viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Físicos y Cosmólogos: Buscando conocer el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

A finales de los años 70, los físicos de partículas decidieron acudir a los seminarios de cosmología para escuchar los que los cosmólogos tenían que decir sobre las galaxias y los quásar y, los cosmólogos (para no ser menor), alquilaron máquinas del CERN y el FERMILAB para trabajar en física de de altas energías en instalaciones subterráneas desde donde no se podían ver las estrellas.

 

http://circuitoaleph.files.wordpress.com/2012/07/higgs_boson.jpeg

 

Los experimentos que se producen en tan descomunales máquinas, llevan sus resultados hasta las pantallas de los ordenadores provistos de programas bien elaborados que recogen todos y cada uno de los sucesos del acontecimiento allí ocurrido cuando dos haces de muones, por ejemplo, chocan lanzados en direcciones opuestas a velocidades cercanas a la de la luz, y, en el choque, las partículas dan lugar a otras más elementales que están ocultas en el corazón de la materia y, con esta fórmula de altas energías, pueden salir a la luz para que las podamos conocer.

 

 

Colisiones protón-protón en el LHC

 

“La Física de partículas elementales y el estudio del Universo primitivo, las dos ramas fundamentales de la ciencia de la Naturaleza, se habían fundido esencialmente.” Declaró Gell-Mann, cuando físicos y cosmólogos unieron sus conocimientos para saber sobre el todo desde lo puy pequño hasta lo muy grande: El átomo y la Galaxia.

 

Encierran y tienen tantos secretos las galaxias que, existen multitud de familias, de formas y colores, y, todas ellas, son portadoras de la esencia del Universo, las galaxias, son retazos del Universo en las que están presentes todos los elementos y objetos que son son, también allí residen las fuerzas y las constantes y, para que no falte de nada, podríamos suponer que también, está la vida presente.

En encuentra que buscaron físicos y cosmólogos fue el Big Bang. Loa físicos habían identificaron simetrías en la Naturaleza que hoy están rotas pero que estuvieron intactas en el entorno de las inmensas energías, en el entorno de aquellos primeros momentos en los que se cree nació el universo. Los cosmólogos informaron de que el universo estuvo entonces en tal estado de alta energía, durante las etapas iniciales del Big Bang. Unidas ambas cosas, aparece el cuadro de un universo perfectamente simétrico y cuyas simetrías se quebraron a medida que se expandió y se enfrió, creando las partículas de materia y energía que encontramos hoy a nuestro alrededor y estampándoles las pruebas de su genealogía.

 

                                         File:Spontaneous symmetry breaking.jpg

Gráfica de la ruptura de simetría espontánea de la función

En el modelo estándar,  la ruptura espontánea de simetría se complementa por el uso del bosón de Hihhs, que es responsable de las masas de los bosones W y Z.  Todo esto puede verse de forma más técnica en la interacción de Yucawa donde se muestra cómo obtienen masa los fermiones  mediante la ruptura de simetría. Este mecanismo se aplica al caso de una ruptura de simetría gauge local local.

 

El toro es un ejemplo de grupo de Lie homeomorfo a \scriptstyle S^1\times S^1.

En física la ruptura espontánea de la simetría ocurre cuando un sistema definido por una lagrangiana simétrica respecto a un grupo de simetría  cae en un estado vacío que no es simétrico.  Cuando eso sucede el sistema no se comporta más de forma simétrica.

El grupo de simetría puede ser discreto como el grupo espacial  de un cristal, o continuo como un grupo de Lie,  como la simetría rotacional del espacio. Sin embargo, si el sistema solo tiene una dimensión espacial entonces solo las simetrías discretas pueden romperse en un estado vacío de la teoría cuántica, aunque también una solución clásica puede romper una simetría continua.

La ruptura de la simetría conlleva la aparición de nuevas partículas (asociados a nuevos términos de masas en el nuevo lagrangiano como los bosones de Nambu-Goldstone  o los bosones de Higss) y la aparición de términos de masas de partículas ya existentes en el lagrangiano. Claro que la teoría electrodébil se describió por Steven Weinberg unificada en términos de su relación con el universo primitivo.

