaporarán, la vida tal como la conocemos dejará de existir.

 

Astronomia, Fisica y Misiones Espaciales: ¿QUE SON LAS NEBULOSAS? CARACTERISTICAS Y TIPOS MAS IMPORTANTES

Llegado un momento, las capas exteriores de la gigante roja serán eyectadas al Espacio Interestelar y formará una bonita Nebulosa Planetaria. El Resto de la ingente masa, se contraerá más y más por efecto de la Gravedad que, libre de la fusión que hacía expansionarse a la estrella, quedará libre para hacer su trabajo de comprimir la masa.

 

Principio de exclusión de Pauli - Principio ded. ¿Qué dice el principio de exclusión de Pauli, y cómo rige a la estructura atómica? - II Portafolio

Cuando la Gravedad obliga a la masa a comprimirse, ocurre un fenómeno cuántico que se conoce como el Principio de exclsusión de Pauli, es decir, que la densificación de la masa hace que los electrones se junten mucho, y, como son Fermiones, están sometidos a dicho Principio y se rebelan de manera que sufren una degeneración que les hace moverse a velocidades relativista, lo que produce el frenado de la fuerza de Grabedad, y, lo que queda de la estrella es una enana blanca que radia furiosamente en el ultravioleta e ioniza a la Nebulosa planetaria a la que saca los colores de los elementos que la conforman.

 

                                  Qué son las estrellas de neutrones?

Si la estrella moribunda tiene varias veces la masa del Sol, entonces la fuerza de Gravedad será muy grande y, ni la degeneración de los electrones frenará a la Gravedad, así que los protones se fundirán con los electrones y formaran Neutrones que, siendo también fermiones sometidos a dicho Principio, se degenerarán y frenaran a la Gravedad, quedando entonces una estrella de Neutrones.

 

                                 Este agujero negro creado en un laboratorio sorprendería hasta a Hawking

Si la estrella que muere es de masa mucho mayor, entonces, ni la degeneración de los neutrones podrá frenar a la Gravedad que seguirá comprimiendo aquella inmensa masa más y más, hasta el punto de convertirla en una Singularidad, un punto en el cual el Tiempo se detiene y el Espacio se curva hasta el infinito. La singularidad genera tanta fuerza de Gravedad que ni la luz puede escapar de allí.

Esto es, amigos míos, lo que le pasará al Sol y a otras estrellas en función de sus masas cuando agoten el combustible de fusión nuclear y salgan de la Secuencia Principal.

 

Científicos que buscan extraterrestres descubren una misteriosa señal proveniente de Próxima Centauri | Ciencia y Ecología | DW | 29.12.2020Cuanto TARDARÍAMOS en ir a ALFA CENTAURI con NUESTRA TECNOLOGIA (Viaje a Próxima Centauri) Distancia - YouTube

Para cuando ese acontecimiento se vaya acercando (si aún seguimos aquí), tendremos preparado viajes Espaciales en grandes naves a estrellas cercanas con otros mundos habitables para que, nuestra especie perdure iniciando una nueva singladura con todos los conocimientos adquiridos en las distintas ramas del saber humano.

Aunque aún queda mucho tiempo… ¡El momento llegará!

El colapso del núcleo de las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Higgs-Kibble

Higgs-Kibble II

Lo único que no resulta ser lo mismo cuando se mira a través del microscópico electrónico (o, en la jerga de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopìo y, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.

 

                     Granos de arena bajo el microscopio por Gary Greenberg

                                            Granos de arena vistos al microscópico electrónico

Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se observar directamente el potencial vector de Yang-Mills? Parece que puede observa4rse en el mundo de las cosas grandes, no en el mundo de lo pequeño. Esto es una contradicción y es una raz´`on por la que ese esquema nunca ha podido funcionar adecuadamente.

 

Bohr - Salto cuántico on Make a GIF

          En el mundo cuántico se pueden contemplar cosas más extrañas

Un salto cuántico es un cambio de estado discontinuo que hace un electrón al saltar de un nivel menor a otro de mayor energía de modo prácticamente instantáneo. Lo interesante del fenómeno es que rompe con el principio filosófico de Newton de que la naturaleza no produce discontinuidades (saltos).

 

La Teoría de la Relatividad: Las escalas de PlanckGAE UNAM: Gravitación y Altas Energías - Cuando uno empieza a estudiar física, seguirle la pista a las unidades parece primero algo molesto; pero pronto se vuelve una herramienta crucial. No tendría

Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.

  

 

Es Posible Atravesar Una Pared? | El EFECTO TÚNEL GIF | GfycatTipos de Emisiones

 

 

Hay pruebas de que las partículas alfa producidas por sustancias radiactivas en el suelo constituyen el origen del helio en los pozos de gas natural. Si la partícula alfa es helio, su masa debe ser cuatro veces mayor que la del hidrógeno. Ello significa que la carga positiva de éste último equivale a dos unidades, tomando como unidad la carga del hidrogenión.

