martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Conjeturar… ¡Tratando de saber!

Autor por Emilio Silvera    ~    Archivo Clasificado en Conjeturas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El principio antrópico y otras cuestiones

¡El Universo! ¿Sabía que nosotros íbamos a venir?

Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo.  Como antes hemos comentado de pasada, existen varias versiones del principio antrópico.  La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones ademadas para ello.  Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida.  La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.

“Basado en las propuestas del premio Nobel de física Paul Dirac sobre los ajustados, sincronizados y muy precisos valores de las constantes de la naturaleza, los físicos actuales comienzan a valorar aquello que han denominado el “principio antrópico¨, es decir, poco a poco, a lo largo de los años han entendido que siempre quedará un espacio de información faltante cuando intentamos teorizar o conceptualizar los inicios del universo supeditados exclusivamente sobre la capacidad contenida en las leyes de la física para explicar dichos inicios.”

 

 

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la Naturaleza y entrar en el juego virtual de ¿Qué hubiera pasado si…? Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal a cual manera para ocurrir de ésta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para la Humanidad y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual, solo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto.  Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza ¿Quién sabe lo que pasará mañana?

Resultado de imagen de El futuro incierto

                               Cada cual puede mirar en la Bola de Cristal y ver … ¡Lo quiera ver!

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que este postulado es bastante razonable.

Lo que ocurra en la Naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual, es decir, esa parcial disposición que tenem0s  del “libre albedrío”.

                        ¿Cómo sería nuestro mundo si las constantes universales fueran diferentes?

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser  si….,  lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de Hidrógeno, Helio, Carbono, etc.,  para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras  que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la Gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro.  Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

                                      El Sol será una Gigante roja y, cuando eso llegue, la Tierra…

Pero el problema no es tan fácil y, se extiende a la totalidad del Universo que, aunque mucho más tarde, también está abocado a la muerte térmica,  el frío absoluto si se expande para siempre como un Universo abierto y eterno. A estas alturas se ha descartado el Big Chunch y se saber que la expansión del Universo es imparable y que con el paso del tiempo las galaxias estarán más alejadas las unas de las otras hasta que, la energía, las temperaturas sean -273 ºC, un ámbito de muerte, allí nada -ni siguiera los átomos-, absolutamente nada se mueve.

Resultado de imagen de Parece que el final del Universo será debido a su muerte térmica (-273 ºC)

        Parece que el final del Universo será debido a su muerte térmica (-273 ºC). Todo quedará quieto, congelado en los -273 ºC, la Densidad Crítica que se vislumbra nos habla de la muerte térmica del Universo

Resultado de imagen de El Big Freeze

                     Si finalmente llega la “muerte térmica” del Universo, ni los átomos se moverán

 El Big Freeze (“Gran Frío”), también conocido como Big Whisperer (“Gran susurro”) es una teoría física sobre el futuro del Universo, en la que se supone éste se seguirá expandiendo eternamente -asume, por tanto, un universo abierto- y está marcada por el triunfo de la segunda ley de la termodinámica, con la consecución final de prácticamente todos los procesos físicos que puedan darse y posiblemente acabando con la muerte térmica del Universo.

En los mundos, mientras que el universo se expande sin cesar, se producen, como en todo el Universo, los cambios evolutivos que nos llevan hacia otro escenario distinto del actual, el Tiempo corre hacia adelante sin detenerse nunca y como la Eternidad no existe, algún día, llegaremos a ese punto sin retorno en el que todo habrá finalizado… ¿Para empezar de nuevo?

¿Es viejo el universo?

“Las cuatro edades del hombre: Lager, Aga, Saga y Gaga”.

Anónimo.

 

Si el Universo fuese más jóven, amigos míos, entonces nosotros no estaríamos aquí. Las estrellas no habrían tenido el tiempo necesario para “fabricar” los elementos de los que están hechos los seres vivos.

Resultado de imagen de Inmensas fuentes de radiación Gamma

Detalle de las fuentes galácticas observadas por HAWC en la región de la constelación del Cisne. Anteriormente se conocía una fuente de rayos gamma.

Para tener todo ese tumulto — estrellas en erupción, galaxias chocantes, agujeros negros que colapsan – el cosmos es un lugar sorprendentemente ordenado. Los cálculos teóricos han demostrado desde hace mucho que la entropía del universo – una medida de su desorden – no es más que una diminuta fracción de la cantidad máxima permitida.

Un nuevo cálculo de la entropía mantiene este resultado general pero sugiere que el universo está más desordenado de lo que los científicos habían pensado — y ha llegado ligeramente más lejos en su gradual camino hacia la muerte, según concluyen dos cosmólogos australianos.

Un análisis de Chas Egan de la Universidad Nacional Australiana en Canberra y Charles Lineweaver de la Universidad de Nueva Gales del Sur en Sydney indica que la entropía colectiva de todos los agujeros negros supermasivos en el centro de las galaxias es unas 100 veces mayor de lo anteriormente calculado. Debido a que los agujeros negros supermasivos son los mayores contribuyentes a la entropía cósmica, el hallazgo sugiere que la entropía del universo también es 100 veces mayor que la anterior estimación.

El irreversible final está entre los tres modelos que se han podido construir para el futuro del Universo, de todas las formas  que lo miremos es negativo para la Humanidad -si es que puede llegar tan lejos-.  En tal situación, algunos ya están buscando la manera de escapar. Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso. Como algunos otros él dice que existen múltiples universos conectados los unos a los otros.  Unos tienen constantes de la Naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible.  Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista.  Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la Gravedad-Cosmos y la Mecánica Cuántica-Átomo, no será posible  contestar a ciertas preguntas.

Existen en realidad, en nuestro Universo las cuerdas vibrantes de la Teoría M, o, simplemente se trata de un ejercicio mental complejo

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, solo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10 ó 26 dimensiones, allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida  a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del Universo y de las fuerzas que en el actúan.

