miércoles, 08 de diciembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los secretos del Universo y, de la vida.

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Habiendo repasado uno de los trabajos que se pusieron uno de estos días, me ha parecido que no está completo y aquí lo arreglo y lo dejo de manera más amplia para que todos puedan entender el mensaje.

 Le università più importanti sul web: la classifica - Unicafe Blog
                                         Vista de Cambridge
Cambridge, cuyo miembro del parlamento universitario, el reverendo Henry Lucas, entrego un testamento con donativos, para una nueva cátedra de matemáticas en 1663. El primer ocupante de la cátedra fue el profesor Isaac Barrow, pero en 1669, la cátedra lucaciana como así se ha llamado desde entonces, recibió como Profesor nada menos que a Sir Isaac Newton.
Universidad Nacional de Colombia Observatorio Astronómico de Manizales
Trescientos once (311) años después, en 1980, la cátedra lucaciana, recibe a otro físico teórico, conocido por sus investigaciones en el tema de los agujeros negros: Dr. Stephen Hawkins.
Quien no ha escuchado de los famosos agujeros negros, de la antimateria y de los agujeros de gusano, pues nada menos que Stephen Hawkins nos ha contado los secretos del universo, atado a su silla electromecánica y a un aparato sintetizador electrónico que le permite comunicarse de manera artificial (sufrió de una operación de traqueotomía).
Veinte y nueve (29) años después, la Cátedra Lucaciana pasa al Profesor Dr. Michel Boris Green, cuyos trabajos en Teoría de las Cuerdas, intenta la continuación de la obra del profesor Albert Einstein y de sus seguidores.
El Dr. Green nació en 1946 y su trabajo es excepcional en Teoría de las Cuerdas, habiendo trabajado en las condiciones de frontera de Dirichlet y con ello ayudó a la confirmación teórica de los objetos denominados D-Branas, parte de la teoría de las cuerdas.
All Souls College, Oxford University, England (by penwren). | Castles in  england, All souls, Oxford university englandCambridge | Cambridge england, England, Places to go
En el interior del bello entorno universitario, existe una Cátedra, con su correspondiente sillón que ahora ocupa Hawking pero que, antes que él, ocupó el gran Físico y matemático Paul Dirac.

http://www.dirac.ch/images/diracpaul_conf.jpg

Paul Dirac ocupó la cátedra lucaciana de matemáticas en Cambridge durante parte del tiempo en que Eddington estuvo viviendo en los observatorios. Las historias que se cuentan de Paul Dirac dejan muy claro que era un tipo con un carácter peculiar, y ejercía de matemático las 24 h. del día. Se pudo saber que su inesperada incursión en los grandes números fue escrita durante su viaje de novios (Luna de miel), en febrero de 1.937.

Aunque no muy convencido de las explicaciones de Eddington, escribió que era muy poco probable que números adimensionales muy grandes, que toman valores como 1040 y 1080, sean accidentes independientes y no relacionados: debe existir alguna fórmula matemática no descubierta que liga las cantidades implicadas. Deben ser consecuencias más que coincidencias.

November 13, 1995 – day of the inauguration of a
commemorative plaque for Paul Dirac,
close to the one for Isaac Newton,
in Westminster Abbey in London

Aquí teneis la hipótesis de los grandes números según Dirac:

“Dos cualesquiera de los números adimensionales muy grandes que ocurren en la naturaleza están conectados por una sencilla relación matemática, en la que los coeficientes son del orden de la unidad”.

Los grandes números de que se valía Dirac para formular esta atrevida hipótesis salían del trabajo de Eddington y eran tres: Leer más

Esos puntitos brillantes del cielo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

LAS ESTRELLAS:

Identifican el mayor cúmulo de estrellas supermasivas conocido -  Republica.com

Que por cierto, son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

Un estallido estelar revela el mecanismo de formación de las estrellas  masivas

Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Debajo tenéis una estrella super-masiva que ha expulsado gases formando una nebulosa para evitar su muerte. Estaba congestionada y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.