 

 

Lo que resulta tan especial en la Teoría electrodébil  es que las partículas (portadoras de la fuerza) forman una familia estrechamente unida, con cuatro miembros: la W+, la W , la Z neutra, y el cuarto miembro es nuestro viejo amigo el Fotón, portador del electromagnetismo. Son todas hermanas, estrechamente relacionadas por el principio de simetría que nos dice que son, todas las misma cosa pero, que la simetría se ha roto. La simetría está allí, en las ecuaciones subyacentes de la teoríam, pero no es evidente en las partículas mismas. Por eso las W y la Z son mucho más pesadas que el fotón.

 

El universo temprano pudo tener más galaxias que las observadas

                           El Universo temprano

Hubo un tiempo, en el universo temprano, en que la temperatura estaba por encima de algunos cientos de veces de la masa del protón, cuando la simetría aún no se había roto, y la fuerza débil y la electromagnética, no sólo eran la misma matemáticamente, sino realmente la misma. Un físico que hubiera podido estar allí por aquel entonces, lo que no es fácil de imaginar, no habría contemplado ninguna diferencia real entre las fuerzas producidas por el intercambio de estas cuatro partículas: las W, la Z y el Fotón.

 

                                         

De la misma manera, aunque menos clara, las nacientes teorías ee la supersimetría conjeturan que las cuatro fuerzas tal vez estaban ligadas por una simetría que se manifestaba en aquellos niveles de energías aún mayores que caracterizaban al universo incluso ya antes del Big Bang.

La introducción de un eje de tiempo histórico en la cosmología y la física de partículas, benefició a ambos campos. Los físicos proporcionaron a los cosmólogos una serie de herramientas útiles para saber como se desarrolló el universo. Evidentemente, el Big Bang no fue la muralla de fuego de la que se burló Hoyle, sino un ámbito de sucesos de altas energías que muy posiblemente pueden ser comprensibles en términos de la teoría de campo relativista y cuántica.

 

 

En busca de una teoría unificada | UNIFY Project | Results in brief | FP7 | CORDIS | European Commission

 

La cosmología por su parte, le dio un tinte de realidad histórica a las teorías unificadas. Aunque ningún Acelerador concebible podría alcanzar las titánicas energías supuestas por las grandes teorías unificadas y la supersimetría, esas exóticas ideas aún pueden ser puestas a prueba, investigando su las partículas constituyentes del universo actual son compatibles con el tipo de historia primitiva que implican las teorías.

Las partículas elementales aparentemente proporcionan la clave de algunos de los misterios fundamentales de la cosmología temprana… y, resulta que la cosmología nos brinda una especie de terreno de prueba para alguna de las ideas de la física de partículas elementales.”

 

 

A pesar de todo, de lo mucho que hemos avanzado y de los descubrimientos ciertos que se han podido conquistar y que están debidamente contrastados una y mul veces para estar seguros de que, todo eso es así. A pesar de ello, digo, no creo que aún sepamos, a ciencia cierta, lo que las fuerzas son, y, nos quedan algunos flecos que añadir a “ese traje” para que, la niña (en este caso la Naturaleza), se nos pueda mostrar con toda su belleza y esplendor.

¿Qué son las fuerzas?

 

 

Sí, más o menos, aunque con ciertas carencias y faltas de completitud, podemos dar una idea de lo que las fuerzas son y, para andar por casa, podría ser una explicación suficiente pero, si queremos dar un paseo más largo, y llegar hasta los confirnes de la Galaxia, entonces, no podemos confiar en esta exigua explicación a la que, como antes decía, le faltan esos flecos que la adornan y completan y las acercarían a nuestra total comprensión.

 

 

Sabemos del nacimiento de las estrellas, la acumulación de estas en galaxias, que a la vez se agrupan en cúmulos y por si fuera poco,  esparciéndose en forma uniforme mientras el Universo sigue  y sigue expandiéndose. La formación de nebulosas en todas partes, de ellas las nacientes estrellas, blancas, azules, rojas y amarillas, y a su alrededor la formación de planetas. Todo un ciclo que se repite y se repite por miles de millones de años, entregándonos un formato claro y que podemos aventurarnos a predecir sin temor a fallar y, sabemos que, todo eso es posible gracias a que, las cuatro fuerzas fundamentales del universo están presentes y, el ritmo que imponen, hacen posible que las cosas sean tal como las podemos contemplar.

 

 

Quarks que se unen para formar nucleones, estos que conforman los núcleos, la llegada de los electrones atraídos por la carga eléctrica positiva de los núcleos hacen que se formen los átomos del universo que, unidos forman moléculas que, a su vez, se unen para formar cuerpos como las estrellas y los mundos que las rodean, grupos de estrellas que dan lugar a enormes galaxias y estas, reunidas, forman cúmulos que son las estructuras más grandes del universo y, todo ello, es posible gracias a esas fuerzas y a esas “insignificantes” partículas que conforman la materia.

