Nov
7
¡La Vida! ¿Cómo pudo suceder?
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
Aunque no podamos ubicar con exactitud dónde empezó la vida de una manera categórica, parece cada vez más probable que, una vez acabado el bombardeo al que fue sometida la Tierra en su juventud, la vida surgió confinada en lugares situados o bien por debajo del lecho marino, o bien cerca de las chimeneas volcánicas, o dentro de los sistemas hidrotermales en las márgenes de las dorsales oceánicas. Una vez establecida al resguardo de lugares semejantes, el camino quedó abierto para la proliferación y diversificación.
Está claro que, a partir de todas estas suposiciones, hemos seguido especulando acerca de lo que pudo ser y, a partir de todo lo anterior, admitamos que aquellos microbios primitivos eran termófilos y que podían soportar temperaturas de entre 100 y 150 Grados Celcius. Moraban al menos a un kilómetro bajo la superficie, posiblemente en el lecho marino, pero más probablemente en las rocas porosas que hay debajo. Inmersos en agua supercaliente repleta de minerales, ingerían rápidamente y procesaban hierro, azufre, hidrógeno y otras sustancias disponibles, liberando energía a partir de ciclos químicos primitivos y más bien ineficientes. Estas células primitivas eran comedoras de roca en bruto. Ni la luz ni el oxígeno desempeñaban ningún papel en su metabolismo. Ni tampoco requerían material orgánico, hacían lo que necesitaban directamente, a partir de las rocas y el dióxido de carbono disuelto en el agua.
La primera colonia microbiana tenía todo el mundo a su disposición, y un completo suministro de materiales y energía. Se habría extendido con sorprendente velocidad. La capacidad de los microbios para multiplicarse a velocidad explosiva garantizaba que ellos invadirían rápidamente cualquier nicho accesible. Sin ninguna competencia de los residentes, podrían heredar rápidamente la Tierra. Sin embargo, dada la explosión de población, la colonia habría alcanzado pronto los limites de su habitat. Impedidos para ir a mayor profundidad por las temperaturas crecientes, e incapaces de reproducirse en los estratos superficiales más fríos, los microbios sólo podían expandirse horizontalmente a lo largo de las cordilleras volcánicas, y lateralmente a través del basalto del suelo oceánico.
La capa rígida y más externa de la Tierra, que comprende la corteza y el manto superior, es llamada litosfera. La corteza oceánica contiene un 0,147% de la masa de la corteza terrestre. La mayor parte de la corteza terrestre fue creada a través de actividad volcánica.
Columnas de Basalto en Islandia
El sistema de cordilleras oceánicas, una red de 40.000 kilómetros de volcanes (25.000 millas), genera nueva corteza oceánica a un ritmo de 17 km3 por año, cubriendo el suelo oceánico con basalto. Hawaii e Islandia son dos ejemplos de la acumulación de material basáltico.
En alguna etapa, quizá hace 3.800 millones de años se alcanzó la primera gran división evolutiva, cuando un grupo de microbios se encontraron repentinamente aislados de su hábitat caliente y acogedor debido a alguna catástrofe geológica, como un terremoto o una gran erupción volcánica.
Erupción de gran magnitud en el volcán Sakurajima de Japón
Aquel grupo, aislados de la colonia principal, y encerrados en una región más fría, hizo que los microbios se quedaran en estado latente o simplemente murieron, pues sus membranas eran demasiado rígidas a estas temperaturas inferiores para que su metabolismo pudiera funcionar. Sin embargo, un mutante feliz, que accidentalmente tenía una membrana más flexible, sobrevivió y se multiplicó. Al hacer la transición a condiciones más frías, el microbio mutante allanó el camino para acceder a la superficie inhabitada del planeta. Mientras tanto, para los miembros de la colonia original, confinada confortablemente en el reino subterráneo, la vida ha continuado prácticamente igual hasta nuestros días.
Microbios marinos
Un primer desarrollo clave fue un cambio que hicieron algunos organismos de las sustancias químicas a la luz como fuente de energía, y por entonces la vida debió de extenderse hasta la superficie. Probablemente, el primero de tales “fotótrofos” no utilizaba la moderna fotosíntesis de clorofila, sino algún proceso más elemental. Algunas arqueobacterias del Mar Muerto siguen utilizando una forma más bien primitiva de fotosíntesis basada en una sustancia roja relacionada con la vitamina A. La captura de la luz solar comenzó en serio con las bacterias, que descubrieron una forma de arrancar electrones de minerales, potenciarlos con fotones solares y utilizar la energía almacenada para fabricar material orgánico.
En las profundidades abisales del océano, las bacterias usan hidrógeno y producen materia orgánica.
Un refinamiento posterior los liberó de la dependencia de minerales, permitiendo a las bacterias arrancar electrones del agua y liberar oxígeno en consecuencia. El componente crucial en este ingenioso proceso era la clorofila, la sustancia que da el color verde a las plantas. Puesto que sólo se necesitaba agua, dióxido de carbono y luz, estaba abierto el camino para el verdor del planeta.
Todavía queda por responder cómo y cuando aparecieron los tres grandes dominios: arqueobacterias, bacterias y eucarias. Parece probable que la gran división en el árbol de la vida entre arqueobacterias y bacterias tuvo lugar antes de la invención de la fotosíntesis, quizá tan temprano como hace 3.900 o 4.000 millones de años, bien entrada la era del bombardeo intenso.
Bacterias primitivas y el fósil más antiguo del mundo
La evidencia apunta a que las arqueobacterias sean los organismos más viejos y más primitivos, y que las bacterias aparecieron algo más tarde. Tan profunda era la división entre las arqueobacterias y las bacterias que ellas no han sido nunca rivales; siguen ocupando nichos diferentes después de varios miles de millones de años de evolución.
Finalmente, la profunda escisión que predijo el dominio de las eucarias ocurrió probablemente cuando las condiciones eran algo más frías. Por alguna razón, quizá por estar espuestas a los desafíos de un entorno menos estable, las eucarias de temperatura más baja se desarrollaron a un ritmo mucho más rápido.
El posterior florecimiento de la vida, su diversificación en muchas especies, y el enorme aumento de la complejidad biológica derivan directamente de la ramificación de las eucarias en el árbol de la vida. Sin este paso trascendental, es poco probable que nosotros -o cualesquiera otros seres sintientes- existiéramos hoy en la Tierra para poder reflexionar sobre el significado de la vida en la Tierra desde sus comienzos hasta el momento presente.