Científicamente, la teoría del Hiperespacio lleva los nombres de teoría de Kaluza-Klein y súper gravedad.  Pero en su formulación más avanzada se denomina teoría de supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo, diez dimensiones.  Así pues, trabajando en dimensiones más altas, esta teoría del Hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas.  Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

Resultado de imagen de Los científicos mexicanos e italianos han encontrado cómo se curva el espacio por la presencia de masas directamente de observaciones astronómicas, a diferencia de las aproximaciones puramente teóricas propias de otras teorías gravitacionales, como las supercuerdas o la gravitación cuántica.

Parece que algo no va, algunos parámetros se presentan difusos, la Gravedad no acabamos de entenderla, el mundo infinitesimal… es raro

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al al Universo: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil.  Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado.  Sin embargo, la teoría del Hiperespacio permite la posibilidad de explicar todas las fuerzas de la Naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del Hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo.  De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del Hiperespacio.

Resultado de imagen de Resultado de imagen de La Teoría MResultado de imagen de Resultado de imagen de La Teoría M

La Teoría M ha reunido conjuntamente a todas las teorías de cuerdas existentes en una sóla que resume lo que sería el Universo visto desde esa Teoría que contesta a “casi” todas las preguntas.

No, no será fácil llegar a las respuestas de éstas difíciles preguntas que la física tiene planteadas. Y, sin embargo, ¿cómo podríamos describir lo que en estas teorías han llegado a causar tanta pasión en esos físicos que llevan años luchando con ellas? Recuerdo haber leído aquella conferencia apasionante que dio E. Witten en el Fermilab. Su pasión y forma de encausar los problemas, sus explicaciones, llevaron a todos los presentes a hacerse fervientes y apasionados fans de aquella maravillosa teoría, la que llaman M. Todos hablaban subyugados mucho después de que el evento hubiera terminado. Según contó León Lederman, que asistió a aquella conferencia: “Yo nunca había visto nada igual, cuando Witten concluyó su charla, hubo muchos segundos de silencio, antes de los aplausos y, tal hecho, es muy significativo.

Claro que, a medida que la teoría ha ido topándose con unas matemáticas cada vez más difíciles y una proliferación de direcciones posibles, el progreso y la intensidad que rodeaban a las supercuerdas disminuyeron hasta un nivel más sensato, y ahora, sólo podemos seguir insistiendo y esperar para observar que nos puede traer el futuro de esta teoría que, es posible (y digo sólo posible) que se pueda beneficiar, de alguna manera, de las actividades del LHC que, en algunas de sus incursiones a ese mundo fantasmagórico de lo infinitesimal, podría -y digo podría- atisbar las sombras que puedan producir las supercuerdas.

Resultado de imagen de Edward Witten en una conferencia explica la Teoría M

            Ed Witten es el autor de la Teoría M de cuerdas que unifica a todas las demás versiones

No son pocos los físicos capaces que están empeñados en demostrar esa teoría. Por ejemplo, Físicos de SLAC desarrollan una prueba de marco de trabajo dependiente para la Teoría de Cuerdas Crítica. La Teoría de Cuerdas resuelve muchas de las cuestiones que arruinan la mente de los físicos, pero tiene un problema importante — no hay actualmente ningún método conocido para comprobarla y, si las energías requeridas para ello, es la de Planck  (1019 GeV), la cosa se pone fea.

Está claro que, al tratar todas estas hipotéticas teorías, no pocos, han pensado que, algún día, se podría realizar el sueño de viajar por el Hiperespacio y, de esa manera, se habría logrado el medio para escapar de la Tierra cuando el momento fatídico, en el cual el Sol se convierta en gigante roja, no podamos seguir aquí.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el Hiperespacio (El Hiperespacio en ciencia ficción es una especie de región conectada con nuestro universo gracias a los agujeros de gusano, y a menudo sirve como atajo en los viajes interestelares para viajar más rápido que la luz), si llegara a ser posible, podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos de la muerte de este Universo cuando al final llegue el frío o el calor.

Resultado de imagen de En la Teoría de cuerdas está incluida la Gravedad cuántica ?Una ilusión?Imagen relacionada

        También en la teoría de supercuerdas está incluída ¡la Gravedad-Cuántica! ¿Otra Ilusión?

Esta nueva teoría de supercuerdas, tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas, podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de Gusano que unan partes distantes de nuestro Universo.  Por desgracia, los resultados son desalentadores.  La energía requerida excede con mucho cualquier cosa que pueda  existir en nuestro planeta.  De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos.  Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el Hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable y….,  la debacle llegará.

      Sí, hemos logrado mucho. Arriba tenemos la  imagen de la emisión en radio de un magnetar

No existen dudas al respecto, la tarea que nos hemos impuesto es descomunal, imposible para nuestra civilización de hoy pero, ¿y la de mañana, no habrá vencido todas las barreras? Creo que, el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, solo necesita tiempo y, como nos ha demostrado DA14 en el presente, ese tiempo que necesitamos, está en manos de la Naturaleza y, nosotros, nada podemos hacer si ella, no nos lo concede. Y, si por desventura es así, todo habrá podido ser, un inmenso sueño ilusionante de lo que podría haber sido si…

¿Dónde estará el límite? ¡No hay límites!

Resultado de imagen de La teoría de la Gravedad cuántica ?Una ilusión?

¿La gravedad y el Big Bang serán en realidad una ilusión? En enero del 2010, Erik Verlinde, profesor de Física y teórico de cuerdas de renombre mundial,causó un gran revuelo en todo el mundo con la publicación de “El origen de la Gravedad y las Leyes de Newton”, artículo en el que cuestionó las percepciones comúnmente sostenidas sobre la gravedad, llegando incluso a mencionar que “para mí la gravedad no existe”.

Como podréis ver… ¡Seguro, lo que se dice seguro, existen pocas cosas! Todo podría ser posible y estamos tratando de seguir adelante apoyados en postulados que, de alguna manera, podría estar equivocados.

emilio silvera

¿Había algo antes del Big Bang?

