viernes, 23 de febrero del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo, la Vida…y, el Azar

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

NASA Analysis: Earth Is Safe From Asteroid Apophis Impact for at Least 100 Years

 

(99942) Apofis, el asteroide que sembró el pánico cuando surgió la noticia. Ahí lo podemos ver moviéndose en la imagen.   Pasará dos veces cerca de la Tierra

 

El asteroide (99942) Apofis no impactará la Tierra en 10 años. Análisis de la NASA: la Tierra está a salvo del asteroide Apophis durante más de una década.

 

10 años preparándose para 'Armageddon': defensa planetaria contra asteroides peligrosos para la Tierra

10 años preparándose para ‘Armageddon’: defensa planetaria. Estos no avisan y, aunque se tratan de controlar… Alguno se podría colar de improviso.

 

Hace tiempo  que salió en algunos medios (otra vez), la noticias de que se nos acercaba el Asteroide Apofis. Se le puede apreciar en el centro de la imagen, moviéndose de derecha a izquierda, tomado el 30 de diciembre de 2004 (Observatorio Astronómico Sormano). La trayectoria ha sido estudiada en varias ocasiones y, finalmente, el 9 de enero de 2013, el Laboratorio de Propulsión a Chorro en Pasadena (California) de la NASA descartó la posibilidad de una colisión de este asteroide, tanto en 2029 como en 2036. Aunque su tamaño de algo más de 300 metros no es descomunal, su caída sobre nuestras cabezas no hubiera sido una fiesta.

 

                                                        3 asteroides pasarán cerca de la Tierra, mañana el primero

 

Muchos son los objetos que pasan por nuestra vecindad sin que nos causen problemas. Pasan a distancias que no pueden inquietarnos. En la Tabla adjunta podéis ver algunos de esos visitantes y a las Distancias Lunares (LD) que pasaron de nosotros.

                                                       3 asteroides pasarán cerca de la Tierra, mañana el primero

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

 

Asteroide domingo

El pasado mes de Octubre, un asteroide de un diámetro comprendido entre 25 y 50 metros pasó junto a la Tierra a unos 256.500 kilómetros.


La caída en el planeta de un asteroide de dimensiones considerables, nos podría causar muy graves problemas y producir extinciones globales que retrasarían en millones de años la evolución y hacer desaparecer algunas especies.  Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

 

                             Cómo sería el mundo si los dinosaurios no se hubiesen extinguido? - BBC News Mundo

                                                            Aquel no era un mundo para nosotros

 

Cómo eran los Dinosaurios? Historia, Ecología, y Curiosidades

 

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, dado que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos aquí tres días y, desde luego, ¡la que hemos formado!

                                                             

Gráfico: Pauta de la respuesta a una crisis medioambiental que causa en la Tierra una extinción en masa.

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre tiempo(bio) y tiempo(estrella) que son aproximadamente iguales; el t(bio) –tiempo biológico para la aparición de la vida– algo más extenso.

 

 

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

 

                             

 

Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.

 

Galaxy IRAS F00183-7111

                                                                                            IRAS F00183-7111

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida, es de lo más nartural en el universo y estará presente en millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Claro que, no por eso niego que puedan existir otras formas de vida diferentes a las terrestres.

 

 

Formas de vida basada en el silicio. Ilustración de un paisaje con formas de vida extraterrestre compuesto de silicio. El silicio es cerca del carbono en el periódico ta Fotografía de stock -Puede existir la vida basada en el silicio?Cómo Sería la Vida Extraterrestre Basada en Silicio? - YouTube

Incluso nos podríamos encontrar con ellas y no saber que son seres vivos. Nadie puede negar que, en otros mundos, puedan exitir formas de vida basadas en el Silicio. Aunque sería asombroso encontrarlas, ya que, como el Carbono… ¡No existe otro elemento más idóneo para que sea la base de la Vida!.

Los biólogos, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

 

Curiosity descubre sustancias orgánicas antiguas en Marte - Eureka

                                 Curiosity descubrió sustancias orgánicas en aquel planeta

Si, Marte pudo ser habitable, pero no hay evidencias de que la vida se haya originado allí. No hay ni compuestos orgánicos que puedan interpretarse como biomarcadores, ni huellas geoquímicas o mineralógicas de actividad de seres vivos. Ahora no podemos negar nada, y, desde luego, el pasado volcánico de Marte, creó innumerables galerías en el subsuelo del planeta. En esas cavidades de más alta temperatura, el agua corre libre y liquida, y, no seré de extrañar que líquenes, bacterias, y hongos proliferen sin tasa.

Un nuevo estudio revela la innovadora investigación en la formación hidrotermal de rocas de carbonato de arcilla en la Fosa Nili, en una  región de Marte. Los resultados pueden proporcionar un vínculo a la evidencia de organismos vivos en Marte hace 4 mil millones de años aproximadamente.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

 

El 'homo sapiens' reemplazó a los neandertales en el sur de la Península Ibérica 5.000 años antes | Actualidad | Cadena SER

 

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años. Lo que parece poco probable. La dinámica del Universo es cambiante y nada dura eternamente.

 

                     

Una galaxia, una estrella, un planeta situado a la distancia adecuada y presencia de agua… ¡LaVida acecha!

Lo que pudimos leer en un artículo publicado el 29 de julio de 2011 en la web del IAC

“Los astrofísicos detectan lo que podría ser C24, una molécula plana bidimensional del grosor de un átomo de carbono, “un trocito de grafeno”.

 

≫ Grafeno - ¿Qué es y para qué sirve?

Qué es el grafeno: definición y descripción - Applynano Solutions

 

Detectan también en diez nebulosas planetarias de dos galaxias cercanas fulerenos C60 y C70. Se trata de la primera detección extra-galáctica del fulereno C70 que, compuesto de pentágonos y hexágonos, tiene forma de diminuto balón de rugby.

 

MODELOS DE FULLERENOS Y NANOTUBOS

 

     Grafeno en el espacio 

 

La presencia de estas moléculas complejas alrededor de estrellas moribundas indica que los procesos básicos para la vida podrían originarse “en cualquier rincón del universo”.

 

 

Stories of inventors and their inventions: Andre Geim and Kostya Novoselov

En el año 2004, los científicos premiados con el Nobel de Física 2010, Andre Geim y Konstantin Novoselov,

sintetizaron el grafeno en el laboratorio. Apenas siete años después, este material de extraordinaria resistencia, delgadez y elasticidad podría haber sido hallado en el espacio. Un equipo liderado por investigadores del Instituto de Astrofísica de Canarias (IAC) acaba de publicar en The Astrophysical Journal Letters la primera evidencia de la posible existencia de C24, una molécula plana bidimensional de un átomo de grosor, un posible “trocito de grafeno” en el espacio.”

