viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El placer de Descubrir: Aventurarse por nuevos caminos.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La molécula de agua es polar en virtud principalmente de su geometria angular.

  

 

 

Rho Ophiuchi

 

 

Actualmente, gracias a la Astrofísica y la Astroquímica, sabemos que, además de los rayos cósmicos, los átomos y las moléculas están presentes también en todo el universo, pues sus señales en forma de radiación electromagnética nos llegan desde las más lejanas galaxias hasta el medio interestelar de la nuestra, pasando por atmósferas estelares, por enanas marrones, por discos que rodean las estrellas, por planetas, etc, donde también existen átomos y moléculas con los que pueden interaccionar.
Resultado de imagen de La espectroscopia para saber la química del Universo
                                         La espectroscopia nos dice de qué están hechas las estrellas
La Astroquímica utiliza telescopios, que generalmente son radiotelescopios, que junto con el empleo de la “espectroscopia” hace posible detectar y determinar la naturaleza de las sustancias presentes en el universo. Después de la invención del telescopio, es probablemente la invención del espectroscopio y la ciencia a él ligada, la espectroscopía, uno de los mayores hitos de la historia de la instrumentación astronómica. En 1860 se construyó el primer espectroscopio, instrumento que revolucionó la química y la astronomía y que abrió las puertas a un camino nuevo para entender el Cosmos.
Cuando se calienta un elemento químico, emite luz a frecuencias características, el  “espectro de emisión”, luz que una vez analizada mediante un espectroscopio y convertida en un “espectro”, se transforma en la “huella dactilar” que lo identifica sin el menor equívoco. Asimismo, los elementos pueden absorber a las mismas frecuencias que emiten, dando lugar a los “espectros de absorción”, que son una especie de arco iris al que le faltan los colores correspondientes a las frecuencias absorbidas por la sustancia. Ambos espectros son complementarios.

 

 Los organismos vivos somos sistemas extremadamente complejos, formados por un elevado número de elementos interrelacionados que deben mantener sus características a lo largo del tiempo, de una generación a otra. Esto supone que debe existir algún mecanismo para que cada elemento de los organismos se elabore de acuerdo a un “plan”, a un modelo de organización establecido, y que ese modelo pueda ser transmitido de una célula a sus descendientes. Esta necesidad de los seres vivos nos acerca a la noción de información genética.

 

 

“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma ”.

Marco Aurelio

 

Claro que él, quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, las estaciones, el frío y el calor, el río muerto por la sequía o aquel que, cantarino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad… Y, también, el Hombre y la Mujer. Así ha sido desde que podemos recordar y, así continuará siendo.

Para fugarnos de la tierra

un libro es el mejor bajel;

y se viaja mejor en el poema

que en más brioso corcel.

Whitman

 

 

 

 

“Todo presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.”

Leibniz

 

 

Niels Bohr, citando a Gohete preguntaba: ¿Cuál es el camino? No hay ningún camino. Está claro el mensaje que tal pregunta y tal respuesta nos quiere hacer llegar, el camino, tendremos que hacerlo nosotros mediante la exploración hacia el futuro en el que está lo que deseamos encontrar. Hay que explorar y arriesgarse para tenemos que ir más allá de las regiones habituales y conocidas que nos tienen estancados siempre en el mismo lugar. ¡Arrisguémosno!

Homero nos contó como Ulises de Ítaca se arriesgó a oír el canto de las sirenas amarrado al palo de la vela mayor de su embarcación. Él no que´ria ser atraído por aquellas fuerzas malignas pero quería sentir los efectos de aquella llamada en lugar seguro. Eso nos lleva a pensar que hay un mensaje en el pasaje de Homero: Arriesgarse… ¡Sí! Pero con las precauciones necesarias. Así que, cuidado con los Robots, con los experimentos científicos de todo tipo, y, sobre todo, no debemos creer que lo sabemos todo. Tenemos que ser conscientes de que, el peligro nos acecha por todas partes.

Pero, no cabe duda alguna de que, el acto de exploración modifica la perspectiva del explorador; Ulises, Marco Polo y Colón habían cambiado cuando volvieron a sus lugares de partida . Lo mismo ha sucedido en la investigación científica de los extremos en las escalas, desde la grandiosa extensión del espacio cosmológico hasta el mundo minúsculo y enloquecido de las partículas subatómicas.