Mas tarde, en 1969, Robert Whuttaker propone una clasificación de los seres vivos en cinco reinos, en la que incorpora la distinción procariota-eucariota (ésta se considera actualmente mucho más importante que la de vegetal-aminal del sistema tradicional). Así quedan patente las diferencias entre las algas verde-azuladas(cuanolíceas) y las bacterias (ambas sin núcleo patente (procariotas) y todos los demás organismos que tienen un núcleo rodeado por membrana (eucariotas). Los procariotas fueron incluídos en el reino Monera y los eucariotas en los cuatro restantes.
A partir de esta clasificación ha surgido la de Margulis- Schwartz (1985), también en cinco reinos (es la que aúin aparece en lso libros de texto). Se basa en estudios filogenéticos y tiene la ventaja de hacer grupos más homogéneos. Cambia el reino protistas por el de Protistas, en el que incluye a Protozoos, todas las algas (excepto cianofíceas) y los hongos inferiores.
Difícilmente podríamos aquí, en un simple repaso a lo que fue el comienzo y la evolución de la vida primigenia en nuestro planeta, hacer una relación pormenorizada de todo lo que ello implica y, nos limitamos, como podeís ir comprobando, a dejar trabajos sueltos con retazos de lo que “pudo haber sucedido” para que, de alguna manera, podamos llegar a una más amplia comprensión de tan complejo problema. Nada más y nada menos que…¡La Vida!
¿Qué es la Vida? Siempre digo que es la “materia inerte” evolucionada hasta el nivel de los pensamientos
Emilio Silvera Vázquez
Nov
1
El fino equilibrio que permite la presencia de la Vida
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (4)
Sigma Orionis es un sistema estelar múltiple complicado, con una distancia medida. Hipparcos de 350 pc. Los componentes primarios y secundarios medidos aquí sólo están separados por 0,25 segundos de arco (87,5 UA a 350 pc). Se cree que es parcialmente responsable de la ionización de la Nebulosa Cabeza de Caballo. Su período es de alrededor de 155 años. Componentes D y E son dos estrellas B2, con separaciones angulares de 12,9 y 41,6 segundos de arco.
En realidad era el cañón natural más grande del sistema solar
Mucho es lo que desde hace mucho tiempo ya, se ha venido especulando con la posible existencia de vida en el planeta Marte. Los canales que algunos creyeron ver como obra artificial hecha por seres inteligentes resultaron ser cañones naturales hecho por grandes correntías de agua, y, aquellos “marcianitos verdes” de las novelas y películas…
¡Quedaron diluidos por el conocimiento del planeta hermano! Sin embargo, no podemos negar la presencia de vida en alguna parte que, muy posiblemente, sea en el subsuelo.
Agujeros Negros Gigantes
La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos “personajes” de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.
Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).
Un haz de Láser en el aire viajando cerca del 99.97% de la rapidez de la luz en el vacío
Está claro que la luz se desplaza a enormes velocidades. Si pulsamos el interruptor apagado de la lámpara de nuestro salón, todo queda a oscuras de manera instantánea. La velocidad del sonido es más lenta; por ejemplo, si vemos a un leñador que está cortando leña en un lugar alejado de nosotros, sólo oiremos los golpes momentos después de que caiga el hacha. Así pues, el sonido tarda cierto tiempo en llegar a nuestros oídos. En realidad es fácil medir la velocidad de su desplazamiento: unos 1.206 Km/h en el aire y a nivel del mar.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad.
En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético y perdió su atmósfera hace tiempo, es un planeta difícil para unos posibles viajeros que lleguen a instalarse allí. A no ser que lleven consigo la tecnología necesaria para Terraformarlo.
Hasta el momento sólo sabemos de la vida en la Tierra. Sin embargo se sospecha que…
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución. No hace mucho, nos pasó casi rosando uno que circulaba veloz entre la Tierra y la Luna. Podemos dar las gracias al destino de que, en varios cientos de miles de años, los meteoritos caídos en nuestro mundo, sólo dejaran grandes cráteres y algunos sucesos mortales de manera parcial. El más reciente de categoría catastrófica, hace ya 65 millones de años que produjo la extinción de los grandes lagartos, cuando nosotros, aún no estábamos aquí.
Cuando comento éste tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, a aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.
La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrollo la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que, hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!
En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.
Nuestro planeta joven tenía todos los ingredientes para que, con la ayuda del Sol, el agua líquida corriente, la atmósfera incipiente, los nuevos océanos… surgieran formas de vida.
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la foto-disociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.
Creo que la clave está en los compuestos del carbono, toda la vida terrestre actualmente conocida exige también el Agua como disolvente. Y como para el carbono, se supone a veces que el agua es el único producto químico conveniente para cumplir este papel. El amoníaco (el nitruro de hidrógeno) es la alternativa ciertamente al agua, la más generalmente posible propuesta como disolvente bioquímico. Numerosas reacciones químicas son posibles en disolución en el amoníaco, y el amoníaco líquido tiene algunas semejanzas químicas con el agua. El amoníaco puede disolver la mayoría de las moléculas orgánicas al menos así como el agua, y por otro lado es capaz de disolver muchos metales elementales. A partir de este conjunto de propiedades químicas, se teorizó que las formas de vida basada en el amoníaco podrían ser posibles. También se dijo del Silicio. Sin embargo, ninguno de esos elementos son tan propicios para la vida como el Carbono y tienen, como ya sabemos, parámetros negativos que no permiten la vida tal como la conocemos.
Hasta rel momento, todas las formas de vida descubiertas en la Tierra, están basadas en el Carbono
Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.
La teoría de la evolución biológica
Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.
Nuestros ancestros inteligentes. Aunque no es fácil señalar el momento en el que (realmente) comenzamos a desarrollar inteligencia ¿Sería el Homo habilis?
Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.
-
C: Carbono
-
H: Hidrógeno
-
O: Oxígeno
-
N: Nitrógeno
-
P: Fósforo
-
Fe: Hierro
-
S: Azufre
-
Ca: Calcio
-
I: Yodo
-
Na: Sodio
-
K: Potasio
-
Cl: Cloro
-
Mg: Magnesio
-
F: Flúor
-
Cu: Cobre
-
Zn: Zinc
-
Glúcidos o Hidratos de Carbono
-
Lípidos
-
Proteínas
-
Ácidos Nucleicos
Estamos dotados de un cerebro que, con más de cien mil millones de neuronas, hace crecer la Mente que nadie sabe hasta qué confines puede llegar. Tuvimos sueños que pudimos hacer realidad. ¿Dónde estará nuestro límite?