 

http://iesteror.files.wordpress.com/2010/04/nhsc_orion_final.jpg

 

“El telescopio espacial Herschel, a través de uno de sus instrumentos, el HIFI (un espectroscopio de infrarrojo) ha analizado la luz procedente de la Nebulosa de Orión encontrando casi todas las moléculas de la vida, como el agua o el metano. También unos equipos estudiando la Nebulosa han encontrado más de diez nuevos sistemas planetarios en ciernes,

 

Encuentran moléculas precursoras de vida en la Nube de Perseo | Canarias7

Encuentran moléculas precursoras de vida en la Nube de Orión. De ese material se forman nuevas estrellas y nuevos mundos que llevarán las moléculas en su interior, y, si los mundos caen en la zona adecuada… ¡La vida estará servida en unos pocos miles de millones de años

Esta nebulosa, situada a unos 1300 años luz de la Tierra, además de ser uno de los objetivos más destacados del cielo nocturno por los astrónomos aficionados debido a la facilidad de su observación, es conocida por ser un lugar donde se están formando estrellas a partir de una nube de gas y polvo. Ahora se demuestra que existen muchas de las moléculas precursoras de la vida, tal y como la conocemos: monóxido de carbono, agua, metano, óxido de azufre, …”

Noticias como estas van siendo ya tan frecuentes que, dudar de la existencia de vida en otros mundos parece irracional. Nuestro aislamiento y confinamiento en el planeta Tierra sólo es debido a la falta de medios tecnológicos, de los conocimientos necesarios que nos posibiliten salvar esas inmensas distancias que nos separan de otros mundos, de otras estrellas, de otras galaxias.

emilio silvera

“Las Tierras”, El Universo y la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La NASA transmite en vivo imágenes de la Tierra por internet - YouTube

YouTube
La NASA transmite en vivo imágenes de la Tierra por internet

Por sorprendente que pueda parecer, especialmente después de ver las imágenes de la Tierra tomadas desde el espacio, en las cuales ésta aparece como una brillante bola azul y blanca sobre un fondo oscuro, la luz visible no ofrece las mejores perspectivas para detectar directamente otros planetas similares a la Tierra. Esto es así por dos razones:

 

El tiempo exacto que tarda en llegar la luz del Sol a la Tierra

La Nasa transmite vistas de la Tierra en tiempo real desde la estación espacialLa superficie de la Tierra, suelos, océanos, y también la atmósfera, absorbe energía solar y la vuelven a irradiar en forma de calor en todas direcciones. A continuación, se presentan los procesos de atenuación que sufre la radiación solar en su trayectoria hacia la tierra.

En primer lugar, la luz visible que se recibe desde un planeta como la Tierra es en esencia el reflejo de la luz procedente de su estrella progenitora, por lo que no sólo es relativamente débil, sino que resulta muy difícil de captar a distancias astronómicas  sobre el fondo iluminado por el resplandor de dicha estrella.

En segundo lugar, del tipo de la Tierra alcanzan en realidad su brillo máximo en la parte de rayos infrarrojos del espectro electromagnético, por el modo en que la energía absorbida procedente del Sol vuelve a irradiarse en la zona de infrarrojos de dicho espectro, con longitudes de onda más largas que las de la luz visible.

 

Una captura de un vídeo que muestra el amanecer en la Tierra desde la órbita terrestre.

 

En una longitud de onda de unas pocas micras, la Tierra es el planeta más brillante del Sistema solar y destacaría como un objeto impactante si se utiliza cualquier telescopio de infrarrojos suficientemente sensible situado en nuestra proximidad estelar. El problema es que, dado que la radiación de infrarrojos es absorbida por los propios gases de la atmósfera terrestre, como el dióxido de carbono y el vapor de agua, que son lo que nos interesa descubrir, el telescopio que se utilice para buscar otros planetas como la Tierra tendrá que ser colocado en las profundidades del espacio, lejos de cualquier fuente potencial de contaminación. También tendrá que ser muy sensible, lo que significa muy grande.

 

Telescopio Espacial James Webb: historia de su origen y nombre

 

         Este será el telescopio que nos lleva más lejos en las profundidades del Espacio

“La NASA ha fijado la fecha del 31 de octubre del 2021 como la nueva fecha para el lanzamiento del telescopio espacial James Webb debido al impacto de la pandemia del coronavirus así como a desafíos técnicos. La decisión se ha basado en una evaluación de riesgos completada recientemente sobre la integración restante y las actividades de prueba previas al lanzamiento. La agencia espacial ya había anunciado hace un mes que el lanzamiento se retrasaría respecto a la última fecha anunciada, establecida en marzo del 2021.”

Entonces se decía:

De ahí que estemos hablando de un proyecto internacional, aunque, en este mismo momento ya se está haciendo una realidad y se dan los últimos toques al sustituto del Hubble (en la imagen de arriba). Sin embargo, otros proyectos y por distintos medios y utilizando interferómetros de infrarrojos no dejan de buscar “nuevas” Tierras y elementos que, alrededor de lejanos planetas puedan contener los materiales primigenios para la vida.

La NASA transmite imágenes de la Tierra en vivo y en HDCómo ver la estación Espacial Internacional en vivo desde tu móvil las 24 horas | Lifestyle | Cinco Días

 

La sola presencia de gases como el dióxido de carbono y el vapor de agua no es suficiente como un signo de vida, pero sí de la existencia de planetas del tipo de la Tierra en el sentido de que tendrían una atmósfera como Venus y Marte, mientras que, en particular, la presencia de agua indicaría la probabilidad de que existiera un lugar adecuado para la vida.

 

 

 

James Webb es el mayor logro de la humanidad y esto lo demuestra | Computer  Hoy

   Lo cierto es que al poco de ser lanzado, ya nos mandaba imágenes como esta

En realidad, cuando se estudian de forma detenida y pormenorizada los mecanismos del Universo, podemos ver la profunda sencillez sobre la que este se asienta. Los objetos más complejos del Universo conocido son los seres vivos,  nosotros mismos, seríamos un buen ejemplo.

 

Vía Lactea sobre el Observatorio del Roque de los Muchachos DLopez

 

Estos sistemas complejos están hechos de las materias primas más comunes que existen en Galaxias como la Vía Láctea. En forma de aminoácidos estas materias primas se ensamblan de manera natural, dando lugar a sistemas auto organizadores donde unas causas subyacentes muy sencillas pueden producir complejidad en la superficie, como en el caso del tigre y sus manchas. Finalmente, con el fin de detectar la presencia de esta complejidad máxima de unos sistemas universales no necesitamos ninguna prueba sofisticada para distinguir la materia viva de la materia “inerte”, sino únicamente las técnicas más sencillas (aunque asistidas por tecnologías altamente avanzadas) para identificar la presencia de uno de los compuestos más simples del universo: El oxígeno.

 

Imagen relacionada

 

El caos y la complejidad se combinan para hacer del universo un lugar muy ordenado que es justo el entorno adecuado para formas vidas como la que nosotros mismos podemos representar. Como dijo Stuart Kauffman:

         El universo también estaría rotando sobre sí mismo • Tendencias21

                                                   “En el Universo estamos en nuestra propia casa”

Sin embargo, no es que el Universo se haya diseñado así para beneficiarnos a nosotros. Por el contrario, lo que sucede es que estamos hechos a imagen y semejanza del Universo, y, en realidad, somos la consecuencia de sus mecanismos energéticos, sus cambios de transiciones de fase, sus fuerzas y sus constantes.

Planteémonos una simple pregunta: Dadas las condiciones que imperaban en la Tierra hace cuatro mil millones de años, ¿Qué probabilidades había de que surgiera la vida?

 

Imagen relacionadaImagen relacionada

 

No basta con responder que “la vida era inevitable, puesto que nosotros estamos aquí “. Obviamente, la vida sí se inició: nuestra existencia lo demuestra. Pero ¿tenía que iniciarse? En otras palabras, ¿era inevitable que emergiera la vida a partir de un combinado químico y radiado por la energía interestelar y después de millones de años?

Nadie conoce una respuesta exacta a esta pregunta. El origen de la vida, según todos los indicios y datos con los que hoy contamos, parece ser un accidente químico con una alta probabilidad de reproducirse en otros lugares del Universo que sean poseedores de las condiciones especiales o parecidas a las que están presentes en nuestro planeta.