Autor por Emilio Silvera    ~    Archivo Clasificado en Conjeturas    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC- Ciencia

http://3.bp.blogspot.com/-EgYu203xVYQ/TpZgFOU8FfI/AAAAAAAAAJU/q5xInJzoB-4/s1600/penrose-21.png

Según la teoría de la Cosmología Cíclica Conforme, de Sir Roger Penrose, el Universo vive un ciclo continuo e infinito de «creaciones»

” A la izquierda: Imagen en el óptico de la nebulosa del Cangrejo tomada por el telescopio Hubble, a la que se han asignado colores falsos para resaltar los diferentes elementos químicos que la componen. La nebulosa abarca una distancia de unos 6 años luz. En el centro: Imagen del objeto en rayos XA la derecha: Recreación artística de la estrella de neutrones central, de apenas unos kilómetros de diámetro, con su campo magnético. El eje de rotación del púlsar queda representado por la línea vertical de color verde. Las franjas azules, paralelas al eje que forman los polos magnéticos del astro, simbolizan los haces de radiación emitidos por el objeto. Debido a la rápida rotación de la estrella, esos haces se orientan hacia la Tierra una vez cada 33 milisegundos. Cuando eso ocurre, desde nuestro planeta se observa un breve pulso de radiación electromagnética muy energética”
La Nebulosa se formó tras una explosión de Supernova,claro que,el término explosión,si está referido al Big Bang,se queda muy corto para describir todo lo que allí,se supone que pasó.
 NASA, ESA, J. Hester, A. Loll (ASU)
Héctor Socas, investigador del Instituto de Astrofísica de Canarias (IAC). Créditos: ACTPress.

 

POR HÉCTOR SOCAS NAVARRO/Investigador en el Instituto Astrofísico de Canarias (IAC)

 

Sir Roger Penrose es una leyenda viva de la Física. Durante el festival Starmus tuve el placer de escucharle explicando su controvertida teoría cosmológica. Su exposición fue tan elocuente, convincente e incluso divertida, que me causó una profunda impresión. A ver si en este artículo consigo explicarla de forma mínimamente coherente.

Estamos bastante seguros de que el Universo entero comenzó con lo que se llama el Big Bang (la «gran explosión») hace la friolera de 13,700 millones de años. En realidad, lo de la explosión no es una muy buena metáfora. Este nombre lo acuñó despectivamente el astrofísico Fred Hoyle durante la retransmisión de un programa de radio de la BBC en 1949. Hoyle se burlaba con él de la absurda teoría que había propuesto el sacerdote (además de físico y matemático) Georges Lemaître. El propio Einsteinal principio tampoco creía en las ideas de Lemaître. El prejuicio de la época era que el Universo debía ser algo estático e inmutable. Pero las matemáticas de Lemaître eran impepinables.

Resultado de imagen de Lemaitre Y la expansión del Universo

Georges Lemaître y Albert Einstein que, tras muchas discusiones…

Su solución de las ecuaciones de Einstein implicaba que el Universo debía estar o bien expandiéndose o bien colapsando, cayendo sobre sí mismo como un edificio en demolición. Visto con perspectiva histórica, debe dar mucha rabia eso de que alguien coja las ecuaciones que son el trabajo de tu vida y las resuelva magistralmente para llegar a una conclusión que aborreces. Las discusiones entre Einstein y Lemaître, que llevaron al primero a proponer la existencia de una «constante cosmológica», merecerían un artículo aparte. Por lo pronto, baste decir que, como buen científico, Einstein acabó aceptando la evidencia, tanto teórica como empírica, que comenzaba a acumularse. Pese a sus prejuicios iniciales, terminó abrazando la idea de que, efectivamente, el Universo se estaba expandiendo.

La singularidad original

La historia sería más o menos así: Al principio de los tiempos, todo el Universo estaba concentrado en una singularidad, un punto de densidad infinita que repentinamente estalló en ese instante inicial, saltando toda la materia, energía y espacio despedidos en todas direcciones. A medida que pasa el tiempo, la Física nos dice que las galaxias van a sentir el tirón gravitatorio unas de otras, y esto debería hacer que poco a poco se vayan frenando. Cuánto se van a frenar dependerá de cuánta masa haya en el Universo. Si hay mucha, la gravedad terminará por dominar, la expansión se detendrá y el Universo volverá a caer sobre sí mismo.

NASA / WMAP Science Team

Si hay poca, la atracción será incapaz de frenar la expansión y el Universo continuará expandiéndose por toda la eternidad, aunque a menor velocidad. La distinción es trascendental, con implicaciones hasta en el plano espiritual. Porque un Universo que vuelve a colapsar se presta a la perspectiva del ciclo infinito de big bang-big crunch, el ciclo continuo y eterno de creación y destrucción. Mientras que la otra posibilidad nos lleva a una insulsa muerte final de toda la existencia, más que nada por aburrimiento.

La sorpresa de la densidad crítica

Resultado de imagen de La Densidad Crítica del Universo

De la Densidad Crítica, o lo que los Cosmólogos llaman el Omega Negro (la materia existente en el Universo), dependerá su final. Tres podrían ser las clases de Universo en el que vivimos.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

La cantidad de masa (o, hablando con más precisión, de energía) que se necesita para pasar de un comportamiento a otro se llama «densidad crítica». No hace mucho, cuando yo estudiaba, sin ir más lejos (y créanme que tampoco hace tanto de eso), nos preguntábamos si en el Universo había más o menos densidad que la crítica. Parecía que no, que era muy pequeña, que no sería suficiente toda la masa para volver a cerrar el ciclo. Pero claro, en aquella época no se conocían la materia y la energía oscura. Si tenemos en cuenta estos factores, nos encontramos con uno de los grandes misterios de la cosmología moderna: ¡Resulta que tiene exactamente la densidad crítica!

La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big Bang
La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big Bang- WIKIPEDIA

La revelación de que la densidad del Universo es exactamente la crítica (con tanta precisión como somos capaces de medir), sacudió el mundo de la Física. Y es que, aunque sea en el plano subconsciente, se hace difícil no evocar la imagen de un creador para explicar tal coincidencia cósmica. La situación de crisis existencial se resolvió poco después, para alivio de muchos, con la llegada de la teoría de la inflación.