A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero, en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.
Es posible que la vida, como el Universo es igual en todas partes y, en cualquier región, por muy alejada que esté, rigen las mismas Leyes de la Naturaleza como, las cuatro fuerzas fundamentales (Gravedad, Magnetismo y las Fuerzas Nucleares Débil y Fuerte), y, de la misma manera, la Naturaleza utiliza una serie de constantes que llamamos universales, tales como la velocidad de la luz en el vacío, la constante de estructura fina, la carga del electrón o la masa del protón (entre otras) y, si alguna de ellas pudiera variar con el paso del tiempo9, siquiera una diezmillonésima parte, la vida, tal como la conocemos, no podría existir en nuestro planeta. Claro que, siendo estas leyes iguales en cualquier sitio del Universo, se podría pensar que, cualquier clase de vida, presente en cualesquiera otros mundos, estaría también, basada en el Carbono que, a la postre, parece el elemento más dúctil y adecuado para ello. Sin embargo, nada se puede asegurar.
Sí, imaginamos demasiado pero… ¿Qué hay más poderoso que la imaginación?
Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.
No podemos saber si es posible que, en otros mundos, seres inteligentes tengan la posibilidad de saber de nosotros, observarnos y contemplar como eran ellos antes de su Presente actual. ¿Quién sabe? Todo podría ser posible.. incluso dicen que las matemáticas dan vía libre a los viajes en el Tiempo.
¿Cuántos secretos están en esos números escondidos? La mecánica cuántica (h), la relatividad (c), el electromagnetismo (e–). Todo eso está ahí escondido. El número 137 es un número puro y adimensional, nos habla de la constante de estructura fina alfa (α), y, el día que sepamos desentrañar todos sus mensajes… ¡Ese día sabremos!
Extraños mundos que pudieran ser
Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.
Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.
“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”
Las constantes de la naturaleza ¡son intocables!
Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.
Ahora, cuando miramos el Universo, comprendemos, en parte, lo que ahí está presente
Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.
La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.
Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más.
La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?
Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de Beta (aF) el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.
El LHC revela la fuerza nuclear fuerte con una precisión sin precedentes
Si en lugar de a versión β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que aF > 0,3 a½, los elementos como el carbono no existirían.
No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón → helio-2.
Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida
Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:
“Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.”
Como podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?
Creo que la vida en nuestro Universo es imparable y está presente en infinidad de mundos
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más natural en el universo y estará presente en miles de millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.
Emilio Silvera Vázquez
Oct
26
Si la Humanidad se extingue ¿Qué clase de vida dominará?
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (5)
Aunque lo primero que nos viene a la cabeza son imágenes de «El Planeta de los simios», los primates se extinguirían antes que nosotros. Por el contrario, los animales que pasarían a gobernar nuestro planeta serían mucho más pequeños…
En un futuro postapocalíptico, ¿Qué pasaría con la vida si los humanos desapareciéramos? Al fin y al cabo, es probable que la especie humana se extinga mucho antes de que el sol se convierta en una gigantesca bola roja y acabe con todos los seres vivos sobre la faz de la Tierra.
Suponiendo que no acabemos antes con los demás seres vivos (algo poco probable a pesar de nuestra tendencia a hacer desaparecer especies), la historia nos dice que habrá cambios fundamentales una vez que los humanos dejemos de ser la especie animal dominante del planeta.
Pudieran ser aspirantes si evolucionan en tamaño
Así que, si pudiésemos dar un salto en el tiempo hasta unos 50 millones de años después de nuestra desaparición, ¿Qué encontraríamos? ¿Qué animal o grupo de animales nos relevarían como especie dominante? ¿Nacerá un Planeta de los Simios como el de las películas? ¿O dominarán la Tierra los delfines, las ratas, los tardígrados, las cucarachas, los cerdos o las hormigas?
Esta pregunta ha dado lugar a muchas especulaciones, y numerosos escritores han hecho listas de especies candidatas. Sin embargo, antes de hacer conjeturas, debemos explicar a qué nos referimos con especies dominantes.
Limitémonos al reino animal
Se podría decir que la era actual es la era de las flores. Sin embargo, al visualizar el futuro nadie se imagina a Audrey 2 de «La tienda de los horrores» (aunque los trífidos de la ficción tuvieran rasgos característicos de los animales, tales como un comportamiento depredador y la habilidad de moverse).
Esculturas de dos trífidos en las calles de Penza, Rusia – Triffid by Shutterstock
Limitémonos pues al reino animal, más por razones prácticas que filosóficas. Según ciertos criterios, el mundo siempre ha estado dominado por bacterias, a pesar de que la «era de las bacterias» acabó hace unos 1.200 millones de años. Pero no fue porque las bacterias dejasen de existir o porque disminuyese su predominio, sino porque tendemos a dar más importancia a los grandes organismos multicelulares que vinieron después.
Según algunos cálculos, cuatro de cada cinco animales son nematodos (gusanos cilíndricos). Así que, con estos ejemplos, queda claro que ni la prevalencia, ni la abundancia, ni la diversidad son esenciales para ser la forma de vida dominante. En cambio, nuestra tendencia es pensar en organismos grandes y carismáticos.
Los mansos heredarán la Tierra ¿A quién se referiría?
No creo que serían ellos
En la imagen especular se puede ver que el niño ofrece su manita derecha al amiguito del espejo, y, éste, le devuelve el gesto ofreciendo su mano izquierda. ¿Qué puede explicar dicha discordancia?
Pero sigamos.
Hay un indiscutible grado de narcisismo en cómo los humanos designamos a las especies dominantes, al igual que una tendencia a otorgar este título a nuestros parientes cercanos. «El Planeta de los Simios» imagina que nuestros parientes primates podrían desarrollar el habla y adoptar nuestra tecnología si les diéramos el tiempo y el espacio suficientes.
Los chimpancés y los humanos tuvieron un ancestro común que no era ni Homo ni Pan, de él divergieron las dos ramas, y, mientras uno continúa en la copa de los árboles, los otros, hablan de mecánica cuántica y tratan de llegar a las estrellas.