Pero la vida, no consiste solo en ADN, genes y replicación. Es cierto que, en un sentido biológico estricto, la vida está simplemente ocupada en replicar genes. Pero el ADN es inútil por sí sólo. Debe construir una célula, con todas sus sustancias químicas especializadas, para llevar a cabo realmente el proceso de replicación. En las denominadas formas de vida superior debe construir un organismo completo para que tenga todos los requisitos exigidos para que pueda replicarse. Desde la perspectiva de un genoma, un organismo es una manera indirecta de copiar ADN.

 

Resultado de imagen de el Universo y el ADN

 

Sería muy laborioso y complejo explicar de manera completa todos y cada uno de los pasos necesarios y códigos que deben estar presentes para formar cualquier clase de vida. Sin embargo, es necesario dejar constancia aquí de que los elementos necesarios para el surgir de la vida sólo se pueden fabricar en el núcleo de las estrellas y en las explosiones de supernovas que pueblan el universo para formar nebulosas que son los semilleros de nuevas estrellas y planetas y también de la vida.

El surgir de la vida en nuestro Universo puede ser menos especial de lo que nosotros pensamos, y, en cualquier lugar o región del Cosmos pueden estar presentes formas de vida en condiciones que para nosotros podría ser como las del infierno.

 

Resultado de imagen de Hace varias décadas, los biólogos quedaron sorprendidos al descubrir bacterias que vivían confortablemente a temperaturas de setenta grados Celsiu

Hace varias décadas, los biólogos quedaron sorprendidos al descubrir bacterias que vivían confortablemente a temperaturas de setenta grados Celsius. Estos microbios peculiares se encontraban en pilas de abonos orgánicos, silos e inclusos en sistemas domésticos de agua caliente y fueron bautizados como termófilos.

 

Las Grietas (Puerto Ayora) - Lo que se debe saber antes de viajar - Tripadvisor

 

Resultó que esto era sólo el principio. A finales de los años setenta la nave sumergible Alvin, perteneciente al Woods Hole Océano Graphic  Institute, fue utilizada para explorar el fondo del mar a lo largo de la Grieta de las Galápagos en el océano Pacífico. Este accidente geológico, a unos dos kilómetros y medio bajo la superficie, tiene interés para los geólogos como un ejemplo primordial de las chimeneas volcánicas submarinas conocidas como “húmeros negros “. Cerca de un humero negro, el agua del mar puede alcanzar temperaturas tan altas como trescientos cincuenta grados Celsius, muy por encima del punto de ebullición normal. Esto es posible debido a la inmensa presión que hay en dicha profundidad.

 

                                                        Fumarola negra del Caribe

 

                                   

                    Se alimentan del sulfuro de hidrógeno que sale de las chimeneas

Para asombro de los científicos implicados en el proyecto Alvin la región en torno a los húmeros negros de las Galápagos y otros lugares de las profundidades marinas resultó estar rebosante de vida. Entre los moradores más exóticos de las profundidades había cangrejos y gusanos tubulares gigantes. También había bacterias termófilas ya familiares en la periferia de los húmeros negros. Lo más notable de todo, sin embargo, eran algunos microbios hasta entonces desconocidos que vivían muy cerca de las aguas abrasadoras a temperaturas de hasta ciento diez grados Celsius. Ningún científico había imaginado nunca seriamente que una forma de vida pudiera soportar calor tan extremo.

 

                             

Igualmente se han encontrado formas de vida  en lugares de gélidas temperaturas y en las profundidades de la tierra. Así mismo, la NASA ha estado en un pueblo de Huelva para estudiar aguas con un PH imposible para la vida y cargada de metales pesados que, sin embargo, estaba rebosante de vida. El proyecto de estos estudios se denomina P-TINTO, ya que, las aguas a las que nos referimos son precisamente las del Río Tinto, llenas de extremófilos. El terreno al que me refiero, pisado muchas veces por mi y con cierta frecuencia, tiene, en muchos lugares el aspecto de Marte.

 

Será la vida, un principio esencial para la coherencia del Universo? : Blog de Emilio Silvera V.

 

La anterior reseña viene a confirmar la enorme posibilidad de la existencia de vida en cualquier parte del Universo que está regido por mecanismos iguales en cualquiera de sus regiones, por muchos años luz que nos separen de ellas. En comentarios anteriores dejamos claro que las Galaxias son lugares de autorregulación, y, podríamos considerarlos como organismos vivos que se regeneran así mismos de manera automática luchando contra la entropía del caos de donde vuelve a resurgir los materiales básicos para el nacimiento de nuevas estrellas y planetas donde surgirá alguna clase de vida a la menor oportunidad que se le pueda dar.

 

 

La idea de que la vida puede tener una historia se remonta a poco más de dos siglos. Anteriormente, se consideraba que las especies habían sido creadas de una vez para siempre. La vida no tenía más historia que el Universo. Sólo nosotros, los seres humanos, teníamos una historia. Todo lo demás, el Sol y las estrellas, continentes y océanos, plantas y animales, formaban la infraestructura inmutable creada para servir como fondo y soporte de la aventura humana. Los fósiles fueron los primeros en sugerir que esta idea podía estar equivocada.

 

Extremófilos y la posibilidad de vida extraterrestre. (Divulgación) | Blog multi-temático de Antonio Castro

 

Durante cerca de tres mil millones de años, la vida habría sido visible sólo a través de sus efectos en el ambiente y, a veces , por la presencia de colonias, tales como los extremófilos que asociaban billones de individuos microscópicos en formaciones que podrían haber pasado por rocas si no fuera por su superficie pegajosa y por sus colores cambiantes.

Toda la panoplia de plantas, hongos y animales que en la actualidad cubre el globo terrestre con su esplendor no existía. Sólo había organismos unicelulares, que empezaron con casi toda seguridad con bacterias. Esa palabra, “bacteria”, para la mayoría de nosotros evoca espectros de peste, enfermedades, difteria y tuberculosis, además de todos los azotes del pasado hasta que llegó Pasteur. Sin embargo, las bacterias patógenas son sólo una pequeña minoría, el resto, colabora con nosotros en llevar la vida hacia delante, y, de hecho, sin ellas, no podríamos vivir. Ellas, reciclan el mundo de las plantas y animales muertos y aseguran que se renueve el carbono, el nitrógeno y otros elementos bioquímicos.

 

 

Por todas estas razones, podemos esperar que, en mundos que creemos muertos y carentes de vida, ellas (las bacterias) estén allí. Están relacionadas con las primeras formas de vida, las bacterias han estado ahí desde hace cerca de 4.000 millones de años, y, durante gran parte de ese tiempo, no fueron acompañadas por ninguna otra forma de vida.

Pero, ¿No estamos hablando del Universo?  ¡Claro que sí! Hablamos del Universo y, ahora, de la forma más evolucionada que en él existe: Los seres pensantes y conscientes de SER, nosotros los humanos que, de momento, somos los únicos seres inteligentes conocidos del Inmenso Universo. Sin embargo, pensar que estamos solos, sería un terrible y lamentable error que, seguramente, nos traería consecuencias de difícil solución. Me refiero a que, debemos seguir buscando otras clases de vida fuera de la Tierra para, al menos, saber que no estamos solos.

 

Científicos aseguran que hay vida extraterrestre y que se hallará en 20 añosSegún la NASA, podría haber vida extraterrestre en Titán

         Las probabilidades nos dicen que existen otros mundos, otras formas de vida inteligente

¿El problema? ¡Las distancias que nos separan!