Por ponerlo en términos muy simples, esta teoría nos dice que durante la primera fracción de segundo (técnicamente, desde los 10-36 hasta los 10-32 segundos), el Universo sufrió una expansión tan brutalmente violenta, que el término «explosión» se queda muy corto para describir lo que ocurrió. La expansión en esa época fue acelerada exponencialmente, que es una forma que hay en Física de decir enormemente rápida.

Los cosmólogos suelen decir que todo lo que existe pasó de tener el tamaño de un átomo al de un melón. Por alguna razón se suele usar el melón como medida de referencia. Podrían decir que medía 30 centímetros, que era como un balón de baloncesto o como un florero grande. Pero no, parece que lo del melón lleva camino de convertirse en la unidad estándar de volumen cósmico, algo así como el campo de fútbol lo es hoy en día para medir áreas de monte quemado.

Archivo:Bicep2.jpg

La cuestión es que a este disparatado crecimiento del espacio, infinitamente más rápido que la luz, se le llama inflación. Es un poco contraintuitivo porque, en lenguaje cotidiano, el verbo inflar nos suena mucho más suave y benigno que explotar. Es bien conocido que los físicos no son muy buenos para poner nombres a las cosas. No entendemos bien cómo y por qué ocurrió la inflación salvo que parece estar relacionado con lo que se llama «gran unificación», la época en la que las tres fuerzas fundamentales de la naturaleza eran una, grande y única.

El Universo no se frena

El otro gran descubrimiento que ha tenido lugar desde los tiempos de Einstein es otro hallazgo reciente que también ha causado cierta zozobra existencial. Discutíamos antes las dos posibilidades sobre hasta qué punto sería la gravedad capaz de frenar la expansión del Universo, creando un ciclo continuo de explosión-colapso (Big Bang-Big Crunch) o bien una expansión que se iría ralentizando eternamente pero sin llegar nunca a detenerse del todo. Pues bien, hoy en día sabemos que no va a ser ni lo uno ni lo otro. Resulta que el Universo no se está frenando. No tiene visos de querer volver a colapsar pero tampoco está ralentizando su marcha.

Antes al contrario, las observaciones nos muestran que desde hace 5,000 millones de años (un tercio de su vida), el Universo ha dejado de frenarse y ¡ha comenzado a acelerar! Este resultado fue obtenido por dos grupos independientemente y ambos recibieron el Premio Nobel en 2011. Fue tan sorprendente que ninguno de los dos grupos se atrevió a publicarlo hasta que se enteraron de los resultados del otro. Para explicar el fenómeno, los teóricos han tenido que postular la existencia de una «energía oscura», que sería omnipresente en todo el espacio vacío.

El ciclo continuo de Penrose

Hasta aquí hemos explicado la cosmología moderna canónica, la visión aceptada mayoritariamente por los expertos en el tema. ¿Qué es, entonces, lo que añade Penrose? Pues, según su teoría, estas dos revelaciones, la inflación y la expansión acelerada del Universo, están íntimamente relacionadas. De hecho, serían la misma cosa. Para Penrose, el Universo vive un ciclo continuo e infinito de «creaciones», pero no en el modelo tradicional de explosión-colapso.

Una fotografía de Roger Penrose, tomada en 2005
Una fotografía de Roger Penrose, tomada en 2005- Festival della Scienza

En su lugar, Penrose postula que cada uno de los ciclos (que él llama eones) acaba con una fase de expansión acelerada que se convierte en la inflación del eón siguiente. Lo de Penrose no es una ocurrencia, es una teoría. Esto significa que ha resuelto las ecuaciones de la relatividad general y los números cuadran salvo por un factor de escala. Quiere decirse que las escalas del nuevo universo son mucho mayores, tanto en el espacio como en el tiempo.

De Universo a melón

Resultado de imagen de Un nuevo Universo ciclico después del final

Así, todo nuestro Universo en expansión acelerada, está camino de convertirse en lo que sería un melón del Universo siguiente. Y los miles de millones de años que dura esta expansión serían la breve fracción de segundo en aquel nuevo Universo. Quizás en un futuro increíblemente distante, habrá criaturas inconcebiblemente grandes y lentas en el siguiente eón, investigando esta época en la que vivimos hoy en día, a la que quizás den el absurdo nombre de inflación y quizás la consideren el origen de su universo. Una implicación particularmente profunda de todo esto es que, de ser cierto, estaríamos ahora mismo viviendo un nuevo big bang que comenzó hace 5,000 millones de años y lo estaríamos viendo transcurrir a cámara superlenta.

Sir Roger Penrose, sustentador de esta teoría, en el Festival della Scienza, Génova, 2011.

Quiero resaltar que esta teoría, llamada Cosmología Cíclica Conforme, no es la aceptada por la mayoría de los cosmólogos. Sin embargo, no hay nada incorrecto o erróneo en ella, que sepamos. Penrose es uno de los mayores expertos mundiales en la física de la relatividad general y la cosmología. Su teoría cumple con la física conocida y esto sí que es un mérito que le concede la comunidad. Al igual que hizo Lemaître hace un siglo, ha encontrado una solución matemática correcta a las ecuaciones de la Física que conocemos, pero es una solución que aborrecen sus colegas por razones más filosóficas que científicas.

Resultado de imagen de Ondas gravitacionales

Un aspecto particularmente fascinante es que, como toda buena teoría, la naturaleza cuantitativa de la cosmología de Penrose le permite hacer predicciones. Las ecuaciones indican que los eones no son completamente independientes y algo de información se puede transmitir de uno a otro. En particular, las ondas gravitacionales (ésas que recientemente detectó el experimento LIGO) creadas por catástrofes cósmicas en el eón anterior podrían atravesar la época de la inflación y llegar hasta nuestros días. Estas ondas producirían patrones de anillos concéntricos en el fondo cósmico de microondas. Ni que decir tiene que muchos investigadores están ya manos a la obra buscando esos anillos. Si se encontraran, sería la primera observación de algo que ocurrió antes del Big Bang.