Pero es poco probable que las sociedades primates no humanas hereden nuestro dominio sobre la Tierra ya que, probablemente, los simios se extinguirán antes que nosotros. Ya somos el único homínido vivo que no está en peligro de extinción. Y no es probable que la crisis que podría acabar con nuestra especie dejase al margen a los otros grandes simios. De hecho, cualquier tipo de extinción que afecte a los humanos sería también peligrosa para aquellos organismos con similares necesidades fisiológicas básicas.
Nuestra ignorancia es grande, y, llegará un momento en el que no podamos hacer frente al destino
En cualquier momento podría aparecer una nueva pandemia mundial que acabara con la Humanidad.
Aunque los humanos sucumbiéramos a una pandemia mundial que afectara a pocos mamíferos, los grandes simios son, precisamente, las especies que más riesgo tienen de contraer nuevas enfermedades que podrían eliminarlos de la Tierra.
¿Podrá otro pariente, más distante, (primate, mamífero o de otra índole) desarrollar inteligencia y una sociedad similar a la nuestra? Eso tampoco parece probable. De todas las especies que, en teoría, han sido animales dominantes en algún momento, los humanos son únicos en su excepcional inteligencia y destreza manual. Se puede deducir, por tanto, que tales cualidades no son un requisito para ser la especie dominante ni para evolucionar. La evolución no favorece la inteligencia por sí misma, a no ser que esta lleve a un mayor nivel de supervivencia y de reproducción. Por lo tanto, es un grave error pensar que nuestros sucesores serán especialmente inteligentes, que serán seres sociales, que podrán hablar o que serán expertos en tecnología.
No parece que ninguna de estas especie tenga las condiciones necesarias para reinar en el planeta
Así que, ¿podemos afirmar algo sobre la especie dominante 50 millones de años después de la extinción del ser humano? La respuesta es tan decepcionante como sorprendente. Podemos estar bastante seguros de que no será un chimpancé parlante, pero no tenemos ni idea de qué será.
La Tierra ha visto gran número de extinciones masivas a lo largo de su historia. La diversificación de la vida tras cada suceso siempre ha sido relativamente rápida y la adaptación de las nuevas especies produjo nuevas formas de vida muy diferentes a las que las engendraron tras sobrevivir a la extinción anterior.
Las pequeñas criaturas que corrían bajo los pies de los dinosaurios a finales del periodo Cretáceo eran muy diferentes de los osos de las cavernas, de los mastodontes y de las ballenas descendientes de la Era de los Mamíferos. Asimismo, los reptiles que sobrevivieron a la extinción masiva del Pérmico-Triásico hace unos 250 millones de años, que acabó con el 90% de las especies marinas y con el 70% de las terrestres, tampoco se parecían a los pterosaurios, dinosaurios, mamíferos y pájaros que descendieron de ellos.
En «La vida maravillosa: Burgess Shale y la naturaleza de la historia», el difunto Stephen J. Gould defendía que el azar, o la contingencia, como él solía decir, tuvo un papel muy importante en las grandes transiciones de la vida animal. Hay margen para discutir sobre la importancia relativa de la contingencia en la historia de la vida, que sigue siendo un tema controvertido hoy en día. Sin embargo, la percepción de Gould de que difícilmente se puede presagiar la supervivencia de las razas modernas tras una futura extinción es una lección de humildad sobre la complejidad de las transiciones evolutivas.
Aunque podría ocurrir que las hormigas nos releven en el dominio de la Tierra, tal y como se ha especulado, es imposible que sepamos cómo serán esas hormigas dominantes descendientes de las actuales.
Seguro que deben existir planetas con insectos gigantes por tener alta Gravedad
Claro que… De acuerdo con estudios científicos, el tamaño gigantesco que los insectos alcanzaron hace unos 300 millones de años durante el final del Carbonífero y principios del Pérmico se debió al mayor contenido de oxígeno y no a la gravedad de la Tierra que no ha variado.
El Futuro es impredecible y nunca sabremos que forma de vida predominará en el planta cuando la Humanidad se extinga
Emilio Silvera Vázquez
Oct
19
El Universo y sus normas: Hace irreversible la presencia de la Vida
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
Astrónomos vieron lo que podría ser la supernova más poderosa que jamás hayan detectado. La primera vez que se observó la explosión de la estrella fue en junio pasado, pero todavía está irradiando inmensas cantidades de energía. En su punto máximo, el evento fue 200 veces más poderoso que una supernova típica, haciéndola brillar 570.000 millones de veces más que el momento más brillante de nuestro sol.
Los investigadores opinan que la explosión y la actividad en curso han sido alimentadas por un objeto remanente muy denso, altamente imantado, llamado magnetar o magnetoestrella.
Sin movernos del planeta Tierra, hemos llegado a saber dónde estamos y cómo es, el Universo
Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que las moléculas de la vida pudieran ser fabricadas en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.
Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos llegado a saber, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con seres de otros mundos. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres visitantes y podrán (como nosotros), alcanzar una fase tecnológica avanzada.
La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo: es decir, de lo muy grande y, de lo muy pequeño.
La constante de estructura fina de Sommerfeld (símbolo α) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.
Otras veces hemos hablado aquí de las Constantes Fundamentales y de las que más conocemos y oímos mencionar: La carga del electrón (e), la velocidad de la luz (c), la Constante de Planck (h), la Constante Gravitacional (G), otras, como la constante magnética (μo), la masa en reposo del electrón (me), o, la Constante de estructura Fina (1/137) denotada como α = 2π e2 / hc y cuyo resultado es 137…El número puro y adimensional.
La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, α, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?
Moléculas que contienen carbono (esfera central). Se muestran los enlaces simples, dobles, triples y el tipo de geometría que las conforma. El Carbono es muy abundante en nuestro Universo y, en él, está basada la vida.
Sistemas flexibles donde no hay rompimiento de enlaces. Si cambiáramos las cosas, el mundo molecular se vendría abajo y todo sería diferente. Nada puede conformarse en sólidas estructuras sin la solidez de los átomos para formar moléculas y estas poder formar cuerpos
Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.
Si en lugar de la versión β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte αF, junto con la de α, entonces, a menos que αF > 0,3 a½, los elementos como el carbono no existirían. No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón → helio-2.
Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.
Gráfico: Zona habitable donde la complejidad que sustenta la vida puede existir si se permite que los valores que sustentan b y a varíen independientemente. En la zona inferior derecha no puede haber estrellas. En la superior derecha están ausentes los átomos no relativistas. En la superior izquierda los electrones están insuficientemente localizados para que existan moléculas auto reproductoras altamente ordenadas. Las estrechas “vías de tranvías” distingue la región necesaria para que la materia sea estable para evolucionar.