 

La galaxia conocida por el nombre de Bella Durmiente

                                     Una bella galaxia espiral de cien mil años-luz de diámetro que podemos comparar con…¡Un átomo! El tema de las medidas es relativo y todo se supedita a su ámbito natural, cada cosa tiene la medida que requiere su funciòn en el Universo, desde un átomo hasta una galaxia.

En ambos “universos” existe una descomunal diferencia en los extremos de las escalas. Sin embargo, la inmensa galaxia de arriba no sería posible sin la existencia de infinitesimal átomo de abajo. ¡Todo lo grande está hecho de cosas pequeñas!

Así que, cuando hacemos esos viajes, irremediablemente nos cambian, y, desde luego, desafían muchas de las concepciones científicas y filosóficas que, hasta ese momento, más valorábamos. Algunas tienen que ser desechadas, como el bagaje que se deja atrás en una larga travesía por el desierto. Otras tienen que ser modificadas y reconstruidas hasta quedar casi irreconocibles, ya que, lo que hemos podido ver en esos viajes, lo que hemos descubierto, nos han cambiado por completo el concepto y la perspectiva que del mundo teníamos, conocemos y sabemos.

La exploración del ámbito de las galaxias extendió el alcance de la visión humana en un factor de 1026veces mayor que la escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquianismo en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.

La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a 10-15 de la escala humana, y también significó una revolución. fue la Física cuántica que, transformó todo lo que abordó.

La teoría cuántica nació en 1900, Max Planck comprendió que sólo podía explicar lo que llamaba la curva del cuerpo negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de energía es continua, y lo reemplazó por la hipotesis sin precedentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades.

1) Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción. 2) En la gráfica se representa la intensidad de la radiación emitida por el cuerpo negro en función de la longitud de onda a diferentes temperaturas. El máximo de la curva aumenta al ir hacia menores longitudes de onda (Ley de Wien). Se compara con el modelo clásico de Rayleigh-Jeans a altas temperaturas (5000 K) comprobándose la llamada catástrofe del ultravioleta

La constante de Planck es una constante física que desempeña un papel central en la teoría de la mecánica cuántica y recibe su nombre de su descubridor, Max Plancc, uno de los padres de dicha teoría. Denotada como h, es la constante que frecuentemente se define como el cuanto elemental de acción.Planck la denominaría precisamente «cuanto de acción»

Fue inicialmente propuesta como la constante de proporcionalidad entre la energía E de un fotón y la frecuencia f de su onda electromagnética asociada. Esta relación entre la energía y la frecuencia se denomina «relación de Planck»:

E = h.f \,.

Dado que la frecuencia f, la longitud de onda \<a href=lambda, y la velocidad de la luz c cumplen \<a href=lambda . f = c ” , la relación de Planck se puede expresar como:

E = \frac{hc}{\<a href=lambda}.

Otra ecuación fundamental en la que interviene la constante de Planck es la que relaciona el momento lineal p de una partícula con la longitud de onda de De Broglie λ de la misma:

\<a href=lambda = \frac{h}{p}.” 

En aplicaciones donde la frecuencia viene expresada en términos de radianes por segundo o frecuencia angular, es útil incluir el factor 1/2 dentro de la constante de Planck. La constante resultante, «constante de Planck reducida» o «constante de Dirac», se expresa como ħ (“h barra“):

\hbar = \frac{h}{2 \pi}.

De esta forma la energía de un fotón con frecuencia angular \<a href=omega” />, donde \<a href=omega = 2 \pi . f” />, se podrá expresar como

E = \hbar \<a href=omega.” 

Por otro lado, la constante de Planck reducida es el cuanto del momento angular en mecánica cuántica.