 

Medidas del Universo | Universo, Astronomía, Dos puntosLas distancias a los planetas y estrellas se pueden medir sin cinta métrica ~ Tot Astronomia | Blog dedicado a la Divulgación Astrónomica

Hay que pensar seriamente en la posibilidad de la vida extraterrestre que, incluso en nuestra propia Galaxia, podría ser muy abundante. Lo único que necesitamos es ¡Tiempo! (lo cual resulta paradójico si pensamos que algunos piensan que el término quiere definir algo que no existe). La inmensa distancia que nos separan de las estrellas y de otros mundos, y, la insuficiente tecnología que tenemos para acercarnos a ellas en un Tiempo aceptable… Imposibilita el soñado encuentro (que no podemos saber si realmente será positivo).

A veces pienso que, como la Naturaleza es “sabia”, colocó a las estrellas muy lejos las unas de las otras para que, los habitantes de sus mundos, no pudieran contactar.

 

Pin on Vida

Tiempo para poder avanzar en el conocimiento que nos lleve, por ejemplo, a poder aprovechar las inmensas energías que se generan en los giratorios círculos de acreción que rodean a los Agujeros Negros. Cuando eso llegue, estaremos preparados para dar el salto hacia las estrellas, y, allí, nos esperan sorpresas que ahora, ni podemos sospechar.

emilio silvera

¿Sabremos alguna vez, quiénes somos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                Resultado de imagen de Supernova

 

En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

La nucleosíntesis estelar es el conjunto de reacciones nucleares que tienen lugar en las estrellas y que son responsables de la creación de elementos químicos, algunos de ellos desde sus orígenes durante el Big Bang: como el hidrógeno, el helio y el litio.

            H, He, (Li, Be, B) C, N, O… Fe

 

En un lugar del cosmos - La nucleosíntesis del Big Bang empieza sobre un  minuto después del Big Bang, cuando el Universo se ha enfriado lo  suficiente como para formar protones y

En un lugar del cosmos – La nucleosíntesis

Nucleosintesis by Juan Jose Saenz on Prezi Next

 

La nucleosíntesis estelar es el conjunto de reacciones nucleares que tienen lugar en las estrellas y que son responsables de la creación de elementos químicos, algunos de ellos desde sus orígenes durante el Big Bang: como el hidrógeno, el helio y el litio. Este proceso forma parte de la evolución estelar y su cese al acabarse el combustible que desencadena las reacciones nucleares, deriva en el colapso gravitatorio de la estrella.

 

Las reacciones más importantes en la nucleosíntesis estelar son:

 

El hidrógeno en la Tabla Periódica | Felipe Benjumea Llorente30,622 imágenes, fotos de stock, objetos en 3D y vectores sobre Uranio |  Shutterstock

El número 1 y el 92, los elementos que comienzan y finaliza la Tabla Periódica

No pocas veces hemos referido aquí el maravilloso suceso que está presente en las estrellas que mediante la fusión nuclear, transforma los elementos sencillos en otros más complejos y, cuando agotado el ciclo y no pueden continuar fusionando los materiales pesados que les quedan, dependiendo de sus masas se transforman en gigantes rojas y finalmente en enanas blancas (como le pasará a nuestro Sol), dejando una bonita Nebulosa Planetaria, y, si la estrella es masiva, su final será mediante la explosión como Supernova que regará el espacio interestelar con el remanente de materiales pesados y la estrella, en su mayor parte, se convertirá en una estrella de Neutrones, o, si es una supermasiva, en Agujero Negro.

 

La nebulosa tarántula, también conocida como NGC 2070, es una de las más grandes y luminosas que se conocen. Tiene un radio aproximado de 930 años luz y se encuentra en la Gran Nube de Magallanes, una galaxia enana cercana a la Vía Láctea. Por desgracia, está demasiado lejos para visitarla, pero se ha observado con el telescopio Spitzer y se sabe que es una zona de formación estelar muy activa.

Lo curioso y asombroso del caso es que, a partir de esos materiales, se forman nuevas estrellas y nuevos mundos y, en algunos de esos mundos que se sitúan en la zona adecuada para la habitabilidad, donde el agua corre líquida y se ha formado una atmósfera adecuada y océanos, con el paso del tiempo, esa materia primordial se acomoda en estructuras complejas y surge la Vida.

 

 

 

La imagen de arriba, SN 1987A, es la descomunal explosión de supernova, cuando ocurrió, la potencia de miles de soles cambió, momentáneamente, la región del espacio conocida como Nube Mayor de Magallanes, a muchos años luz de la Tierra.

¡Qué maravilla!  Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente que esas mismas estrellan han posibilitado, creo que, en muchos mundos que son en las galaxias del universo.

 

                                     

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los micro-cristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

                   

 

Porque, ¿Qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas.

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte? Claro de “materia inerte” evolucionada. Porque, como decía aquel hombre sabio:

“No está muerto lo que duerme eternamente”

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

 

                        http://3.bp.blogspot.com/-IO7zpTA9Gqw/TvNABf1MU8I/AAAAAAAAAOg/jG_CA-apnAo/s1600/carbono.jpg

                          En Titán existen moléculas de Carbono necesarias para la vida

Según decía en algún trabajo anterior, los quarks up y down se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones. Sin embargo, debemos tener claro que toda la materia del Universo (al menos la conocida), está conformada por Quarks y Leptones.

 

Después de 35 años de intentos: Físicos resuelven el enigma del núcleo  atómico | Canarias NoticiasEl núcleo atómico es la pequeña región densa formada por protones y  neutrones en el centro de un átomo. | Foto PremiumQuarks - Concepto, descubrimiento, modelo y características

Los nucleones (protones y neutrones), están hechos de tripletes de Quarks que, confinados en su interior por medio de la fuerza nuclear fuerte. Esta fuerza fundamental de la Naturaleza, está intermediada por Bosones llamamos Gluones que mantienen a los Quarks allí dentro confinados y no los deja que se separen.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

 

Cuadernos de Física: El átomo de Hidrógeno

El átomo de hidrógeno es conocido también como átomo mono-electrónico, debido a que está formado por un protón que se encuentra en el núcleo del átomo y que contiene más del 99,945 % de la masa del átomo, y un solo electrón -unas 1836 veces menos masivo que el protón- que “orbita” alrededor de dicho núcleo . Con un solo Protón es el elemento número uno de la Tabla Periódica.

Comisión Chilena de Energía Nuclear

El uranio posee 92 protones y 92 electrones. Su núcleo puede contener entre 142 y 146 neutrones, sus isótopos más abundantes son el uranio 238 que posee 146 neutrones y el uranio 235 con 143 neutrones.

 

 

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

 

                        Volcán de hielo Sotra Facula en Titan. Crédito: NASA.

Científicos descubrieron posibles cráteres que expulsan hielos, llamados crio-volcanes. (15 Diciembre, 2010 NASA – CA) Con el sistema de radar e imágenes infrarrojas de la sonda Cassini, que orbita Saturno, científicos han encontrado evidencias de lo que podría ser un volcán de hielo en Titán. Este pequeño mundo haría las delicias de cualquier químico de la Tierra y, no digamos de los geólogos. (4 Enero 2007 – NASA/Agencias – CA) Fue comprobada la predicción sobre la existencia de lagos de metano líquido en Titán.

Pero, si hablamos de los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Hablemos un poco de moléculas.