Múltiples formas de vida, tanto macro como microscópicas, están presentes en nuestro planeta, y, de la misma manera, lo estarán en otros que, estando en la zona habitable de su estrella, tengan condiciones similares o parecidas a las nuestras. La vida en el Universo, con las constantes que en él están presentes…¡es imparable!
Hemos comentado aquí otras veces que, los biólogos, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.
Cúmulo Globular Hércules ( M13 )
Las estrellas más viejas se nuestra Galaxia se encuentran en agrupaciones (cúmulos globulares) que están más o menos simétricamente distribuidas en torno al centro galáctico. La teoría de la evolución estelar, quedó aceptablemente establecida allá por los años 30, y nos proporciona las edades de estas estrellas que, según todos los indicios, parecen indicar que existen estrellas tan viejas como 13 Ga (trece mil millones de años). Así, la edad del Universo debe ser algo mayor como ha quedado establecida.
Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.
En varias regiones de la Nebulosa de Orión se forman nuevos Sistemas Planetarios
Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glicoaldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple, en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.
https://www.muyinteresante.com/ciencia/2099.html
En todas las grandes Nebulosas están presentes las sustancias y las moléculas necesarias para la Vida
Muchos son los parámetros a tener en cuenta para saber sobre la presencia de vida en el Universo. Tienen que ver mucho las estrellas donde se fabrican los materiales necesarios para que, miles de millones de años más tarde, esos materiales dispersos en los mundos, puedan, en presencia de agua y la atmósfera adecuada, evolucionar hasta convertirse (bajo adecuadas circunstancias) en protoplasma vivo, de ahí surgirán las células vivas y replicantes que comenzarán la aventura de la vida que, comienza en la “materia inerte” y llega hasta los pensami4entos.
Hasta ahora se viene considerando que las condiciones necesarias para el desarrollo de la vida son extremadamente exigentes y que en la Tierra se da una larga y complicada serie de circunstancias que ha permitido el desarrollo de la vida. Sin embargo, si se confirmase la detección de aminoácidos interestelares, tendríamos que concluir que los procesos físicos más fundamentales para originar vida son extremadamente comunes, lo que sugeriría que podría crearse vida de manera generalizada en el Universo.
Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos pocos cientos de miles de años, mucho menos que la edad del universo, trece mil setecientos millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.
-
C: Carbono
-
H: Hidrógeno
-
O: Oxígeno
-
N: Nitrógeno
-
P: Fósforo
-
Fe: Hierro
-
S: Azufre
-
Ca: Calcio
-
I: Yodo
-
Na: Sodio
-
K: Potasio
-
Cl: Cloro
-
Mg: Magnesio
-
F: Flúor
-
Cu: Cobre
-
Zn: Zinc
“Las biomoléculas o moléculas biológicas son los compuestos químicos con los que están formados los seres vivos, es decir: los seres humanos, los animales, las plantas, los hongos, las bacterias, los parásitos, etc.
Como todos los compuestos químicos, las biomoléculas están formadas por átomos de distintos elementos, pero principalmente del grupo compuesto por el carbono (C), el hidrógeno (H), el oxígeno (O), el nitrógeno (N), el fósforo (P) y el azufre (S). Muchas veces estos se conocen como bioelementos.Las biomoléculas son fundamentales para la existencia de los seres vivos, ya que se consideran los pequeños bloques con los que están construidas las células, que son las unidades básicas de la vida.
Todas las células, además de estar formadas por biomoléculas, necesitan de estas para alimentarse y nutrirse, para reproducirse y moverse, y para interactuar con el medio que las rodea.”
Los lípidos son las principales moléculas que existen en la membrana que envuelve a las células, y en las células eucariotas a los orgánulos intracelulares. Se trata de moléculas que “huyen” del agua -son hidrofóbicas- y que, en un ambiente acuoso, se asocian entre sí de modo que solo sus partes menos hidrofóbicas queden expuestas hacia el agua.
Los lípidos están formados principalmente por átomos de carbono, hidrógeno y oxígeno, y estos también son fuentes importantes de energía para las células, que son capaces de obtenerla a través de su oxidación.
Los principales tipos de lípidos son los fosfolípidos -aquellos que forman las membranas celulares-, pero también existen otros: las grasas, las ceras, los esteroles y los triglicéridos, por nombrar algunos. Es decir que el aceite que utilizamos para cocinar está formado por lípidos, al igual que las membranas de cada una de nuestras células.
-
Glúcidos o carbohidratos
Así que los cuatro grupos de biomoléculas son:
-
Glúcidos o Hidratos de Carbono
-
Lípidos
-
Proteínas
-
Ácidos Nucleicos
El el gráfico de arriba están resumidas sus funciones.
A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero, en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.
En la naturaleza hay una serie de constantes fundamentales, por ejemplo, algunas de ellas son: la constante universal de la gravedad (G = 6.67X10–11 Nm2/Kg2), la velocidad de la luz (3X108m/s) y la unidad fundamental de carga eléctrica (1.6X10–19 C).
Siguiendo con el hilo de los pensamientos con los que comenzamos este trabajo, podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente. El Universo es como es porque, sus leyes y constantes son las que son. Al menos eso, sí hemos podido llegar a saber sobre la presencia de la vida posibilitada por estos factores fundamentales.
Las moléculas de la Vida se forman en el Espacio Interestelar
Sabemos que moléculas complejas y biomoléculas están presentes en el espacio interestelar. Los científicos han descubierto alrededor de las nebulosas planetarias Tc-1 y M1-20 (situadas entre 600 y 2.500 años luz de la Tierra), por primera vez evidencias de fullerenos complejos, denominados «cebollas de carbono», las moléculas más complejas observadas hasta el momento en el espacio exterior. Un hallazgo que tiene importantes implicaciones a la hora de entender la física y química del Universo y del origen y composición de las bandas difusas interestelares (DIBs), uno de los fenómenos más enigmáticos de la astrofísica.
Ahora conocemos muchas cosas antes ignoradas y, parece, que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, nos lleva a pensar que, al menos en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre tiempo(bio-lógico) y tiempo(estrella) que son aproximadamente iguales; el t(bio) –tiempo biológico para la aparición de la vida, resultó ser algo más extenso, es decir, el necesario para que las estrellas pusieran fabricar, en sus hornos nucleares, los elementos que darían lugar, mucho más tarde, a la formación de las moléculas de la vida.
Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:
Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.
Como podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?
El Universo está regido (en todas sus regiones por alejadas que puedan estar), por cuatro leyes fundamentales y una serie de Constantes Universales, es decir, es igual en todas partes. Y, si eso es así (que lo es)… ¿Cómo podemos negar la presencia de vida en otros mundos? ¿Qué argumentos tenemos?
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más natural en el universo y estará presente en miles de millones de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.
No podemos olvidar que en nuestra región del universo, la materia “inerte” evolucionó (con el paso del tiempo), hasta los pensamientos, las ideas, los pensamientos y… ¡Los sentimientos! ¿Por qué no pasaría lo mismo en otros mundos?
Emilio Silvera Vázquez
Oct
10
¡Panspermia! Lo cierto es que, ¡Nadie sabe de donde llegó la vida!
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (1)
- 1) Agua: Sin beber agua no podríamos sobrevivir más allá de tres o cuatro días. El agua es esencial para el desarrollo de procesos orgánicos como la digestión, así como en la absorción y eliminación de desechos. Además, estructura el sistema circulatorio y distribuye nutrientes hacia todo el cuerpo a través de la sangre.
- 2) ¿Qué son los carbohidratos? Los carbohidratos son moléculas de azúcar. Junto con las proteínas y las grasas, los carbohidratos son uno de los tres nutrientes principales que se encuentran en alimentos y bebidas. Su cuerpo descompone los carbohidratos en glucosa.
- 3) Los lípidos cumplen con las siguientes funciones en el organismo:
- Reserva de energía del organismo animal. …
- Soporte estructural del cuerpo. …
- Regulación y comunicación celular. …
- Transporte. …
- Protección térmica.
- 4) Las proteínas son moléculas grandes y complejas que desempeñan muchas funciones críticas en el cuerpo. Realizan la mayor parte del trabajo en las células y son necesarias para la estructura, función y regulación de los tejidos y órganos del cuerpo.
- 5) Los ácidos nucleicos son biomoléculas grandes que cumplen funciones esenciales en todas las células y virus. Una función importante de los ácidos nucleicos implica el almacenamiento y la expresión de información genómica. El ácido desoxirribonucleico, o ADN, codifica la información que las células necesitan para producir proteínas. Un tipo relacionado de ácidos nucleicos, denominado ácido ribonucleico (ARN) se presenta en diferentes formas moleculares que cumplen funciones celulares múltiples, que incluyen la síntesis proteica.
Según ala teoría de la Panspermia, algo que viajó a la Tierra llevando esporas congeladas, encontraron en nuestro planeta las condiciones idóneas para desarrollarse y evolucionar.
Estaba comenzando el sigo XX, cuando el químico sueco Svante Arrhenius, desarrolló la teoría de la Panspermia con todo detalle. Él sugirió que esporas bacterianas individuales podrían moverse flotando por las galaxias, impulsadas por la minúscula pero acumulativa presión de la luz estelar. La Tierra naciente, inmrsa en una lluvia de microorganismos latentes pero todavía viables, habría resultado un destino deseable para estos microbios espaciales, una vez que la superficie se hubo enfriado lo suficiente. Arreheneius bautizó la teoría como Panspermia, que significa “semillas en todas partes”. Es una idea que ha sido revisada muchas veces desde que se publicó el concepto original.
Además de moléculas orgánicas, también hay complejos compuestos prebióticos
Un equipo de científicos del Instituto de Astrofísica de las Canarias (IAC) y la Universidad de Texas lograron identificar una de las moléculas orgánicas más complejas encontradas hasta ahora en la materia entre las estrellas, el llamado espacio interestelar. El descubrimiento del antraceno podría ayudar a resolver un misterio astrofísico de décadas de antigüedad sobre la producción de las moléculas orgánicas en el espacio.
¿Esporas espaciales trajeron la vida?
¿Es verosímil que organismos sin protección pudieran sobrevivir a un viaje a través del espacio? El espacio exterior difícilmente es un ambiente confortable para la vida. Además del duro vacío y las bajas temperaturas, existe la radiación: ésta incluye radiación ultravioleta procedente de las estrellas, protones de alta velocidad procedentes de las llamaradas estelares y los rayos cósmicos. Tales condiciones, pronto se mostrarían letales para la mayoría de las formas de vida que conocemos. Pero, a pesar de estas dificultades, no todos los organismos mueren rápidamente en el espacio exterior. Las bacterias con sus legendarias capacidades de supervivencia, muestran una notable resistencia a las condiciones del espacio.
La teoria de la panspermia no explica el origen de la vida en la Tierra, únicamente trasladada el problema fuera del planeta. Sin embargo, no hay que descartar ninguna posibilidad, dado que la realidad es que, desconocemos como llegó la vida a nuestro planeta, lo cierto es que, su origen de procedencia exterior es tan bueno como cualquier otro.
En la búsqueda de una respuesta, han sido muchos los trabajos que se han realizado para comprobar, si esas hipotéticas esporas, podrían sobrevivir a ese fantástico viaje espacial. Con tal fin, científicos del Instituto Alemán de Medicina Aeroespacial utilizaron la instalación de Exposición de Larga Duración de la NASA para ver que les sucedía a las esperas del Bacillus subtilis en el Espacio. Una serie de filtros permitieron a los científicos poner a prueba separadamente los efectos del vacío espacial, la radiación ultravioleta solar y cósmica, y los rayos cósmicos. Al recuperar las muestras, hasta un 2 por ciento de las bacterias expuestas sólo al vacío seguían siendo viables. La presencia de una capa de azúcar o de sal mejoraba enormemente sus perspectivas. De las expuestas a todas las formas de radiación espacial, aproximadamente sólo una de cada diez mil sobrevivieron, pero la protección frente al ultravioleta solar disparaba enormemente la tasa de supervivencia.
Peter Weber y Mayo Geeenberg, de la Universidad de Leiden, en Holanda, investigaron los efectos de la exposición ultravioleta, la más dañina de todas las formas de radiación en el espacio. Enfriaron esporas en una cámara de vacío a -263 grados Celcius (sólo diez grados por encima del cero absoluto) para similar el frío intenso del espacio profundo, y lanzaron sobre ellos un intenso haz de luz ultravioleta, el equivalente a una exposición de dos mil quinientos años a la luaz estelar mató al 99 por ciento de los organismos. Aín así, una minúscula fracción se las arregló para sobrevivir. Curiosamente, a las esporas parecía gustarles el frío: su longevidad aumentó notablemente a temperaturas interestelares.