Ley de Planck a diferentes temperaturas en función de la frecuencia para la radiación del cuerpo negro

Planck definió a “sus” cuantos en términos del “cuanto de acción”, simbolizado por la letra h que ahora, se ha convertido en el símbolo de una constante,  la constante de Planck, h.  Planck no era ningún revolucionario – a la edad de cuarenta y dos años era un viejo, juzgado por patrones de la ciencia matemática y, además, un pilar de la elevada cultura alemana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena de la física clásica a la que había dedicado la mayor parte de su carrera. “Cuanto mayores sean las dificultades -escribió-…tanto más importante será finalmente para la ampliación y profundización de nuestros conocimientos en la física.”

Sus palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de , la física cuántica pronto se expandió practicamente a todo el ámbito de la física, y el cuanto de acción de Planck, h llegó a ser considerado una constante de la Naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.

                 Dos buenos amigos, dos genios

Max Planck es uno de los científicos a los que más veces se le han reconocido sus méritos y, su , está por todas partes: La Constante de Planc, las Unidades de Planck, El cuanto de Planck, la Radiación de Planck, El Teimpo de Planck, la masa de Planck, la Energía de Plancik, la Longitud de Planck… ¡Todo merecido!

Confinados en nuestro pequeño mundo, una mota de polvo en la inmensidad de una Galaxia grandiosa que, a su vez, forma parte de un universo “infinito”, hemos podido darnos traza para poder saber, a pesar de las enormes distancias, sobre lo que existe en regiones remotas del Universo.  Un Universo formado por Supercúmulos de galaxias que formadas en grupos conforman la materia visible, y, dentro de cada una de esas galaxias, como si de universos se tratara, se reproducen todos los objetos y fenómenos que en el Universo son.

The Scale of the Universe 2 – HTwins.net

Sigamos con la escala del Universo conocido y hagamos un pequeño esquema que lo refleje: El Universo Observable, la mayor escala que abarca más de 100 mil trillones de kilómetros (según nos cuenta Timothy Ferris:

Radio en metros                                                                   Objetos característicos

1026                                                                                                 Universo observable

1024                                                                                                 Supercúmulos de Galaxias

1023                                                                                                 Cúmulos de Galaxias

1022                                                                                                 Grupo de Galaxias (por ejemplo el Grupo Local)

1021                                                                                                  Galaxia La Vía Láctea

Nube Molecular gigante muy masiva, de gas y polvo compuesta fundamentalmente de moléculas con diámetro típico de 100 a.l. Tienen masa de diez millones de masas solares (moléculas de Hidrógeno (H2) el 73% en masa), átomos de Helio (He, 25%), partículas de polvo (1%), Hidrógeno atómico neutro (H I, del 1%) y, un rico coctel de moléculas interestelares. En nuestra galaxia existen al menos unas 3000 Nubes Moleculares Gigantes, estando las más masivas situadas cerca de la radiofuente Sagitario B en el centro Galáctico.

1018                                                                                                  Nebulosas Gigantes, Nubes Moleculares

1012                                                                                                                                                   Sistema Solar

1011                                                                                                  Atmósfera externa de las Gigantes rojas

Aunque a una Unidad Astronómica de distancia (150 millones de Kilómetros de la Tierra), el Sol caliente el planeta y nos da la vida

109                                                                                                  El Sol

108                                                                                                  Planetas Gigantes Júpiter

107                                                                                                  Estrellas enanas,  planetas similares a la Tierra

105                                                                                                  Asteroides, núcleos de cometas

104                                                                                                  Estrellas de Neutrones

                                Los seres humanos son parte del Universo que queremos descubrir.

1                                                                                                      Seres Humanos

10-2                                                                                                Molécula de ADN (eje largo)

10-5                                                                                                Células vivas

                                 Células vivas

10-9                                                                                                Molécula de ADN (eje corto)

10-10                                                                                              Átomos

10-14                                                                                             Núcleos de átomos pesados

10-15                                                                                             Protones y Neutrones

10-35                                                                                            Longitud de Planck: cuanto de espacio; radio de partículas sin dimensiones = la cuerda.

Es la escala de longitud a la que la descripción clásica de la Gravedad cesa de ser válida y debe ser tenida en la mecánica cuántica. Está dada por la ecuación de arriba, donde G es la constante gravitacional, ħ es la constante de Planck racionalizada y c es la velocidad de la luz. El valor de la longitud de Planck es del orden de 10-35 m (veinte órdenes de magnitud menorque el tamaño del protón 10-15 m).