Leer más

Los Misterios de la Tierra IV

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Encuentros espaciales

Naturaleza.gif (500×375) | Scenery pictures, Landscape paintings, Landscape

En nuestro Universo todo es energía, desde el vuelo del colibrí hasta la rotación de los planetas, la luminosidad de las estrellas, el frenético giro de los púlsares que como faros cósmicos lanzan sus rayos luminosos al Espacio interestelar, o, un simple embarazo. La Energía siempre está presente.

Mid-Ocean Spreading Ridge | Blog'e Bu Utami

La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas –, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.

Revisión: Polvo cósmico: origen, especie, composición. Polvo cósmico y  bolas extrañas en capas de tierra antiguaQué es el elusivo polvo cósmico que detectaron por primera vez en los  tejados de París, Berlín y Oslo? - BBC News Mundo

El polvo cósmico en la Tierra se encuentra con mayor frecuencia en ciertas capas del fondo del océano, capas de hielo de las regiones polares del planeta, depósitos de turba, lugares inaccesibles del desierto y cráteres de meteoritos. El tamaño de esta sustancia es inferior a 200 nm, lo que hace que su estudio sea problemático.

Las corrientes de polvo cósmico atacan constantemente la superficie de la Tierra.

Qué cantidad de meteoritos cae en nuestro planeta cada año? | HISPANTV

En un estudio publicado recientemente en la revista Geology, los expertos británicos revelaron que alrededor de 16 toneladas de meteoritos caen cada año a la Tierra en pequeños fragmentos de más de 50 gramos.

Meteoritos: formación, composición, tipos y características

La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.

Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.

Un crater en la Ruta 66

En Arizona,  entre las ciudades de Winslow  y  Winona, muy cerca  de  la vieja Ruta 66,  a 35 km al este de Flagstaff se encuentra el Barringer Cráter, tal vez el cráter más famoso causado por un meteorito.

El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas. Sin embargo, no es seguro y sí discutible que un impacto parecido fuese la causa de la extinción masiva del cretácico, siendo lo más probable, si tenemos en cuenta el periodo relativamente largo en que se produjo, que se podría explicar por la intensa actividad volcánica de aquel tiempo.

Leer más

Hay que seguir buscando para saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Karl Jaspers: “Vivimos en la imposibilidad de encontrar una forma adecuada  de vida” | El vuelo de la lechuza

“Karl Jaspers, psiquiatra y filósofo existencialista alemán, aplicó su reflexión al drama humano y a sus problemas principales: la comunicación, el sufrimiento, la culpabilidad o la muerte, y fue uno de los pensadores que conformaron el existencialismo y la fenomenología.”

El filósofo existencialista Kart Jaspers se sintió provocado por los escritos de Eddington a considerar el significado de nuestra existencia en un lugar particular en una época particular de la historia cósmica.

ORIGEN Y META DE LA HISTORIA de KARL JASPERS | Casa del LibroKarl Jaspers: origen y meta de la Historia | Libertad | Georg Wilhelm  Friedrich Hegel

En su influyente libro “Origen y meta de la historia”, escrito en 1.949, poco después de la muerte de Eddington, pregunta:

La humanidad del Planeta Tierra vista por un extraterrestre | viaje hacia  sí mismoLa humanidad y el planeta Tierra, Ecología Imagen Vector de stock - Alamy

“¿Por qué vivimos y desarrollamos nuestra historia en este punto concreto del espacio infinito, en un minúsculo grano de polvo en el universo, un rincón marginal? ¿Por qué precisamente ahora en el tiempo infinito? Estas son cuestiones cuya insolubilidad nos hace conscientes de un enigma.

Ha llegado el ser humano al límite del conocimiento?Agrupación galáctica - Wikipedia, la enciclopedia libreHubble capta una colección de galaxias y cúmulos de estrellas que arrojan  luz sobre la materia oscuraLa vía láctea: Grupos y cúmulos de galaxiasEvolución de Galaxias en Cúmulos | Instituto de Astrofísica de Canarias •  IAC

¿estamos solos ante tanta inmensidad?