Héctor Socas Navarro es investigador del Instituto de Astrofísica de Canarias (IAC) y divulgador en «Coffe Break». El autor agradece al Dr Jose Alberto Rubiño por su lectura crítica y comentarios para mejorar este artículo.

Conjeturar… ¡Tratando de saber!

Autor por Emilio Silvera    ~    Archivo Clasificado en Conjeturas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El principio antrópico y otras cuestiones

¡El Universo! ¿Sabía que nosotros íbamos a venir?

¿El Principio Antrópico? Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo.  Como antes hemos comentado de pasada, existen varias versiones del principio antrópico.  La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones adecuadas para ello.  Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.

Resultado de imagen de Principio antrópico: La Vida en el Universo

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida.  La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.

“Basado en las propuestas del premio Nobel de física Paul Dirac sobre los ajustados, sincronizados y muy precisos valores de las constantes de la naturaleza, los físicos actuales comienzan a valorar aquello que han denominado el “principio antrópico¨, es decir, poco a poco, a lo largo de los años han entendido que siempre quedará un espacio de información faltante cuando intentamos teorizar o conceptualizar los inicios del universo supeditados exclusivamente sobre la capacidad contenida en las leyes de la física para explicar dichos inicios.”

 

 

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la Naturaleza y entrar en el juego virtual de ¿Qué hubiera pasado si…? Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal a cual manera para ocurrir de ésta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para la Humanidad y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual, solo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto.  Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza ¿Quién sabe lo que pasará mañana?

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que este postulado es bastante razonable.

Lo que ocurra en la Naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual, es decir, esa parcial disposición que tenem0s  del “libre albedrío”.

                  ¿Cómo sería nuestro mundo si las constantes universales fueran diferentes?

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser  si….,  lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de Hidrógeno, Helio, Carbono, etc.,  para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras  que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la Gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro.  Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

                                              El Sol será una Gigante roja y, cuando eso llegue, la Tierra…

Pero el problema no es tan fácil y, se extiende a la totalidad del Universo que, aunque mucho más tarde, también está abocado a la muerte térmica,  el frío absoluto si se expande para siempre como un Universo abierto y eterno. A estas alturas se ha descartado el Big Chunch y se saber que la expansión del Universo es imparable y que con el paso del tiempo las galaxias estarán más alejadas las unas de las otras hasta que, la energía, las temperaturas sean -273 ºC, un ámbito de muerte, allí nada -ni siguiera los átomos-, absolutamente nada se mueve.

Imagen relacionada

Muerte térmica del Universo: De acuerdo con las leyes de la termodinámica, en el que toda la materia alcanzará finalmente la misma temperatura. En estas condiciones no existe energía disponible para realizar trabajo y la entropía del Universo se encuentra en su máximo. Este resultado fue predicho por el físico alemán Rudolf Julius Emmanuel Clausius (1822-1888), quien introdujo el concepto de entropía.

        Y, nuevos cálculos sugieren que el cosmos puede estar un poco más cerca a una muerte térmica.

Para tener todo ese tumulto — estrellas en erupción, galaxias chocantes, agujeros negros que colapsan – el cosmos es un lugar sorprendentemente ordenado. Los cálculos teóricos han demostrado desde hace mucho que la entropía del universo – una medida de su desorden – no es más que una diminuta fracción de la cantidad máxima permitida.

Un nuevo cálculo de la entropía mantiene este resultado general pero sugiere que el universo está más desordenado de lo que los científicos habían pensado — y ha llegado ligeramente más lejos en su gradual camino hacia la muerte, según concluyen dos cosmólogos australianos.

Un análisis de Chas Egan de la Universidad Nacional Australiana en Canberra y Charles Lineweaver de la Universidad de Nueva Gales del Sur en Sydney indica que la entropía colectiva de todos los agujeros negros supermasivos en el centro de las galaxias es unas 100 veces mayor de lo anteriormente calculado. Debido a que los agujeros negros supermasivos son los mayores contribuyentes a la entropía cósmica, el hallazgo sugiere que la entropía del universo también es 100 veces mayor que la anterior estimación, según informaban los científicos el 23 de septiembre en ArXiv.org.”

El irreversible final está entre los tres modelos que se han podido construir para el futuro del Universo, de todas las formas  que lo miremos es negativo para la Humanidad -si es que puede llegar tan lejos-.  En tal situación, algunos ya están buscando la manera de escapar. Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso. Como algunos otros él dice que existen múltiples universos conectados los unos a los otros.  Unos tienen constantes de la Naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible.  Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista.  Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la Gravedad-Cosmos y la Mecánica Cuántica-Átomo, no será posible  contestar a ciertas preguntas.

Existen en realidad, en nuestro Universo las cuerdas vibrantes de la Teoría M, o, simplemente se trata de un ejercicio mental complejo

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, solo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10 ó 26 dimensiones, allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida  a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del Universo y de las fuerzas que en el actúan.

Científicamente, la teoría del Hiperespacio lleva los nombres de teoría de Kaluza-Klein y súper gravedad.  Pero en su formulación más avanzada se denomina teoría de supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo, diez dimensiones.  Así pues, trabajando en dimensiones más altas, esta teoría del Hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas.  Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

Resultado de imagen de Los científicos mexicanos e italianos han encontrado cómo se curva el espacio por la presencia de masas directamente de observaciones astronómicas, a diferencia de las aproximaciones puramente teóricas propias de otras teorías gravitacionales, como las supercuerdas o la gravitación cuántica.

Parece que algo no va, algunos parámetros se presentan difusos, la Gravedad no acabamos de entenderla, el mundo infinitesimal… es raro, son muchas las cosas que se nos escapan.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al al Universo: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil.  Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado.  Sin embargo, la teoría del Hiperespacio permite la posibilidad de explicar todas las fuerzas de la Naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del Hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo.  De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del Hiperespacio.