Me llama la atención y me fascina la indeterminación que está inmersa en el mundo cuántico. La indeterminación cuántica no depende del aparato experimental empleado investigar el mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra.

Por muy avanzados que pudieran estar, ellos también estarían supeditados al Principio de Incertidumbre o Indeterminación cuántica, y, como nosotros, cuando trataran de encontrar (sea cual fuese las matemáticas o sistemas que emplearan para hallarlo) el resultado de la constante de estructura fina, la respuesta sería la misma: 137, puro y adimensional.

Todo esto nos ha llevado a la más firme convicción definir la visión del mundo de la física que nos revelaba que no sólo la materia y la energía sino que también el conocimiento están cuantizados. Cuando un fotón choca con un átomo, haciendo saltar un electrón a una órbita más elevada, el electrón se mueve de la órbita inferior a la superior instantáneamente, sin tener que atravesar el espacio intermedio. Los mismos radios orbitales están cuantizados, y el electrón simplemente deja de existir en un punto para aparecer simultáneamente en otro. Este es el famoso “salto cuántico” que tanto desconcierta, y no es un mero problema filosófico, es una realidad que, de , no hemos llegado a comprender.

                                                   No, esto no es un salto cuántico. Simplemente le tocó la Lotería

Pero, ¿quién sabe? Quizás un día lejano aún en el tiempo, cuando descubramos el secreto que salto cuántico nos esconde, poderemos aprovechar la misma técnica que emplea la Naturaleza con los electrones hacer posible que se transporten de un lugar a otro sin tener que recorrer las distancias que separan ambos destinos.

                               Estaría bien poder trasladarse las estrellas por ese medio

Bueno, pongamos los pies en el suelo, volvamos a la realidad. La revolución cuántica ha sido penosa, pero podemos agradecerle que, nos haya librado de muchas ilusiones que afectaban a la visión clásica del mundo. Una de ellas era que el hombre es un ser aparte, separado de la naturaleza a la que en realidad, no es que esté supeditado, sino que es, ella. ¡Somos Naturaleza!

Está claro, como nos decía Immanuel Kant que:

La infinitud de la creación es suficientemente grande como para que un mundo, o una Vía Láctea de mundos, parezca, en comparación con ella, lo que una flor o un insecto en comparación con la Tierra.”

 

 

Algún día podríamos desaparecer en una especie de plasma como ese de la imagen y salir al “otro lado” que bien (¡Por qué no) podría ser otra galaxias lejana. Creo que la imaginación se nos ha dado para algo y, si todo lo que podemos imaginar se realizar, la conclusión lógica es que sólo necesitamos ¡Tiempo!

Sí, amigos míos, la Naturaleza vive en constante movimiento, y, nosotros, que formamos parte de ella…También vivimos en una constante evolución física y del conocimiento. Tenemos que llegar a conocerla.

 

 

Existen muchos mundos con dos soles, ¿cómo será vivir en uno de ellos?

 

En tiempos y lugares totalmente inciertos,

Los átomos dejaron su camino celeste,

Y mediante abrazos fortuítos,

Engendraron todo lo que existe.

Maxwell

 

Doy las gracias a Timothy Ferris de cuyo libro, La Aventura del Universo, he podido obtener bellos pasajes que aquí, quedan incluídos.

emilio silvera

Creemos cosas que…, ¿serán ciertas?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Diagrama de la trayectoria del sistema de Lorenz para los valores r = 28, σ = 10, b = 8/3.

Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras disciplinas científicas que trata ciertos tipos de sistemas dinámicos  muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro, imposibilitando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinísticos, es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.

Foto

Montaje experimental. Foto: HZB, D.J.P. Morris y A. Tennant. .

Hubo un tiempo, el el Universo muy temprano, en el que la temperatura estaba encima de algunos cientos de veces la masa del protón, cuando la simetría aún no se había roto, y la fuerza débil y electromagnética no sólo eran la misma matemáticamente, sino realmente la misma. Un físico que hibiera podido estar allí presente, en aquellos primeros momento, no habría podido observar ninguna diferencia real entre las fuerzas producidas por el intercambio de estas cuatro partículas: las W, la Z y el Fotón.