El hecho fundamental de nuestra existencia es que parecemos estar aislados en el cosmos. Somos los únicos seres racionales capaces de expresarse en el silencio del universo. En la historia del Sistema Solar se ha dado en la Tierra, durante un periodo de tiempo infinitesimalmente corto, una situación en la que los seres humanos evolucionan y adquieren conocimientos que incluye el ser conscientes de sí mismos y de existir… Dentro del Cosmos ilimitado, en un minúsculo planeta, durante un minúsculo periodo de tiempo de unos pocos milenios, algo ha tenido lugar como si este planeta fura lo que abarca todo, lo auténtico. Este es el lugar, una mota de polvo en la inmensidad del cosmos, en el que el ser ha despertado con el hombre”.

Leer más

Cuando surgió la luz y todo se hizo transparente

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Captan resplandor que ocurrió durante la 'adolescencia' del universo - VIX

El contertulio Kike, en uno de sus muy acertados comentarios, nos hablaba de la enorme importancia que la luz tenía en nuestro Universo, y, desde luego, no le faltaba razón para creerlo. La luz en sus múltiples formas, es un ingrediente primordial en el Cosmos y, allí donde esté presente la materia estará también la luz, toda vez que, las dos, son la misma cosa. Pero hablemos ahora de radiación.

La radiación cósmica no te afecta a ti ni a tu smartphone - QoreRadiacion cosmica by vpatino5529 on emaze

La radiación cósmica de fondo, llamada también «radiación anti-rradiante», nos revela el estado de la antigua materia cósmica. Extremadamente densa y caliente, se presenta como un fluido sin estructura. A través de ella, nos volvemos a encontrar con la imagen caótica que salta en nuestras mentes como los momentos inmediatos después del gran disparo. Encontramos allí la imagen del caos inicial de las mitologías de origen; pero con una diferencia importante. En lugar de la fría oscuridad, ahora reina en el mundo la incandescencia fulgurante; de ella nos queda hoy sólo un pálido rumor, enfriado por quince mil millones de años de expansión.

La misión Planck y la radiación cósmica de fondo. – Nuestro universo y sus  enigmas.

El tipo de radiación como la cósmica de fondo, surge en cualquier sistema de partículas subatómicas que colisionen entre sí a grandes velocidades, como habría sido el caso de un escenario de altísimas temperaturas de un universo que inicia sus primeros pasos. En la actualidad, de manera aislada y en pequeñas cantidades, se siguen produciendo en el cosmos radiaciones semejantes a la cósmica de fondo o antirradiante; sin embargo, el universo está ahora demasiado frío como para producir radiaciones de magnitudes capaces de llenar todo el espacio.

Tema 6. Energía Térmica. Actividades.Crean unas gafas inteligentes que detectan síntomas del coronavirusTema 6. Energía Térmica

Los cuerpos cálidos, recordémoslo, irradian. Se llama «luz térmica» a la radiación que se desprende. Esta tiene una firma específica. Se la identifica descomponiéndola, como se analiza la luz del Sol a través de un prisma o de una nube de lluvia. En otras palabras, la «luz térmica» puede identificarse fácilmente por su espectro universal de colores, es decir, por la cantidad de energía en cada longitud de onda. Su «arco iris» nos permite reconocerla con seguridad. Sin embargo, existe un parámetro que puede caracterizar de manera singular la radiación cósmica de fondo: la temperatura de la radiación. Según los cálculos teóricos que arrojan nuestros programas computacionales, la radiación cósmica de fondo o antirradiante primigenia debió haberse creado de manera uniforme a través del espacio en los inicios del universo y habría continuado rebotando en partículas subatómicas hasta que el universo alcanzó una edad de aproximadamente de unos trescientos mil años, cuando los electrones y los núcleos atómicos se combinaron para formar átomos. Después, la radiación habría viajado a sus anchas por el espacio, siendo detectada en la actualidad con una longitud de onda dominante, que corresponde a las ondas radioeléctricas y con una temperatura cercana a los tres grados sobre el cero absoluto: exactamente 2,736 grados absolutos (2,736° K). Gamow, en 1948, la había estimado en 6° K.

Leer más