Resultado de imagen de Vibraciones del Hiperespacio

No, no será fácil llegar a las respuestas de éstas difíciles preguntas que la física tiene planteadas. Y, sin embargo, ¿cómo podríamos describir lo que en estas teorías han llegado a causar tanta pasión en esos físicos que llevan años luchando con ellas? Recuerdo haber leído aquella conferencia apasionante que dio E. Witten en el Fermilab. Su pasión y forma de encausar los problemas, sus explicaciones, llevaron a todos los presentes a hacerse fervientes y apasionados fans de aquella maravillosa teoría, la que llaman M. Todos hablaban subyugados mucho después de que el evento hubiera terminado. Según contó León Lederman, que asistió a aquella conferencia: “Yo nunca había visto nada igual, cuando Witten concluyó su charla, hubo muchos segundos de silencio, antes de los aplausos y, tal hecho, es muy significativo.

Claro que, a medida que la teoría ha ido topándose con unas matemáticas cada vez más difíciles y una proliferación de direcciones posibles, el progreso y la intensidad que rodeaban a las supercuerdas disminuyeron hasta un nivel más sensato, y ahora, sólo podemos seguir insistiendo y esperar para observar que nos puede traer el futuro de esta teoría que, es posible (y digo sólo posible) que se pueda beneficiar, de alguna manera, de las actividades del LHC que, en algunas de sus incursiones a ese mundo fantasmagórico de lo infinitesimal, podría -y digo podría- atisbar las sombras que puedan producir las supercuerdas.

Resultado de imagen de Comprobar la teoría de cuerdas

No son pocos los físicos capaces que están empeñados en demostrar esa teoría. Por ejemplo, Físicos de SLAC desarrollan una prueba de marco de trabajo dependiente para la Teoría de Cuerdas Crítica. La Teoría de Cuerdas resuelve muchas de las cuestiones que arruinan la mente de los físicos, pero tiene un problema importante —no hay actualmente ningún método conocido para comprobarla y, si las energías requeridas para ello, es la de Planck  (1019 GeV), la cosa se pone fea, ya que, no está a nuestro alcance-.

Está claro que, al tratar todas estas hipotéticas teorías, no pocos, han pensado que, algún día, se podría realizar el sueño de viajar por el Hiperespacio y, de esa manera, se habría logrado el medio para escapar de la Tierra cuando el momento fatídico, en el cual el Sol se convierta en gigante roja, no podamos seguir aquí.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el Hiperespacio (El Hiperespacio en ciencia ficción es una especie de región conectada con nuestro universo gracias a los agujeros de gusano, y a menudo sirve como atajo en los viajes interestelares para viajar más rápido que la luz), si llegara a ser posible, podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos de la muerte de este Universo cuando al final llegue el frío o el calor.

Resultado de imagen de Gravedad cuántica

   También en la teoría de supercuerdas está incluída ¡la Gravedad-Cuántica! Otra Ilusión… ¡De momento!

Esta nueva teoría de supercuerdas, tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas, podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de Gusano que unan partes distantes de nuestro Universo.  Por desgracia, los resultados son desalentadores.  La energía requerida excede con mucho cualquier cosa que pueda  existir en nuestro planeta.  De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos.  Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el Hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable y….,  la debacle llegará.

     Sí, hemos logrado mucho. Arriba tenemos la  imagen de la emisión en radio de un magnetar

No existen dudas al respecto, la tarea que nos hemos impuesto es descomunal, imposible para nuestra civilización de hoy pero, ¿y la de mañana, no habrá vencido todas las barreras? Creo que, el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, solo necesita tiempo y, como nos ha demostrado DA14 en el presente, ese tiempo que necesitamos, está en manos de la Naturaleza y, nosotros, nada podemos hacer si ella, no nos lo concede. Y, si por desventura es así, todo habrá podido ser, un inmenso sueño ilusionante de lo que podría haber sido si…

¿Dónde estará el límite? ¡No hay límites!

emilio silvera

Cada cual ve las cosas bajo un prisma particular

Autor por Emilio Silvera    ~    Archivo Clasificado en Conjeturas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de Los extraterrestres ya están aquí

El magnate y colaborador de la NASA Robert Bigelow asegura que “los extraterrestres viven ya entre nosotros”.

  • Asegura que no hay que realizar viajes espaciales para encontrar vida
  • Bigelow tiene una compañía aeroespacial, Bigelow Aerospace
robert-bigelow-wikipedia.jpg
Robert Bigelow. Imagen: Wikipedia

Enlaces relacionados

 

 

Robert Bigelow, magnate estadounidense y colaborador cercano de la NASA que posee una compañía aeroespacial, ha asegurado en el programa 60 Minutos de la cadena CBS que los “extraterrestes viven ya entre nosotros”, lo que ha causado bastante revuelo.

“Estoy absolutamente convencido. Eso es todo al respecto. Ha habido y hay una presencia existente, una presencia extraterrestre. Y gasté millones y millones y millones, probablemente gasté más que cualquier otra persona en los Estados Unidos ha gastado en este tema”, ha declarado.

Resultado de imagen de LOs extraterrestres ya están entre nosotros

Preguntado sobre si considera arriesgado para su imagen decir en público que cree en los extraterrestres, Bigelow ha dicho que le “importa un bledo”. “No va a cambiar la realidad de lo que sé”, ha recogido Europa Press.

“No tienes que ir a ninguna parte. Están debajo de la nariz de la gente”, ha asegurado Bigelow al ser preguntado sobre la posibilidad de encontrar vida extraterrestre en un viaje espacial.

Biología cuántica: Ciencia que es y no es

Autor por Emilio Silvera    ~    Archivo Clasificado en Conjeturas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Imagen de una estructura de ADN molecular en el Museo de Ciencias de Oxford.

Imagen de una estructura de ADN molecular en el Museo de Ciencias de Oxford. Allispossible.org.uk (CC)

 Los científicos estudian ai los seres vivos utilizan las extrañas propiedades de la física cuántica en sus procesos biológicos, pero aún no lo tienen claro.

Circula por ahí un chiste sobre los ordenadores cuánticos, esas máquinas del futuro de las que se hablan maravillas: “Los ordenadores cuánticos son extremadamente potentes, y al mismo tiempo aún no funcionan”, cuenta a EL ESPAÑOL el físico Franco Nori, director del Grupo de Investigación en Materia Condensada Cuántica del Instituto RIKEN, en Japón. El chiste es una parodia del famoso experimento mental del gato de Schrödinger, que estaba vivo y muerto al mismo tiempo.