Muchas son las sorpresas que nos podríamos encontrar en el universo primitivo, hasta la presencia de agua ha sido detectada mediante la técnica de lentes gravitacionales en la galaxia denominada MG J0414+0534 que está situada en un tiempo en el que el Universo sólo tenía dos mil quinientos millones de años de edad. El equipo investigador pudo detectar el vapor de agua presente en los chorros de emisión de un agujero negro supermasivo. Este tipo de objeto es bastante raro en el universo actual. El agua fue observada en forma de mases, una emisión de radiación de microondas provocada por las moléculas (en este caso de agua) al ser amplificadas por una onda o un campo magnético.

Siguiendo con el trabajo, dejemos la noticia de más arriba (sólo insertada por su curiosidad y rareza), y, sigamos con lo que hemos contado repetidas veces aquí de las fuerzas y la simetría antes de que, el universo se expandiera y enfriara para que, de una sóla, surgieran las cuatro fuerzas que ahora conocemos: Gravedad que campa sola y no quiere juntarse con las otras fuerzas del Modelo Estándar, el electromagnetismo y las nucleares débil y fuerte.

mundo brana

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil. Seguramente ese será el motivo por el cual, encontrar  al Bosón mediador de la fuerza, el Gravitón, resulta tan difícil.

De manera similar, aunque menos clara, las teorías de supersimetrías conjeturaban que las cuatro fuerzas tal vez estaban ligadas por una simitría que se manifestaba en los niveles de energía aún mayores que caracterizaban al universo ya antes del big bang. La intodución de un eje histórico en la cosmolo´gia y la física de particulas (como decía ayer en uno de los trabajos), beneficio a ambos campos. Los físicos proporcionaron a los cosmólogos una amplia gama de herramientas útiles para saber cómo se desarrolló el universo primitivo. Evidentemente, el Big Bang no fue una muralla de fuego de la que se burló Hoyle, sino un ámbito de suscesos de altas energías que muy posiblemente pueden ser comprensibles en términos de teoría de campo relativista y cuántica.

La cosmología, por su parte, dio un tinte de realidad histórica a las teorías unificadas. Aunque ningún acelerador concebible podrían alcanzar las titánicaqs energías supuestas por las grandes teorías unificadas y de la supersimetría, esas exóticas ideas aún  pueden ser puestas a prueba, investigando su las partículas constituyentes del universo actual son compatibles con el tipo de historia primitiva que implican las teorías.

Gell-Mann, el premio Nobel de física, al respeto de todo esto decía: “Las partículas elementales aparentemente proporcionan las claves de algunos de los misterios fundamentales de la Cosmología temprana… y resulta que la Cosmología brinda una especia de terreno de prueba para alguna de las ideas de la física de partículas elementales.” Hemos podido llegar a descubrir grandes secretos de la naturaleza mediante los pensamientos que, surgidos de la mente desconocida y misteriosa de algunos seres humanos, han podido ser intuidos mediante ráfagas luminosas que nunca sabremos de dónde pudieron surgir )Lorentz, Planck, Einstein, Heisenmberg, Dirac, Eddigton, Feymann, Wheeler… Y, una larga lista de privilegiados que pudieron ver, lo que otros no podían.

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

              Moléculas, átomos y conexiones para formar pensamientos

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero en las energías extremadamente altas del big bang original  y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así (que lo es), cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Todo lo pequeño se hace grande ante el “ojo” del miscroscópio electrónico que puede profundizar más allá de la superficie de las cosas, así si pùdiéramos mirar el dorso de la mano, por ejmplo, nos quedaríamos asombrados de lo que allí está presente.

File:ALH84001 structures.jpg

  Esta imagen es la obtenido de un meteorito venido desde Marte en el que se creyó que había seres vivos

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados a átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Sion embargo, nos queda la duda de: ¿qué podrá haber más allá de los Quarks?

¿Qué no podremos hacer cuando conozcamos la naturaleza real del átomo y de la luz? El fotón,  ese cuánto de luz que parece tan insignificante, nos tiene que dar muchas satisfacciones y, en él, están escondidos secretos que, cuando sean revelados, cambiará el mundo. Esa imagen de arriba que está inmersa en nosotros en en todo el Universo, es la sencilles de la complejidad. A partir de ella, se forma todo: la muy pequeño y lo muy grande.