 

                         

 

Molécula de fullereno, dinitrógeno, agua y la representación poliédrica del anión de Keggin, un polianión  molecular

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

 

             

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

 

Esta nebulosa llena de color, denominada NGC 604, es uno de los mayores y mejores ejemplos de nacimiento estelar en una galaxia cercana. La nebulosa NGC 604 es semejante a otras regiones de formación de estrellas en la Vía Láctea que nos resultan familiares, como la nebulosa de Orión, pero en este caso nos hallamos ante una enorme extensión que contiene más de 200 brillantes estrellas azules inmersas en una resplandeciente nube gaseosa que ocupa 1.300 años-luz de espacio, unas cien veces el tamaño de la Nebulosa de Orión, la cual aloja exactamente cuatro estrellas brillantes centrales. Las luminosas estrellas de NGC 604 son extremadamente jóvenes, ya que se han formado hace tres millones de años.

Las moléculas diatómicas de hidrógeno abundan en el espacio interestelar. NGC 604, una enorme región de hidrógeno ionizado en la Galaxia del Triángulo. Son muchas las moléculas descubiertas en estas nebulosas y se cree que son el material que más tarde forman los mundos y, si tienen la suerte de caer en la zona habitable de la estrella que les dará luz y calor, esas moléculas se unirán para construir estructuras más complejas que las lleven hasta la vida.

 

Resultado de imagen de La molécula del hidrógeno

 

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

 

Proteínas

Moléculas de proteínas

 

Moléculas de ADN

 

¿La molécula sintética más grande del mundo? Bueno, en la naturaleza existen muchas moléculas de gran tamaño, un claro ejemplo son las proteínas o el ADN, y son grandes debido a que están formados por la unión de muchas moléculas más pequeñas. Las proteínas están formadas por la unión de aminoácidos, y el ADN por la unión de nucleótidos.

 

 

Un orbital atómico es la región del espacio definido por una determinada solución particular, espacial e independiente del tiempo, a la ecuación de Schrödinger para el caso de un electrón sometido a un potencial coulombiano.

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

 

 

Orbital atómico - Wikipedia, la enciclopedia libreOrbital atómico - Wikipedia, la enciclopedia libre

 

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales sp,dfgh. Este pequeño número nos proporciona una gran diversidad.

 

 http://upload.wikimedia.org/wikipedia/commons/5/58/Es-Orbital_s.png

                                           De los orbitales hablamos aquí extensamente muy a menudo

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas iso-electrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

 

 

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

 

 

MOLECULAS DE CARBON by Miguel Angel Velez Palacio - IssuuDisilyne, La Molécula De, Silicio imagen png - imagen transparente descarga  gratuita

Moléculas de Silicio

Fosfato Modelo, Molecular. Los Átomos Se Representan Como Esferas Con  Codificación De Color Convencional: Oxígeno (rojo), El Fósforo  (amarillo-anaranjado) Fotos, retratos, imágenes y fotografía de archivo  libres de derecho. Image 18947402

Molécula de Fósforo

 

Molécula de trifluoruro de boro. – GeoGebra

Molécula de Boro

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. De todas las maneras y, sin descartar nada, creo que las formas de vida que podamos encontrar en el Universo, al menos la mayoría, estarán basadas, como nosotros, en el Carbono que, por sus características especiales, es el más idóneo para la vida.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                   
    Una serie de factores coincidieron en la formación del planeta Tierra para que, en él, surgiera la Vida

Real Circulo de Labradores | 17 de enero, conferencia 'La Tierra primitiva  y el origen de la vida'

Así se supone que era la Tierra cuando surgió aquella primera célula replicante que inició la fascinante historia de la Vida que, a partir de ahí evolucionó (en algún caso) hasta los pensamientos y la consciencia de SER.

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. Según todos los datos que tenenos la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.

                                                Qué inició la vida primitiva en la Tierra? - Catalunya Vanguardista

                                      Estromatolitos, colonias de bacterias que se forman en los mares

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO, etc.

                               ALMA descubre dónde nacían las estrellas hace 10.000 millones de años |  ALMA Kids

Las estrellas necesitaron 10.000 M de años para “fabricar” los materiales de los que estamos hechos

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

                    Atmósfera - Wikipedia, la enciclopedia libreEl vapor de agua en la atmósfera

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la foto-disociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

      La imagen del cielo de Canarias nos puede servir para mostrar una atmósfera acogedora para la vida

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

File:Ammonia World.jpg

Es cierto que la realidad puede ser mucho más imaginativa de lo que nosotros podamos imaginar. ¿Habrá mundos con formas de vida basadas en el Silicio? Aunque me cuesta creerlo, también me cuesta negarlo toda vez que, la Naturaleza nos ha demostrado, muchas veces ya, que puede realizar cosas que a nosotros, nos parecen imposibles y, sin embargo, ahí está el salto cuántico… Por ejemplo.

Existen otras formas de vida? | Ciencia al díaGéiseres de 200 kilómetros de alto salen disparados desde los océanos de  una luna de Júpiter | MateriaCientífica asegura que pulpos extraterrestres habitan la luna de Júpiter |  El Diario de Santiago

Mares de metano en Titán, Geiseres en IO, un mar subterráneo en Europa

Los biólogos, por ejemplo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

 

VIDA EN EL UNIVERSO

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

        Para nosotros ha pasado mucho tiempo, y, sin embargo, para el Universo ha sido solo un instante

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

          No podemos saber si alguien nos observa

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente. Precisamente por eso, hay que suponer que en todas las regiones del Universo, por muy lejos que puedan estar, las cosas serán las mismas que aquí podemos observar, y, la vida, no sería una excepción, sino la regla.

Cambrian Seas

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN PUEDEN VERSE AFECTADOS DE MANERA ADVERSA. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por Mde espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

                        ORIGEN DEL UNIVERSO by martaferlo2005 on emaze

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

hombre y universo

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más. De todas las maneras, nosotros somos una parte esencial del universo: La que siente y observa, la que genera ideas y llega a ser consciente de que es, ¡la parte del universo que trata de comprender!

emilio silvera

La Historia de la Vida no la pudo escribir nadie

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Son muchas las cosas que no sabemos y, de cada una de ellas, nosotros los humanos, creamos hipótesis y hacemos conjeturas, construimos modelos y, con los datos que hemos podido reunir, dejamos expuesta una teoría de lo que pudo ser. De esa manera hemos creado la “historia” de cómo se formó nuestro Sistema solar a partir de una explosión de supernova que creando una nebulosa sería el origen, hace algunos miles de millones de años, de todo el sistema planetario en el que está la Tierra y nos cobijamos nosotros.

A mayor escala y viajando mucho más lejos en el Tiempo, también hemos “recreado” el escenario que suponemos que pudo existir cuando “nació” el universo, cuando dio comienzo la existencia del Tiempo y apareció el Espacio, se creó la materia y comenzaron a formarse los objetos que hoy podemos contemplar por todo el inmenso Cosmos. De todo ello, de manera “misteriosa” (nadie sabe a ciencia cierta como fue), apareceron los primeros signos de vida, primero en forma de rústicas criaturas y más elaboradas después, cuando con el paso de los años, pudieron evolucionar.

ACTIVIDAD 7: SISTEMA SOLAR – marilivrlgeojuegos

En nuestra región, situada en el interior del brazo de Orión a unos 30.000 años-luz del centro galáctico, las cosas se pudieron suceder, más o menos, como nos dicen al margen de la imagen, con algunas dudas y algunas preguntas sin contestar, así pudieron suceder, a grandes rasgos las cosas. Sin embargo, no es ese el tema que el título nos señala, nos vamos a centrar en la “vida” esa explosión de imaginación que ha tenido el universo para que, al menos en nuestro caso, haya alguien que comente sobre él y también, sobre esa maravilla que representamos: Seres Conscientes en un universo de materia, de explosiones y cambios, de energías sin fin.