         Descubren una de las estructuras más grandes del universo: el Muro del Polo Sur

 

Ahí los tenéis y aunque pueda parecer sencillo, el lidiar con estas tres familias de partículas que son, en realidad las que conforman todo lo que existe en el mundo (entendiéndose por el mundo el universo entero), no es fácil y de ellas, surgen muchas implicaciones, algunas que no hemos podido llegar a entender aunque, en honor a la verdad tendremos que decir que, en lo más básico, podemos formular hipótesis y teorías que las implican y que están acordes con la realidad observada en el laboratorio experimental. Sin embargo, muchos son, todavía, los secretos que nos esconden y al que nuestro intelecto no ha podido llegar aún. Sin embargo, si nos dan más tiempo, todo llegará.

Y, a todo esto, no debemos olvidar que, aparte de las propiedades que dichas partículas pueden tener de manera individual, todas tienen que convivir con las cuatro fuerzas fundamentales de la Naturaleza que, de alguna manera, inciden en ellas de mil maneras diferentes.

No sólo toda la materia del Universo, nosotros también, supeditamos nuestros comportamientos a lo que rige la norma que establen esas cuatro fuerzas fundamentales del Universo que, junto con las constantes universales, hacen de nuestro universo lo que es y permite, que la vida esté presente para observar todas estas maravillas.

 

   

 

Ayer por la tarde (como hago tantas veces por estas fechas), acompañado de mi inseparable esposa, me di una vueltecita por todos estos parajes y, nos paramos en un “chiringuito” situado en un lugar solitario ya en estas fechas en la que los turistas se han marchado. Ella, mu mujer, después de tomarnos un café, se marcha un rato a la playa a tomar un baño y echarse en la fina arena a tomar el Sol, y, mientras tanto, saco mi libreta (que siempre me acompaña) y, mirando ese inmenso horizonte escribo de todo esto que antes habéis podido leer.

Realmente, cuando te acercas a la Naturaleza, las cosas se ven diferentes, te sientes más cerca de lo verdadero y puedes llegar a comprender algunas cosas que, la simbiosis del momento te acercan a la comprensión. Recordé que desede estos mismos lugares desde los que partio Colón para “las Américas” lo que después llamamos el nuevo mundo, y, aunque él creía que se dirigida a Cipango, el país del Sol descrito por Marco Polo, el hombre llegó a ese nuevo Mundo que ahora (a pesar de todo), sentimos hermanos.

¿Cuándo llegaremos a comprender? ¿Entenderemos alguna vez por qué hicimos las cosas? ¿Sabremos perdonar? y, sobre todo, comprenderemos de una vez por todas que todos somos uno… ¡falta mucho para que eso sea una realidad!

emilio silvera

¡Moléculas!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para la mayoría de las personas, la vida pasa sin que se enteren de cuestiones esenciales. El mundo de las moléculas es interesante y, a través de ellas, sabemos (de alguna manera), como funciona el mundo.

El trabajo expuesto hoy versa sobre las moléculas y la información que de ellas obtenemos, y, me parece bien apoyar el mismo con la charla de un científico que amplíe los datos y las explicaciones.

Queremos saberlo todo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

               

En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

H, He, (Li, Be, B) C, N, O… Fe

¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente.

 

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

 

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Porque ¿Qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, y otros parámetros; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas.

 

Cienciaes.com: Vida ¿De qué estamos hechos? | Podcasts de CienciaUAM - Facultad de Ciencias - ¿De qué estamos hechos los seres humanos?

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

 

Según he podido explicar en muchos otros trabajos, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es , lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

 

Atomos del hidrogeno fotografías e imágenes de alta resolución - AlamyHidrocarburo - Wikipedia, la enciclopedia libre

 

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

 

 

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Hablemos un poco de moléculas.

 

⚗️ ¿Qué son los Elementos Transuránicos? ⚗️ [Fácil y Rápido] | QUÍMICA | - YouTube

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

 

Los elementos artificiales

Elementos Transuránicos | Esto y Más

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

 

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones.  Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

 

La forma en que son ocupados los electrones de un átomo en su estado fundamental  ocuparán los niveles de más baja energía posible, de acuerdo con el Principio de exclusión de Pauli. Por tanto, para escribir la configuración electrónica de un elemento, se deben seguir ciertas reglas.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales s, p, d, f, g, h. Este pequeño número nos proporciona una gran diversidad.