Resultado de imagen de Quarks y Leptones

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos y átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protonesneutrones. Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quark que constituyen cada nucleón.

Uno de los misterios de la naturaleza, están dentro de los protomes y netrones que, confromados por Quarks, resulta que, si estos fueran liberados, tendrían independientemente, más energía que el protónque conformaban. ¿cómo es posible eso?

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang. Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo. El acelerador de 200 Kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang. Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo.  El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo.  El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada.  A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes,  durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica.  Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más esclarecedora del Universo primitivo que la que teníamos antes.

A los cien millones de años desde el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

Anti-hidrógeno

He aquí la primera imagen jamás obtenida de antimateria, específicamente un “anti-átomo” de anti-hidrógeno. Este experimento se realizó en el Aparato ALPHA de CERN, en donde los anti-átomos fueron retenidos por un récord de 170 milisegundos (se atraparon el 0.005% de los anti-átomos generados).

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro brilla un quasar blanco-azulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

Resultado de imagen de macromolécula de ADN

Para determinar dónde obtuvo la célula es esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Claro que, nuestra historia está relacionada con todo lo que antes de llegar la vida al Universo pudo pasar. ¡Aquella primera célula! Se replicó en la sopa primordial llamada Protoplasma vivo y, sigguió evolucionando hasta conformar seres de diversos tipos y, algunos, llegaron a adquirir la conciencia.

                   Macromolécula

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

  célula cerebral

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas de una rareza y de una incleible y extraña belleza que sólo la Naturaleza es capaz de conformar.

        Molécula de ADN

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que se  constituyen en protones y neutrones.

                                 Átomo de Carbono

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad. Una vez que fueron eliminados los antiquarks, se unieron en tripletes para formar protones y neutrones que, al formar un núcleo cargado positivamente, atrayeron a los electrones que dieron lugar a formar los átomos que más tarde, conformaron la materia que podemos ver en nuestro unioverso.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleaones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Resultado de imagen de Los Quarks dentro del núcleo

Los Quarks dentro del núcleo están sometidos a la Interacción fuerte, es decir, la más potente de las cuatro fuerzas fundamentales del Universo, la que mantiene a los Quarks confinados dentro del núcleo atómico por medio de los Gluones.

Resultado de imagen de Los Quarks dentro del núcleo

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

 

Haces de protones que chocan cuando viajan a velocidad relativista en el LHC

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

El acelerador de 200 kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang.

foto

        Aquel acelerador nada tenía que ver con el LHC de ahora, casi un siglo los separa

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo supercolisionador superconductor proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

El Tevatrón del Fermilab ya estaba en el camino de la modernidad en los avances de la Física

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

                                               Recreación del Universo primitivo

 Bueno amigos, el trabajo era algo más extenso y entrábamos a explicar otros aspectos y parámetros implicados en todo este complejo laberinto que abarca desde lo muy grande hasta la muy pequeño, esos dos mundos que, no por ser tan dispares, resultan ser antagónicos, porque el uno sin el otro no podría exisitir. Otro día, seguiremos abundando en el tema apasionante  que aquí tratamos.

emilio silvera

¿Quiénes somos? ¡Quién puede saber eso!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El surgir de la HumanidadResultado de imagen de ¿Quiénes somosImagen relacionadaResultado de imagen de ¿Quiénes somos

Contestar la pregunta que hacemos en el título del trabajo es imposible, no había aquí nadie que pudiera escribir aquella crónica de acontecimientos en la que se pudiera contar la “llegada” del Ser Humano a nuestro planeta que, sería a base de evolucionar durante millones de años partiendo de otras formas más simples. Sólo podemos buscar los indicios (si existen) de lo que pudo pasar para que ahora, estemos aquí.