Lo cierto es que, el recuerdo de los miles de millones de años de la historia de la vida, no ha podido ser inscrito en la memoria de los seres que la representan, al igual que los últimos millones de años no están grabados en la memoria de los seres humanos, los primeros naturalistas que se sintieron intrigados por los fósiles que encontraban, no pudieron presentir de qué manera aquello que estaban sacando a la luz del día, acabaría por servir para reconstruir el pasado a través de los archivos sedimentarios de la tierra.

Lea sobre el registro fósil | Ciencias para 6° a 8° grado [imprimible]La importancia geológica de los fósiles

De nada sirvieron los razonamientos poéticos y religiosos que les habían preparado para lo contrario. La realidad nos hizo descubrir un mundo distinto, una cronología distinta y una historia distinta. Resulta fácil comprender, en qué medida, los primeros  descubrimientos paleontológicos les pudieron parecer (en aquellos tiempos), por tanto, maravillosos y también, desconcertantes, hasta que punto aquella extraordinaria diversidad de formas de vida desaparecidas, su frecuente extravagancia y rareza y el encadenamiento asombroso que parecían ir revelando poco a poco, les debieron fascinar, pero también confundir.

Y, de esa manera, nuestra innata curiosidad, nos llevó a descubrir muchas clases de vida que existió en el pasado, incluso de seres monstruosamente grandes que extinguidos, sirvieron para que todos, antes sus descomunales restos, dejaran volar la imaginación y pudieran construir escenarios ya desaparecidos hacia millones de años. Claro que, todos aquellos descubrimientos, vinieron a ensanchar la mente de lo posible y la concepción de la historia de la vida en la Tierra y también, de manera paralela, hemos ido creando una historia más profunda, de unos 13.750.000 millones de años para la historia del propio universo. Pero, la historia que nos interesa, la de la vida, se remonta a unos 4.000 millones de años (al menos en nuestro planeta), que es el tiempo que tienen los fósiles más antiguo hallados en las rocas más viejas del planeta.

Ya el hombre de Neanderthal se interesaba por los fósiles.

El descubrimiento de edades anteriores a la aparición del hombre tuvo una enorme repercución, a finales del siglo XIX, mucho más allá de los círculos científicos, en buena parte porque reveló paisajes desaparecidos y poblados por criaturas extrañas, predominantemente mostruosas. Incluso en nuestros días los grandes vertebrados del pasado ejercen a menudo una especie de fascinación: ¿no se ha convertido acaso el mamut en el emblema de una cadena de supermercados y no resultan los nombres de muchos dinosaurios mucho más familiares, incluso para los niños, que los numerosos animales actuales?.

Esa familiaridad relativa con criaturas que hasta hace dos siglos, su existencia era inimaginable, es así mismo, un gran logro de la paleontología de los vertebrados sacados a la luz por la ciencia. Claro que, si hablamos de vida, no sólo de grandes animales se compone la gran relación que podríamos hacer de todas aquellas especies que poblaron nuestro planeta y de las que, el 99% están desaparecidas. Ahora, sólo el 1% de todas las especies vivientes siguen presentes y, las demás, por una u otra causa, quedaron extinguidas al no poder adaptarse, al ser eliminadas en las grandes extinciones… ¡y vaya usted a saber cómo!

Cuentan que, durante uno de sus viajes por el Mediterráneo, san Pablo, según la leyenda que circula, naufragó ante las costas de Malta. Habiendo logrado llegar a esa isla, fue mordido por una vibora. Encolerizado, maldijo entonces a todas las serpientes maltesas, por lo que sus lenguas bífidas se transformaron en piedra. Esas lenguas petrificadas, llamadas a veces “lenguas de san pablo”, son muy comunes en Malta; no son otra cosa que los dientes de los tiburones del período mioceno, cuyas formas evocan las lenguas bífidas de las serpientes.

El relato ilustra muy bien la fascinación que han ejercido desde tiempos inmemoriales ciertos fósiles sobre la imaginación humana y la forma en que pueden ser explicados los orígenes de esos objetos misteriosos, más allá de toda hipótesis científica, en los sistemas de pensamientos tradicionales. Sin embargo, jamás conoceremos las más antiguas de esas leyendas explicativas, ya que el interés por los fósiles se remonta a la prehistoria lejana, tal como nos lo demuestran los diversos descubrimientos arqueológicos.

En el transcurso de sus excavaciones en las cuevas de Arcy-sur-Cure,  en Borgoña, el célebre prehistoriador francés André Leroi Gourhan descubrió en un estrato correspondiente qal paleolítico medio una pequeña pero muy antigua “colección paleontológica” ; se trataba de un polípero y de un gasterópodo fósiles, y habían sido llevados a esa cueva por un hombre de Neardenthal. Hará más de 50.000 años posiblemente, que la atención de un “hombre fósil” se vio atraida por esos objetos curiosos, hasta el punto de que se los llevó consigo. No cabe duda de que nunca sabremos cuáles eran las interpretaciones que los hombres prehistóricos daban a los fósiles que recogían. En todo caso, ciertas conchas profundamente enterradas, le pudieron recordar a sus conchas actuales, y bien pudiera ser que se hubieran preguntado en aquel entonces qué hacían sobre las rocas unos animales que se encuentran habitualmente en el agua.

Es cierto que siempre, a lo largo de la Historia, hemos tenido pensadores y naturalistas. La Historia natural es un término cuya definición es problemática, en tanto que diversas disciplinas la abordan de manera diferente. Muchas de estas concepciones incluyen el estudio de las cosas vivientes (por ejemplo, la biología, incluyendo botánica, zoología y ecología); otras concepciones extienden el término al campo de la paleontología, la geografía y la bioquímica, así como a la geología, astronomía y la física. Lo cierto es que, al final del camino, todas esas disciplinas se encuentras, es decir, están de una u otra manera relacionadas. Todo en el Universo tiene una conexión que no siempre podemos ver o comprender.

Claro que, algunos pensadores griegos ya especularon con las viejas conchas fósiles que se hallaban dentro de las piedras y que eran el origen de especulaciones “geológicas” de algunos que, como Jenófanes o Heródoto, quiénes habían comprendido la naturaleza auténtica de ciertas conchas fósiles y habían sacado conclusiones pertinentes, aquellos restos de organismos marinos, encontrados tierra adentro, demostraba que los mares, se extendían en otras épocas mucho más allá de sus límites actuales.

Lo cierto es que, hacer historia de la vida en nuestro planeta es imposible, sólo podemos ir atando cabos a medida que se encuentran huellas de ella en las viejas rocas, y, como la vida consciente tardó mucho más en llegar… ¡Carece de historia, toda vez que no existieron cronistas para escribirla! Así, nos vemos abocados a especular juntando todos los datos que hemos podido reunir y, de esas especulaciones, hemos formado un conjunto, si no plausible en su totalidad, sí aceptable mientras no encontremos más respuestas a la gran pregunta: ¿Cómo surgió la vida en la Tierra, y, es nuestro planeta el único lugar del Universo que la contiene?