 

 

Orbital atómico - Wikipedia, la enciclopedia libre

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también neguentropía.

                                       NEGUENTROPIA | infsistema

 

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas iso-electrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

 

 

Inerte y vivo — Astronoo

                                                                           Inerte y vivo

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetra-valencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor.

 

Cosas que nos gusta conocer : Blog de Emilio Silvera V.BUCM :: BlogQuimia :: Biblioteca Complutense

“Los ladrillos básicos de la vida flotan en el espacio: son moléculas orgánicas, forjadas en el interior de frías y espesas nubes de gas y polvo. Materiales que, gracias a los ciclos vitales de las estrellas, terminan desparramándose por todas partes, “contaminando” el medio interestelar. Y con un poco de suerte, pueden incorporarse a la materia prima que dará origen a nuevos soles y planetas. Durante las últimas décadas, los telescopios y radiotelescopios han detectado la presencia de estas estructuras, basadas en el carbono, en varios rincones de nuestra galaxia.

 

 

Física-química : Blog de Emilio Silvera V.

                  Aquí se han detectado moléculas esenciales para la vida

Sin embargo, también se han descubierto distintas clases de moléculas orgánicas en nuestra vecindad más inmediata: hay montones de cometas, asteroides y satélites del Sistema Solar salpicados por esos compuestos químicos. Son los mismos que, día a día, y sin que nos demos cuenta, “llueven” sobre la Tierra, a bordo de partículas rocosas y meteoritos. Y todo indica que esa lluvia orgánica fue tremendamente más intensa durante la violenta infancia del planeta, hace más de 4000 millones de años. Es más, el primigenio aporte cósmico podría extenderse –vía cometas- incluso al agua, socia inseparable de la biología.”

 

 

Astrónomos detectan una molécula orgánica compleja en el espacio interestelar | Ciencia y tecnología | Cadena SER

                                       Detectan moléculas complejas en el Espacio

“Las primeras pistas sobre la presencia de moléculas orgánicas cósmicas llegaron en 1937, con la detección (mediante espectroscopia) de combinaciones simples de átomos de hidrógeno y carbono en masas gaseosas del medio interestelar. El siguiente hito se hizo esperar, pero valió la pena: a fines de los ´60, y mediante técnicas de radioastronomía, se descubrieron moléculas de agua y amoníaco (NH3). La cosa iba tomando color. Sin embargo, había un problema: la radiación ultravioleta de las estrellas difícilmente permitiría la formación de moléculas más complejas. Por lo tanto, si efectivamente existían, esas moléculas debían forjarse en ambientes protegidos. Y qué mejor que buscarlas en el interior de las densas, opacas y frías nubes de hidrógeno molecular (H2) que se esconden en las grandes nebulosas. Allí, los átomos de oxígeno, carbono, o nitrógeno (forjados en el interior de estrellas que, al morir, los devolvieron al espacio) pueden combinarse tranquilamente con los de hidrógeno, formando un amplio repertorio de moléculas, entre ellas, largas cadenas de hidrocarburos (combinaciones de hidrógeno y carbono), y todo un surtido de nitrilos (formados por carbono y nitrógeno), compuestos que son especialmente importantes desde el punto de vista biológico (ciertos nitrilos, por ejemplo, pueden reaccionar con agua líquida, dando lugar a aminoácidos, los bloques químicos que forman parte de las proteínas y ácidos nucleicos). “

 

Astrónomos encuentran extrañas moléculas de carbono en el espacio – FayerWayer

Acordaos de cuando publiqué  aquella noticia de que Astrónomos de la NASA habían logrado descubrir las esquivas moléculas de carbono en el espacio, conocidas por los especialistas como “Buckyball”.  Las Buckyball son moléculas que tienen la forma de un balón de fútbol y fueron observadas por primera vez en un laboratorio hace ahora cerca de 30 años. Su nombre se debe a que su forma recuerda a las cúpulas geodésicas diseñadas por el arquitecto Buckminster Fuller,  las que se caracterizan por círculos entrelazados en la superficie de una esfera parcial.

Lo dicho, la Naturaleza nunca dejará de asombrarnos.

emilio silvera