 

 

Resultado de imagen de El surgir de la Humanidad

Esa pregunta que ha estado en la mente de los seres humanos desde que en ellos estuvo presente el pensamiento en aquellas primeras Civilizaciones antiguas que todos tenemos en mente y que dejaron su huella que, de una u otra manera, nos hablan de una evolución mental que, a veces, profundizaba en terrenos situados más allá de lo material. Cuando no se sabía entender los hechos ni se encontraban las respuestas, con frecuencia, se acudió a la mitología y a divinidades que eran portadoras de mágicos poderes y, de esa manera hemos estado caminando hasta llegar a los orígenes de la Ciencia que, comenzó una nueva etapa y en lugar de adjudicar lo inexplicable a los dioses, se empezó a investigar y observar empleando la lógica para acercarnos a lo desconocido, a los misterioso secretos de la naturaleza y, ¡nuestro origen! puede ser calificado del mayor secreto que el Universo esconde.

http://upload.wikimedia.org/wikipedia/commons/c/c0/Stromatolites.jpg

“Estromatolitos del precámbrico en la Formación Siyeh, Parque Nacional de los Glaciares, Estados Unidos. En 2002, William Schopf de la UCLA publicó un artículo en la revista Nature defendiendo que estas formaciones geológicas de hace 3.500 millones de años son fósiles debidos a cianobacterias1 y, por tanto, serían las señales de las formas de vida más antiguas conocidas.”

Ciertamente, cuando hablamos del origen de la vida, aún hoy en la segunda década del siglo XXI, las opiniones son diversas y siempre nos encontramos con dos grupos que la sitúan en diferentes lugares. En un pequeño libro, no por ello menos importante, del ruso A. Oparín, publicado en Moscú, en su lengua original en 1894 y denominado El Orgien de la vida, nos habla de ese espinoso y trascendente tema sin necesidad de permanecer anclados en ideas ya desfasadas, entre los irreversibles adelantos científicos y el creacionismo bíblico que está fuera de lugar en nuestra época del big bang o primitiva explosión cósmica, la expansión del universo, el conocimiento del átomo y los primeros vuelos espaciales, donde ya no hay lugar para “mitos” y son los hechos los que deben prevalecer.

Imagen relacionadaImagen relacionada

Está claro que contestar a las preguntas: ¿Que es la vida? ¿Cómo llegó hasta aquí? ¿Está sólo en el planeta Tierra? ¿Cómo pudo hacer acto de presencia, eso que llamamos conciencia? No resulta nada fácil y, hasta tal punto es así que hasta el momento, nadie la supo contestar de una manera convincente y se dan respuestas que, más o menos originales y agudas, no dejan de ser conjeturas. La que más me gusta es que la vida, es la materia evolucionada hasta su más alto nivel, dado que, de alguna manera, nosotros mismos estamos hechos de los mismos materiales que todo lo que nos rodea.

Existen dos puntos de vista que nos llevan al origen de la vida: El enfoque materialista y el otro idealista y espiritual, el primero es el que adopta A. Operín y el otro es el que muestra la doctrina del P. Teilhard de Chardin, ni uno ni otro tiene porqué abandonar los grandes descubrimientos científicos y tecnológicos. Sin embargo y a medida que ha ido tanscurriendo el tiempo, ambas posturas se han alejado la una de la otra como consecuencia de que la Ciencia, nos ha ido mostrando los posibles caminos que la vida tomó para hacerse presente y, desde luego, nada tiene que ver con el espíritu que la vida hiciera su aparición en este mundo nuestro y, seguramente, en otros muchos mundos de la Galaxia y de otros mundos dispersos por el Cosmos.

Desde el punto de vista de la Biología, que es el más usado, hace alusión a aquello que distingue a los reinos animal, vegetal, hongos, protistas, arqueas y bacterias del resto de manifestaciones de la Naturaleza. Implica las capacidades de nacer, crecer, reproducirse y morir, y, a lo largo de sucesivas generaciones, evolucionar.

Sin embargo, no parece que todo eso, sea exclusivo de lo que conocemos por vida, ya que, de alguna manera, si nos fijamos en una estrella desde que “nace” hasta que muere”, viene a enseñarnos que sigue el mismo camino que los seres vivos y ella también, nace, muere y se reproduce… a su manera. ¡Es todo tan complicado!