Claro que, si creemos que la vida es ciudadana del universo sin fronteras, no debemos perder de vista la Panspermia, esas esporas viajeras que llegan a los mundos y en ellos, se posan y dejan pasar el tiempo para que, las condiciones locales, las radiaciones exteriores y propias del lugar, hagan su trabajo para que, con el tiempo suficiente por delante, puedan emerger y crecer hasta llegar a conformar seres con ideas y pensamientos.

Los animales unicelulares han descubierto el método más corto para comer las plantas. La muerte y el sexo han de crearse para que los organismos pluricelulares sean capaces de envejecer y dejar de funcionar como una cooperativa colonial de células. Los animales han descubierto como comerse a otros animales. Por encima de todo, ha evolucionado una especie inteligente, una especie tan lista que ha llegado a descubrir una vía para poder salir de la Tierra y llevar todo el proceso de la evolución hasta el extremo.

Nunca nadie ha sabido explicar lo que es la Vida a pesar de que también siempre nos lo hemos preguntado. Cuál es su origen y cómo surgieron los seres vivos que conocemos y que tenemos a nuestro alrededor, así como aquellos que con el paso de tiempo no supieron adaptarse y se extinguieron. La especie humana, la única que en nuestro planeta alcanzó la plenitud de conciencia, siempre ha tratado de responder a esa pregunta: ¿Qué es la Vida? Pero siempre también, resultó un gran problema el poder responderla y las Ciencias Naturales nunca pudo confeccionar una respuesta plausible. Hemos podido llegar a saber que sin los materiales fabricados en las estrellas, la vida no sería posible en nuestro Universo. Así muchos, dicen que somos… ¡Polvo de estrellas!

 

 

 

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela.

 

Organelos | Ribosomas, Higiene personal niños, Celulares dibujo

 

En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo –nos preguntamos- la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la Ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.

 

evolucion darwin Gran venta - OFF 67%

 

La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja.

Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de condiciones nuevas aparecieron para hacer posible el surgir de la vida.

 

Pangea - Vicipedia

 

Distribución de los continentes hace 260 millones durante el Pérmico. El supercontinente con forma de “C” es Pangea; dentro de la C se localizan los océanos Paleo-Tetis al norte y Tetis al sur; separando ambos océanos se sitúa el continente Cimmeria; cerrando la “C” al noreste se sitúan los microcontinentes de China del Norte y China del Sur; mientras que el resto del globo está ocupado por el océano Panthalassa.

 

 

 

Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotas y procariotas.

A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿Qué tipo de planeta podemos recomponer y qué procesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.

 

Los fósiles más antiguos del mundo - FitopasiónEstromatolitos: la clave para entender el pasado en la Tierra.

Los estromatolitos forman parte del registro fósil y son los responsables del oxígeno de la Tierra

 

Son la evidencia de vida más antigua que se conoce en la Tierra. Las rocas ígneas más antiguas de la Tierra están en Groenlandia y tienen 3800 millones de años. Los estromatolitos más antiguos son de Warrawoona, Australia y tienen unos 3500 millones de años (Precámbricos–Arqueanos). La edad de la Tierra como planeta se calcula en 4500 millones de años. La teoría dice que, dadas las condiciones en esa época, los primeros habitantes de la Tierra debieron ser organismos unicelulares, procariontes, y anaerobios. Por tanto, los estromatolitos forman parte del registro fósil más importante de la vida microbiológica temprana. Pero además, vida microscópica foto-trófica.

En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que para entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.

 

 

Las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con silex ricos en hermatita (Fe2 O3), un mineral de óxido de hierro.

En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los datos dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita continuar en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.

Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿Qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?

 

 

Ademas de las cianobacterias, la microflora puede incluir algas (verdes y diatomeas), hongos, crustáceos, insectos, esporas, polen, rodofitas, fragmentos y sedimentos de todo tipo. La variedad biológica de cada comunidad estromatolítica dependerá de condiciones ambientales e hidrológicas: hipersalino, dulceacuicola, intermareales, submareales, fuertes corrientes, moderadas nulas, cálidos, templado, altitud (afecta a la exposición de la luz UV). En la superficie, es rugosa, porosa y cubierta por mucilago, filamentos, etc. Las particulas de carbonato van quedando atrapadas, hasta que la cimentación por crecimiento de cristales, forma una capa mas, de esta forma la estructura aumenta de tamaño.

 

 

La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en forma líquida y una atmósfera densa que pudo evolucionar, con oxígeno y otros ingredientes, condiciones imprescindibles para el desarrollo de la vida.

La creencia general es que hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en forma de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biológica.

 

 

Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Necesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información y estructura suficientes como para replicarse a sí mismas y, al cabo, para dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia cada vez mayor.

 

ESTRUCTURA DE LA CELULA BACTERIANA

 

Estructura bacteriana. Qué es, Partes, Estructura, Características

 

Unas moléculas, en fin, que pudieran iniciar una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.

El descubrimiento de las enzimas de ARN, o ribosomas, realizado de forma independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.

 

 

Los enzimas de ARN (llamadas “ribozimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de forma mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando exponencialmente la concentración del compuesto hasta permitir que sea fácilmente detectado.

En palabras del filósofo de la biología Iris Fry, esta extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del origen de la vida. La vida, esa misteriosa complejidad que surgió a partir de la “materia inerte” que, bajo ciertas y complejas condiciones, dio lugar a que lo sencillo se conviertiera en complejo, a que lo inerte pudiera despertar hasta los pensamientos.

 

 

Introducción a los ácidos nucleicos y nucleótidos | Khan Academy en Español  - YouTubeácidos nucleicos

 

Sabemos que, en ciertas condiciones prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su famoso experimento. Como los ácidos nucléicos, pueden unirse para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.

Hay teorías para todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función proto-biológica.  Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.

 

phylogenetic_tree-es.png

 

En el árbol de la vida, nosotros (“tan importantes”), sólo somos una pequeña ramita.

 

Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimiosinteéticos) no pueden fraccionar isótopos de carbono en más de unas treinta parte por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CH4 frente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas 20 o 25 partes por 1.000 en los ambientes donde el metano es abundante. ¿Habéis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El festín está servido!

 

Los océanos de metano de titán podrían ser una buena fuente de vida

 

La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) como dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.

 

Fotoorganotrofos

 

Otra característica es que los organismos foto-sintéticos anoxigénicos contienen bacterio-clorofila, un tipo de clorofila exclusiva de los fotoorganotrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterio-clorofila. El color de estos pigmentos dan el nombre a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.

 

 

Cualquiera de estas imágenes de arriba nos cuenta una larga y compleja historia de cómo se pudieron formar cada uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingenieria de la Naturaleza que, al fin y al cabo, es la única fuente de la que debemos beber para saciar nuestra sed de sabiduría y alejar la ignorancia que nos abruma.

No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones, por muy alejadas que estén, se rige por unas leyes que están presentes en todas parte por igual, y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.

 

 

Valles en Marte. (ESA) La región de Valles Marineris, que tiene una longitud de 4.000 kilómetros y una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.

 

Basándose en este descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. Para sorpresas de muchos geoquímicos, lo que se halló fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra  también como en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La etapa del oxígeno comenzó en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan al mismo sitio, es decir, lo que pasa aquí pudo pasar allí y, al decir allí, quiero decir en cualquier planeta de cualquier galaxia. Las leyes fundamentales de la Naturaleza son, las mismas en todas partes. No existen sitios privilegiados.

 

Es difícil imaginarse hoy una Tierra sin oxígeno

 

Dos equipos independientes de investigadores descubrieron que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años antes del evento de la gran oxidación de hace 2400 millones de años. Es decir, cuando cambió la antigua atmósfera y el planeta se equipó con la que hoy conocemos.