La radiación emitida por los cuerpos celestes es mala para la vida
Una tolerancia a la radiación tan impresionante tiene poco sentido evolutivo a menos que la vida haya sido obligada a pasar por un cuello de botella de radiación en alguna etapa del pasado. Si algunos microbios han sido obligados a adaptarse a la violenta radiación del espacio exterior, un remanente de esta tolerancia podría sobrevivir hoy en organismos terrestres. Hoyle y Wickramasinghe citan el caso de la bacteria Micrococus radiophilus, que tiene una sorprendente resistencia a la radiación por haber desarrollado un mecanismo especial para reparar hebras de ADN seriamente dañadas por rayos X. Este astuto y pequeño coco se parece mucho al producto de un ambiente interestelar.
Cualquiera que sean sus poderes para combatir los daños de la radiación , las probabilidades del viaje de un microbio vivo entre sistemas estelares se verían enormemente ampliadas si la radiación estuviera al menos parcialmente apantallada. Weber y Greenberg han sugerido que los microbios podrían viajar a las estrellas a bordo de nubes interestelares que les servirían como una especie de escudo.
¿Quién puede asegurar que, camufladas en inmensas nebulosas, no viajan cómodamente instaladas esporas en busca de planeta?
Y fue la mano de la Naturaleza la que sembró la vida en nuestro planeta
Tales Nebulosas son comunes en los Brazos Espirales de las galaxias, así lo sabemos por haberlas observado en la nuestra, la Vía Láctea; cada pocas decenas de millones de años, el Sistema solar pasa por una de ellas. Los microbios en la atmósfera superior de la Tierra, o impulsados por impactos, podrían ser barridos por la nube, quizá para ser transportados a otro sistema estelar. Recíprocamente, cualquier microbio alienígena residente en la nube podría ser transferido a la Tierra. Generalmente, las nubes se mueven a unos diez kilómetros por segundo y necesitan alrededor de un millón de años para pasar de una estrella a otra. Aunque muy tenue para los niveles normales, son suficientemente grandes para bloquear buena parte de la radiación. Además, un microbio flotante podría recoger y adherirse a un montón de porquería que les preservara también de la dañina radiación y estar así, aletargadas por tiempos indefinidos hasta llegar a un lugar más idóneo para resurgir a la vida.
“Cuanto más examino el Universo y estudio los detalles de su arquitectura, más evidencia encuentro de que en cierto sentido el universo debe haber sabido que íbamos a venir”. Así se expresa Freeman Dyson aconsejado por todos los datos que en su mente había podido atesorar durante una larga carrera en el estudio del espacio y de la posible vida inmersa en su inmensidad.
¿Estamos en un Universo bio-amigable?
Aunque no siempre pueda dar esa sensación, cuando vemos explosiones supernovas, torbellinos en forma de púlsares, inmensas protuberancias que expulsan ráfagas de radiación al espacio interestelar y hacia los mundos, agujeros negros que se tragan todo la materia que se atreva a traspasar su horizonte de sucesos, y, en fin, tantas y tantas transiciones de fases que se producen desde el Caos hacia una normalidad que es variable en el tiempo y, sin embargo y a pesar de todo eso… Sí, el Universo, una vez que se conoce su dinámica, se podría decir que no solo es bio-amigable, sino que, en realidad, está predispuesto para que su evolucionar recorra el camino que nos lleva desde la “materia inerte” hasta “los pensamientos”.
Es cierto que, con mucha frecuencia, aparecen aquí trabajos que versan sobre la vida, ese misterio que nos lleva a querer buscar sus orígenes y a saber, cómo y para qué surgió aquí en el Planeta Tierra. Nos interesamos por cada uno de pasos evolutivos y nos llama la atención ese larguísimo ciclo que llevó la vida desde aquella célula replicante hasta los seres humanos. Pero, ¿hay algo más interesante que la Vida para poder estudiarlo? Seguramente con la Física, la Química y la Astrofísica, sean las cuestiones más interesantes para el ser humano. ¡Ah! sin olvidarnos de las matemáticas.
Muchas son las fases por las que tuvieron que pasar los elementos químicos que, junto a la materia prebiótica, dieron lugar, finalmente, al surgir de la Vida en nuestro Planeta, la Tierra. En la formación que finalmente podemos contemplar de la Tierra no intervinieron únicamente los procesos cósmicos. Los animales, las plantas y los microorganismos influyeron de manera decisiva en las estructuras planetarias durante el curso de la historia de nuestro Planeta. Sin ellos no existiría una atmósfera con oxígeno, ni islas de coral, ni tierras fértiles, ni materias primas como el petróleo o el carbón. Claro que, como llegó o surgió la vida primera…sigue siendo un gran misterio que trabajamos para resolver pero, ¿podremos?.
El espacio podría ser tóxico para la vida de los microorganismos, señala estudio.
Por no saber, no sabemos siquiera si la vida ha podido existir desde siempre. Lo único que sabemos es que la vida terrestre no existió siempre, puesto que la propia Tierra no ha existido siempre, pero la vida puede haber existido desde mucho antes que la Tierra se formara, y haber llegado aquí por algún proceso de panspermia comno el que antes se explicaba, o, vaya usted a saber cómo. Incluso, por no saber, no sabemos de manera exacta y científica, de donde surgió nuestro Universo y qué pudo traer con él, ¿acaso ya traía la vida consigo y sólo tenía que pasar el tiempo necesario para poder desarrollarla? Otra pregunta es: Si existen otros universos, ¿habrá también vida en ellos? y ¿Cómo serán esas formas de vida?
Sí, surgimos a partir de la “materia inerte”, simplemente somos la parte del Universo que, cuando ha evolucionado, pone en él los pensamientos. La historia es larga para nosotros que somos muy jóvenes, para el Universo es nada, un parpadeo. Hace ahora 3.500-3.200 millones de años que células vivas microscópicas evolucionan sobre la Tierra, 1.800 millones de años hacía atrás en el tiempo aparecieron las primeras plantas. El oxígeno envenena la atmósfera de la Tierra y proliferan los organismos aeróbicos (“amantes del oxígeno”). Han pasado 900 millones de años desde que la división sexual aceleró el ritmo de la evolución biológica. Pasados 200 millones de años (hace ahora 700), aparecen los animales, en su mayoría plantelmintos y medusas. 100 años más tarde, aparecen los crustáceos y otros 100 años después los primeros vertebrados. Mirando 425 millones de años hacía atrás en el tiempo podríamos ver como la vida emigró a la tierra seca, y, poco después, aparecieron los primeros insectos. Los primeros vertebrados terrestres tienen ahora unos 325 millones de años y 200 los primeros mamíferos.