 

 

 

 

Y es que la física cuántica es así: paradójica, contraria a la intuición de los seres grandes como nosotros, que nos regimos por la lógica de la mecánica clásica y la relatividad einsteniana. En nuestra experiencia cotidiana, algo no puede aparecer al mismo tiempo en dos estados incompatibles entre sí. Las reglas de la cuántica sólo operan en lo extremadamente diminuto; e incluso a esa escala, no siempre funcionan. Pero sobre todo, aún no ha logrado tenderse el puente en el que los físicos cuánticos y los relativistas puedan darse la mano; no hay una teoría que ligue ambos ingredientes en una sola salsa.

Sin embargo, es evidente que las partículas subatómicas son la base de todo, así que podríamos decir, apunta Nori, que “todo en el universo es cuántico… porque todo está hecho de átomos”. Pero aclara: “Sin embargo, no describimos cómo se mueven los satélites o cómo fluye el agua utilizando mecánica cuántica, porque para esto no necesitamos la parte cuántica. Muchos átomos se pueden describir bien clásicamente”. De hecho, añade, “pocos fotones requieren un tratamiento de óptica cuántica; no se necesita”.

Y dado que lo ocurrido en los círculos cuánticos no deja rastro aparente en eso que los no-físicos llamarían el mundo real, ¿cómo podría tener alguna importancia para la vida? Debería quedar perfectamente zanjado que las enormes moléculas en las que se basan los procesos biológicos no pueden enterarse ni de lejos de lo que sucede al minúsculo nivel de los electrones de sus átomos, por mucho que dependan de ello. ¿O sí?

 

¿Qué es la vida?

 

 

 

En 1944 Erwin Schrödinger, el del gato, publicó un ensayo de divulgación titulado What is Life? (¿Qué es la vida?), basado en una serie de conferencias públicas que había pronunciado el año anterior en el Trinity College de Dublín. En su obra, Schrödinger ataba la relación entre química y biología, y por tanto entre física y biología, en una época en que aún no se conocía que la herencia genética residía en una sustancia ya conocida llamada ADN.

Aunque el austríaco no fue el primero en suponer que la información genética de los seres vivos debía de codificarse en enlaces químicos, sus ideas influyeron en la posterior investigación de la estructura del ADN por James Watson y Francis Crick. Pero Schrödinger hizo algo más: acuñó el término “teoría cuántica de la biología”, refiriéndose al hecho de que las mutaciones son saltos en la herencia, del mismo modo que la energía de las partículas salta de un valor discreto a otro (está cuantizada). “El mecanismo de la herencia está estrechamente relacionado con, o mejor dicho, está fundado sobre, la misma base de la teoría cuántica”, escribía el físico.

Con todo, Schrödinger se quedó corto: además de no extender su idea más allá de los genes, se centró únicamente en cómo la asimetría de las moléculas y sus múltiples formas podían servir para codificar toda la diversidad de la información genética. En cambio, negó expresamente que las transiciones en los átomos pudieran tener alguna influencia en la biología: “La indeterminación cuántica no juega ningún papel biológicamente relevante”, escribió.

 

 

La fotosíntesis funciona gracias a la física cuántica
La fotosíntesis funciona gracias a la física cuántica Frank Bättermann

A la biología cuántica aún le aguardaba una larga espera. Al menos, hasta 2007. Aquel año, un equipo de la Universidad de California en Berkeley dirigido por el físico Graham Fleming demostraba algo que otros científicos llevaban tiempo barruntando: la fotosíntesis, ese proceso cuasimágico por el que muchos organismos consiguen producir oxígeno a partir del dióxido de carbono, funciona gracias a la física cuántica.

Los investigadores aislaron los centros fotosintéticos de dos microbios, la bacteria verde del azufre Chlorobium tepidum y la bacteria púrpura Rhodobacter sphaeroides, y los bombardearon con pulsos láser para estudiar cómo la energía de los fotones se transfería desde los pigmentos que recogen la luz hasta el centro de reacción, donde se cuece esa química necesaria para la vida. Los mensajeros de esta transferencia son los electrones, que corren alimentados por esa poción mágica de la energía fotónica. Pero ¿cómo encuentran su camino entre el desorden molecular para evitar perderse y desperdiciar esa energía?

Fleming y su equipo descubrieron que lo hacen como ondas, no como partículas. De este modo, la onda se dispersa para encontrar el mejor camino sin tener que recorrerlos todos uno a uno. Y esta capacidad de estar en distintos lugares al mismo tiempo, o de tener dos estados incompatibles entre sí, es el privilegio de la física cuántica; por fin había nacido la biología cuántica.

 

Un caos húmedo y caliente

 

 

Resultado de imagen de La catarata de sangre

La catarata de sangre

 

 

Los análisis químicos y biológicos indican que hay un extraño ecosistema subglacial de bacterias autótrofas que metaboliza iones de azufre y hierro. Según la geomicrobióloga Jill Mikucki, en las muestras de agua existen como mínimo 17 tipos diferentes de microbios, que viven prácticamente sin oxígeno. Nunca antes se había observado en la naturaleza el proceso metabólico mediante el cual los microbios utilizan un sulfato como catalizador para respirar con iones férricos y metabolizar la materia orgánica microscópica atrapada con este compuesto químico.

 

 

 

Pero no tan aprisa. Fleming y su equipo llevaron a cabo sus experimentos en condiciones típicas de la física cuántica; por ejemplo, por debajo de los 100 grados bajo cero. Y está claro que las bacterias no suelen vivir a esas temperaturas. Para un físico, una célula es la peor de sus pesadillas: caliente, húmeda, ruidosa y desordenada. En tan miserables condiciones es imposible que ninguna tarea importante pueda confiarse a la extrema levedad de los fenómenos cuánticos. “Muchos científicos creen que estos fenómenos son tan frágiles que sólo aparecen en sistemas muy simples, compuestos por muy pocas partículas y donde el ruido molecular se congela a temperaturas cercanas al cero absoluto”, resume a EL ESPAÑOL el genetista molecular de la Universidad de Surrey (Reino Unido) Johnjoe McFadden.