 Hacia 1.900 se sabía que el átomo no era una partícula simple e indivisible, como predijo Demócrito, pues contenía, al menos, un corpúsculo subatómico: el electrón, cuyo descubridor fue J. J. Thomson, el cual supuso que los electronesse arracimaban como uvas en el cuerpo principal del átomo de carga positiva que era el núcleo descubierto por Rutherford.

Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.

 

                                 

           Pero el trabajo de hoy se titula: El colapso del núcleo de las estrellas

 

                 

En la imagen podemos contemplar  lo que se clasifica NGC 3603,  es un cúmulo abierto de estrellas en una vasta zona estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 años-luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

 

                                         

 

NGC 3603 alberga miles de estrellas de todo tipo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas  supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.

Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de la otra una vez cada 3,77 días, era la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Hay que decir que la máxima máxima de las estrellas está calculada en 120 masas solares, ya que, a partir de ahí, su propia radiación las destruiría.

 

                        http://2.bp.blogspot.com/-fWPPIW7k_fo/T0pqRfSgyHI/AAAAAAAAH4k/hXIelt94QAg/s1600/sn1987a_hst.jpg

 

En el centro de la imagen podemos contemplar ese “collar de diamantes” que es el resultado evolucionado de aquella tremenda explosión estelar contemplada en 1987, cuando una estrella supermasiva, habiendo agotado todo su combustible nuclear de fusión, se contrae sobre sí misma al quedar sin defensa, en “manos” de la Gravedad que ya no se ve frenada por la inercia explosiva de la fusión que tendía a expandir la estrella.

 

via GIPHY | Supernova explosion, Sea of stars, Supernova

Las capas exteriores son eyectadas al Espacio Interestelar con violencia para formar una nebulosa, mientras el grueso de la masa de la estrella se contrae más y más para formar una estrella de neutrones o un agujero negro dependiendo de su masa.

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios.  Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.

30 años desde la explosión de supernova SN 1987A - Naukas

Las observaciones de SN 1987A, hechas en los últimos 20 años por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas. Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estudiando los remanentes de supernovas muy antiguas no se podían ver.

 

           

 

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Arriba podemos contemplar observaciones realizadas en distintas fechas que nos muestran la evolución de los anillos de SN 1987 A. ¿Qué pudo causar los extraños anillos de esta Supernova. Hace 28 años se observó en la Gran Nube de Magallanes la supernova más brillante de la historia contemporánea.

 

                            Der Emissionsnebel NGC 3603 aufgenommen vom Hubble-Weltraumteleskop (Echtfarben). Sher 25 ist der helle Stern links oberhalb des Sternenhaufens

El clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20,000 . ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A.

Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.

 

                               

 Agotado su combustible nuclear de fusión, la Gravedad comienza a comprimir a la estrella masiva que eyecta sus capas exteriores al Espacio interestelar, el resto de su masa, se densifica más y más hasta que, el Principio de eslusión de Pauli hace que los Fermiones se degeneren y pueda frenar, con su movimiento frenético, a la Gravedad. De todas las maneras, si se trata de una estrella muy masiva, ni eso la puede frenar y el final es: ¡Un Agujero Negro!

 

Astronomía y Astrofísica : Blog de Emilio Silvera V.

Así que, si una estrella llega al final de sus días, el núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene (a veces) con la presión de degeneración del gas de neutrones (Principio de exclusión de Pauli) compensa el empuje  hacia adentro de la Gravedad. El proceso completo hasta que todo ese ingente material se transmuta en la estrella de neutrones dura muy poco tiempo, es un proceso vertiginoso.

 

                           

                        Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.

Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alrededor de estas estrellas de neutrones y púlsares que se conviertan en magnetares.

 

                                       

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes ahora acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnetares.

 El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y también una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

La densidad de estas estrellas es increíblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra. Los púlsares fueron descubiertos en 1970 y hasta hoy sólo se conoce unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pulsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nuestros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).

 

                                       

Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)

 Por ahora se conoce que de cada diez supernovas una se convierte en magnetar,  si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

 

                                       

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

Las estrellas mueren cuando dejan la secuencia principal, es decir, cuando no tienen material de fusión y quedan a merced de la fuerza de gravedad que hace comprimirse a la estrella más y más, en algunos casos, cuando son supermasivas, llegan a desaparecer de nuestra vista, y, su único destino es convertirse en temibles Agujeros Negros.

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

 

                     

                El remanente estelar después de la explosión puede ser muy variado

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

foto

 ¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

 

                               

                                 Hadrones: Bariones y Mesones y sus componentes

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.

emilio silvera