 

 

El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues forma óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.

En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente desde niveles prácticamente despreciables.

 

Las bacterias: Amigas o Enemigas - ppt descargarFactores de virulencia bacteriana

 

El mundo bacteriano es fascinante

 

Con estas bacterias es posible obtener dos tipos de celdas microbianas o baterías. Unas llamadas celdas de sedimento emplean el lodo donde habitan estos microorganismos; ahí, se produce energía simplemente conectando un electrodo en la parte donde, a cierta profundidad, no hay oxígeno, con otro electrodo que se encuentre en presencia de oxígeno.

¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de años los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.

Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.

 

Correr es un ejercicio aeróbico

 

En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado este punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.

De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera entre ambientes ricos en oxígeno y ambientes pobres en oxígeno. Desde ese momento, la Tierra comenzó a convertirse en nuestro mundo.

 

 

Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio indóneo para poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.

 

 

Las algas verdeazuladas también son llamadas bacterias verdeazuladas porque carecen de membrana nuclear como las bacterias. Sólo existe un equivalente del núcleo, el centro-plasma, que está rodeado sin límite preciso por el cromato-plasma periférico coloreado. El hecho de que éstas se clasifiquen como algas en vez de bacterias es porque liberan oxígeno realizando una fotosíntesis similar a la de las plantas superiores. Ciertas formas tienen vida independiente, pero la mayoría se agrega en colonias o forma filamentos. Su color varía desde verdeazulado hasta rojo o púrpura dependiendo de la proporción de dos pigmentos fotosintéticos especiales: la ficocianina (azul) y la ficoeritrina (rojo), que ocultan el color verde de la clorofila.

 

 

Mientras que las plantas superiores presentan dos clases de clorofila llamadas A y B, las algas verdeazuladas contienen sólo la de tipo A, pero ésta no se encuentra en los cloroplastos, sino que se distribuye por toda la célula. Se reproducen por esporas o por fragmentación de los filamentos pluricelulares. Las algas verdeazuladas se encuentran en hábitats diversos de todo el mundo. Abundan en la corteza de los árboles, rocas y suelos húmedos donde realizan la fijación de nitrógeno. Algunas coexisten en simbiosis con hongos para formar líquenes. Cuando hace calor, algunas especies forman extensas y, a veces, tóxicas floraciones en la superficie de charcas y en las costas. En aguas tropicales poco profundas, las matas de algas llegan a constituir unas formaciones curvadas llamadas estromatolitos, cuyos fósiles se han encontrado en rocas formadas durante el precámbrico, hace más de 3.000 millones de años. Esto sugiere el papel tan importante que desempeñaron estos organismos cambiando la atmósfera primitiva, rica en dióxido de carbono, por la mezcla oxigenada que existe actualmente. Ciertas especies viven en la superficie de los estanques formando las “flores de agua”.

Sin descanso se habla de quer nosotros, con nuestro comportamiento estamos cambiando la atmósfera de la Tierra, que contaminamos y que, de seguir así, podemos acabar con la vida placentera en el planeta. Tal exageración queda anulada por la realidad de los hechos.

 

 

Gigantescas ciudades son una buena muestra de nuestra presencia aquí, y, ¿qué duda nos puede caber? Nuestro morfología nos ha convertido en el ser vivo dominante en el planeta. Sin embargo, no somos los que más hemos incidido en sus condiciones. Si se estudia la larga historia de la vida en la Tierra, podremos ver que una inmensa cantidad de especies han interactuado con la biosfera para modificar, en mayor o menor medida los ecosistemas del mundo. En realidad, la especie que cambió el planeta de manera radical, la que en verdad modificó la Tierra hasta traerla a lo que hoy es, creando una biosfera nueva a la que todas las especies se tuvieron que adaptar (también nosotros), esa especie que, aunque diminuta en su individualidad forma un gigantesco grupo, no son otras que las cianobacterias.

 

De esa manera, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinariamente bien conservados en siles de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su forma. La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.

Las cianobacterias comparten con algunas otras bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4), una forma que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa. Esto les ocurre por ejemplo a las plantas. Algunas cianobacteria son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Dada su abundancia en distintos ambientes las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores.

Helecho de agua, Azolla, Doradilla, Yerba del agua - Azolla caroliniana =  Azolla filiculoides

Helecho de agua, Azolla,

La resistencia general de las bacterias a la extinción es bien conocida. Las bacterias poseen tamaños poblacionales inmensos y pueden reproducirse rápidamente: no importa que por la mañana nos lavemos los dientes meticulosamente; a media tarde, las bacterias que hayan sobrevivido al cepillo se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar. Lo que es más, las bacterias son muy buenas a la hora de resistir perturbaciones ambientales. Aunque la mayoría crece especialmente bien dentro de unos márgenes ambientales estrechos, son capaces de tolerar condiciones extremas, al menos durante un tiempo.

Si miramos el tiempo que llevan aquí, como se pueden adaptar a condiciones que, ni en sueños podríamos hacerlo nosotros, y, sobre todo, si pensamos en la diversidad y en la inmensa cantidad y en que están ocupando (prácticamente) todas las reuniones del planeta, tendremos que convenir que, es necesario saber cuanto más mejor de ellas y, es necesario que nos sumerjamos en los reinos de las pequeñas criaturas que, de una u otra forma, serán nuestra salvación o, podrían provocar nuestra extinción.

 

El espectacular vídeo de la NASA que te transporta a la nebulosa de Orión

En la Nebulosa de Orión se han encontrado todos los ingredientes para la vida

 

Fred Hoyle, el gran astrofísico Inglés, descubridor del efecto triple Alfa (la producción de Carbono en las estrellas), escribió una novela de ciencia ficción “La Nube Negra”, en la que decía que en sitios como el de arriba, podía estar presente la vida en forma de pequeños seres de diversa índole.

Algunos creen que,  también, en lugares como el que arriba se muestra, pueden estar presentes esos pequeños seres. En lugares donde abundan los mundos… ¿Qué seres habrá? Ahí, en la imagen de arriba,  están presentes todos y cada uno de los elementos necesarios para la vida, y, simplemente con que uno sólo de entre una infinidad de planetas que ahí se formarán se encuentre dentro de la zona habitable de su estrella, podría contener un sin fin de formas de vida que, como aquí en la Tierra, hayan evolucionado y, ¿quién sabe? hasta es posible que esa clase de vida, pueda haber logrado alcanzar los pensamientos, la imaginación, la facultad de ser conscientes.

De todas las maneras…, seguimos sin saber, a ciencia cierta, como pudo surgir las vida. Sólo tenemos vestigios que nos acercan a esa posible fuente, y, son muchas, las zonas oscuras que no dejan ver lo que allí ocurrió, lo que hizo la evolución o dejó de hacer y, las condiciones primigenias que posibilitaron que en este pequeño planeta rocoso, emergieran formas de vida que evolucionadas han podido salir al exterior para ver lo que hay fuera.

 

        Esporas del espacio que pueden llevar la vida a diversos mundos

Acodémonos de la panspermia o llegada de vida desde fuera de la Tierra. La idea está muy extendida a pesar de que no existe la menor evidencia científica a su favor. Ni se ha encontrado vida fuera de nuestro planeta ni hay indicios de que alguno de los organismos de la Tierra procedan de otros mundos. Sin embargo…¡Ahí queda eso!

Entonces y para finalizar… ¿Cómo surgió la vida en la Tierra? ¡Nadie lo sabe!

emilio silvera