O al menos eso parecía, hasta que en 2010 dosestudios demostraron que lo dicho para la fotosíntesis en el frío glacial era válido también a temperatura ambiente. Pero, de hecho, éste no es el único sistema biológico en el que la física cuántica puede marcar las reglas, ni siquiera el primero en el que sospechó algo semejante: durante décadas, los biofísicos intuyeron que las enzimas, esos mediadores que convencen a las moléculas para que reaccionen, funcionan según un conocido mecanismo cuántico llamado efecto túnel que permite a una partícula, en este caso un protón, pasar de un estado a otro sin saltar la barrera de energía que los separa, excavando un túnel. En 1989 se mostró por primera vez el efecto túnel en las enzimas.

 

 

Física cuántica

 

 

Con todo esto, parece que la biología cuántica debería ser ya un miembro de pleno derecho del club de las disciplinas científicas. Y sin embargo, ni sus propios patrocinadores se atreven a ir tan lejos. Regresando al chiste del comienzo, Nori aplica a la biología cuántica esa misma doble condición del gato vivo y muerto: “Es a la vez un campo excitante para estudiarlo con precaución en el futuro, y también en el que muchas cuestiones importantes aún no están demostradas”.

 

 

“Muchos científicos aún no están convencidos de que estos efectos requieran la mecánica cuántica para explicarse”, apunta a EL ESPAÑOL el físico de la Universidad de Surrey Jim Al-Khalili, coautor junto con McFadden del libro Life on the Edge: The Coming of Age of Quantum Biology (Bantam Press, 2014). El obstáculo esencial es esa diferencia de pulcritud entre los experimentos cuánticos y el aparente caos de una célula viva, que suscita el escepticismo de no pocos expertos. Para el físico de la Universidad de Viena Markus Arndt, este es “un rasgo de la ciencia de la vida, no tan limpia como los laboratorios de física o los tubos de ensayo de la química”. “¿Pueden estas acciones sobrevivir en las escalas macroscópicas de tiempo y tamaño de los medios biológicos? Esta cuestión todavía está abierta”, comenta Arndt a este diario.”

 

La brújula de las aves

 

Resultado de imagen de las Aves migratoriasResultado de imagen de las Aves migratoriasResultado de imagen de las Aves migratoriasResultado de imagen de las Aves migratorias

 

 

La escala temporal que menciona Arndt es uno de los factores que levantan las cejas de los físicos. Un posible ejemplo de biología cuántica muy de actualidad es el sistema que guía a las aves migratorias, basado en el fenómeno de entrelazamiento cuántico. Según estudios en el petirrojo europeo, la luz dispara en la retina un par de electrones gemelos que responden al magnetismo terrestre, como la aguja de una brújula. Un estudio reciente ha prestado nuevo crédito a esta hipótesis. Pero un problema es que este entrelazamiento duraría unos pocos microsegundos. Para los físicos, esto es una eternidad jamás lograda ni de lejos en un laboratorio, y no digamos a una temperatura a la que el petirrojo no se convierta en un fósil congelado.

Sin embargo, el nuevo estudio no es experimental, sino una simulación por ordenador. “Todavía necesitamos pruebas experimentales de que la teoría es correcta”, dice Al-Khalili. El obstáculo principal al que se enfrenta la biología cuántica es la dificultad de llevar sus predicciones al laboratorio. “Los experimentos adecuados para evaluar estas cuestiones son complicados y difíciles de interpretar”, señala Nori. Otra pega es que los científicos aún se resisten a creer que estos mecanismos cuánticos en la biología tengan realmente un significado evolutivo; es decir, que existan porque los seres vivos han encontrado en la cuántica una ventaja aprovechable. “¿Por qué la naturaleza habría seleccionado estas superposiciones cuánticas? ¿Qué propósito tienen?”, se pregunta Nori.

 

Resultado de imagen de Un fino olfato cuántico

¿Un fino olfato cuántico? Hay muchas dudas. EE | Pixbay (PD)

Los expertos no ven demasiado claro que las tecnologías actuales vayan a ofrecer respuestas “en muchos años o unas pocas décadas”, estima Arndt. Y menos en casos todavía más aventurados y difíciles de testar: en 1996, el biofísico del University College de Londres Luca Turin lanzó una idea que trataba de dar respuesta a un enigma clásico de la biología del olfato: ¿Cómo puede nuestra nariz, con un repertorio grande pero limitado de receptores olfativos, detectar más de un billón de olores? La audaz hipótesis de Turin es que los receptores son capaces de distinguir las vibraciones de las moléculas de olor mediante un mecanismo de efecto túnel, lo que ampliaría la gama olfativa. Sin embargo, la propuesta no ha ganado el aplauso general. “La mayoría de la literatura no apoya el modelo de Turin”, dice Arndt.

En resumen, y pese a lo que afirman McFadden y Al-Khalili en el título de su libro, realmente no parece que la biología cuántica esté pasando a la madurez, sino sufriendo aún un larguísimo parto. Y eso que sus aplicaciones podrían ser provechosas, más allá de responder a la pregunta de Schrödinger. Por ejemplo, dominar el efecto cuántico de la fotosíntesis permitiría diseñar células solares más eficientes. Los dos autores subrayan que la manipulación a nanoescala abriría la puerta a logros como la creación de nanorrobots que depositen un fármaco en la célula que lo necesita.

Y cómo no, también está el futuro de los ordenadores cuánticos: lo que hace el electrón en la fotosíntesis no es otra cosa que computar la mejor solución a un problema sin tener que realizar las operaciones una por una. La naturaleza ya sabe cómo hacerlo. Curiosamente, Arndt sugiere que los ordenadores cuánticos, a su vez, generarían modelos detallados que darían una respuesta definitiva a las incógnitas sobre biología cuántica.

Por algo la ventaja de los ordenadores cuánticos es que son extremadamente potentes. Si no fuera porque aún no funcionan.

Reportaje