Filogenia actual del humanos y antropomorfos modernos que integra los datos moleculares y morfológicos. H: hombre, C: Chimpancé, G: Gorila, O: Orangután y G: Gibón. Podemos tener un antepasado común, es posible, pero llegó un momento en el que se divergieron en dos ramas distintas, Una fue la nuestra que continuó su evolución imparable.
Los pastos tienen una edad de 24 millones de años y tres millones de años más tarde se separan los caminos evolutivos de los simios y los monos. Ya se han cumplido 20 millones de años desde que la atmósfera terrestre obtuvo su composición moderna. La Antártica se heló hace 15 millones de años y, cuatro millones de años más tarde ya proliferaban los animales de pastoreo.
Se han cumplido 5 millones de años desde que el hombre mono se separó de la familia del chimpancé, y, 3,7 millones de años desde que el hombre-mono caminó erguido, poco después fue el principio de la última serie de glaciaciones.
Reconstrucción de un grupo de Homo Erectus alimentando un fuego
1,8-1,7 millones de años han pasado desde que el Homo-erectus, “el primer hombre verdadero”, vive en China, y, hace ya 600.000 años que surgió el Homo Sapiens. El uso común del fuego se generalizó entre el genero homo hace ahora unos 360.000 años, y hace 150.000 años que podríamos haber contemplado la presencia del mamut lanudo.
Han pasado ya 100.000 años desde que las estrellas adoptaron las formas de las constelaciones modernas reconocibles, y, 40.000 años han pasado desde que nuestra especie inventó el lenguaje complejo y aparecieron los seres humanos modernos. El hombre de Neandertal desapareció hace ya 35.000 años, y, por aquel entonces, aunque algo rústicos, se construyeron los primeros instrumentos musicales que acompañaron a los pueblos desde muy temprano.
El mundo que nos rodea es más complejo de lo que parece, pero al tener y comprender los significados de los conceptos físicos, nos permite redescubrir, inventar e interpretar el funcionamiento de las cosas. Precisamente por ser nuestro entorno como es, nos obliga a tener que tratar de comprenderlo. Nadie puede subsistir en un lugar que no comprende y, cuando se domina y sabemos cómo adaptarnos al medio, la vida, además de más sencilla, también será más duradera.
Claro que, el mundo que nos rodea parece ser un lugar complicado (siempre nos resultará complicado lo que no sabemos entender). Aunque hay algunas verdades sencillas que parecen eternas: El Sol que se pone y se levanta siempre por los mismos lugares, la noche y el día que nos trae cuando se esconde y cuando aparece, y, nuestras vidas, que a pesar de las modernas tecnologías, siguen estando todavía, con demasiada frecuencia, a merced de los complicados procesos naturales que producen cambios drásticos y repentinos que no podemos ni predecir.
Hemos llegado a conseguir que, a mediados del siglo XX, los avances de nuestro saber estuvieran situados en un nivel espectacular y le hubieran dado una respuesta consistente a todas las cosas sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras que el descubrimiento de la estructura del ADN y el modo en que este se copia de una generación a otra hizo que la propia vida, así como la evolución parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad en del mundo a nivel humano -al nivel de la vida-. La cuestión más interesante de todas, la que plantea que la vida puede haber surgido a partir de la materia “inerte” ha seguido sin tener una respuesta.
¿Dónde empieza y termina la realidad?
No debemos extrañarnos que sea precisamente a escala humana donde se den las características más complejas del Universo, las que se resisten más a rendirse ante los métodos tradicionales de la investigación científica. Realmente, es posible que seamos lo más complejo que hay en el Universo (salvo posibles y similares formas de vida que, de cuya existencia no tenemos una certeza y sí una sospecha). La razón es que a escala más reducida, entidades tales como los átomos se comportan individualmente de un modo relativamente sencillo en sus interacciones mutuas, y que las cosas complicadas e interesantes surgen, cuando se unen muchos átomos de maneras complicadas e interesantes, para formar organismos tales como los seres humanos u otros seres vivos.
Un átomo, o incluso una molécula tan simple como la del agua, es algo más sencillo que el ser humano, porque tiene poca estructura interna; una estrella, o el interior de un planeta, es también algo más sencillo que un ser humano porque la gravedad aplasta cualquier estructura hasta aniquilarla cuando se pierde el equilibrio de las fuerzas que intervienen en la estabilidad. Esta es la razón por la que la Ciencia puede decir más sobre el comportamiento de los átomos y el funcionamiento interno de las estrellas y los mundos que, del propio comportamiento de las personas y sobre el modo en el que se comportan.
Lo cierto es que el Agua, es esencial para la vida. Nosotros, como el planeta Tierra, tenemos un mayor porcentaje de agua. Si el planeta Tierra no hubiera caído en la zona habitable del Sol, nunca hubiera surgido el agua líquida ni tampoco la vida tal como la conocemos. Agua + Carbono = Vida.
Al menos de momento, no resulta posible saber el por qué nuestros pensamientos eligen los caminos que nos conducen a maneras de comportamiento que no siempre sabemos explicar. Sí, pocas dudas nos pueden caber ya, somos sistemas complejos (muy, muy complejos diría yo) que, habiendo brotado a la existencia a partir de los mecanismos y ritmos que imponen las fuerzas y constantes del Universo, podemos ser la muestra “perfecta” de una evolución bioquímica que se ha dado en la materia “inerte” bajo una serie de condiciones que, por otra parte, hacen imparable el surgir de la vida y de su evolución.
Siempre me pasa igual, comienzo hablando de una cosa y termino comentando sobre otra. Claro que, como todo está relacionado, los caminos que nuestra mente recorren, pasan muchas veces por el mismo lugar y, entre ellos, se entrecruzan cuando tratamos de organizar de un sitio a otro que nos hace pasar por los átomos, las estrellas y las Nebulosas, los planetas y…¡La Vida!
Además, todo es Universo… ¡También nosotros!
Emilio Silvera Vázquez