Claro que, cuando hablamos de la vida hay que ser respetuosos con las ideas que cada cual pueda tener al respecto. Será la fe de cada uno quien pueda llevarle a una u otra conclusión, o incluso, dejar esta en el aire con un gran signo de interrogación dentro de un agnósticismo (no ateísmo) latente que está aconsejado por los hechos más relevantes que la Ciencia nos pone delante de los ojos cuando de la vida se trata y lo que de ella, hemos podido llegar a saber.

Resultado de imagen de Ciclos de mutaciones nos trajeron aquíImagen relacionada

A estas alturas, ni la propia Iglesia Católica  excluye la teoría del mutacionismo moderado o evolucionismo dirigido que no escluye aquella idea de un primer y Supremo Hacedor. Ya en 1950, Pio XII en la Encíclica Humani Generis, recomendaba prudencia y no apasionamiento por una u otra tesis para aquellos que se dedicaban al estudio de tan delicados problemas y que, si no aparecía todo claro, se esperaba siempre a que nuevos descubrimientos iluminaran el remoto pasado de la vida y del universo.

Si nos centramos en el ser humano, los restos fósiles más antiguos confirman que durante la Era Cuaternaria, la Humanidad poseía fuertes restos morfológicos de las especies animales de las que pudo derivar. También algunos fósiles de simios que se acercaban, cada vez más, en su morfología, a las formas humanas.

Sin embargo aún el más antiguo de los hombres fósiles, hubo de poseer una capacidad cerebral mucho mayor que la de los simios actuales. Por tal motivo incluso los más acérrimos partidarios de la evolución rechazaron pronto que el hombre pudierta descender directamente del mono y se alinearon en dos escuelas fundamentales:

– La de los que afirmaban que el mono y el ser humano tenían un origen común en otro ser que no era ni Homo ni Pan, cuyo rastro se ha perdido por completo, o, al menos, nunca se ha podido encontrar. Las especies de los simios contemporáneos nuestros, “serían una degeneración”, mejor que una evolución de este antecesor común del ser humano y el mono.

– Y la de los que opinaban que el ser humano y el simio se parecen en lo somático, pero manifestaban que su antecesor no era el mismo, sino que el ser humano descendía de un ser distinto del antepasado del mono.

 

 

 

“Una de las especies humanas extintas mejor conocidas es el Homo erectus. Los restos de esta especie que proceden de China, se les dio el popular nombre de “hombre de Pekín”. A pesar que ninguna persona instruida negaría la existencia de estos seres en el pasado, los creacionistas les restan importancia diciendo mentiras sobre ellos.

La publicación creacionista “¿Abuelito?” de CHICK PUBLICATIONS dice respecto al hombre de Pekín: “Supuestamente databa de hace 500.000 años. Pero toda la evidencia ha desaparecido”

Pero, ¿Desapareció realmente toda la evidencia del “hombre de Pekín”? ¿No hay más restos del Homo erectus en Asía?

Imagen relacionada

            Así se cre que era el hombre de Pekin

Los restos del “Hombre de Pekín” se hallaron entre 1921 y 1937, en el periodo entreguerras en un yacimiento a 40 kilómetros al sudoeste de Pekín llamado Zhoukoudian. El hallazgo consistía de una colección de cerca de 40 individuos en Zhoukoudian, entre ellos 5 calvarias (cráneos sin el esqueleto de la cara), numerosos dientes y restos del esqueleto postcraneal.

En 1941, desapareció la colección de fósiles, en plena Segunda Guerra Mundial, mientras era enviada desde Pekín a Estados Unidos.

Sin embargo, la evidencia no desapareció del todo, pues el científico Franz Weidenreich realizó, previó a la desaparición, un estudio con fotografías, radiografías y réplicas de los fósiles. En excavaciones recientes se han encontrado nuevos restos que han encajado con las réplicas hechas por Weidenreich lo cual dice mucho de la honestidad del trabajo de este científico.

Los creacionistas desprecian las dataciones dadas para estos restos fósiles diciendo: “Supuestamente databa de hace 500.000 años”, para confundir al lector. Sin embargo, el yacimiento del Zhoukoudian no ha desaparecido. Sigue allí y los trabajos de estratigrafía que se han realizado muestran que los restos de la cueva abarca un período de 600.000 años, y los restos que quedaron enterrados en los sedimentos de Zhoukoudian tienen una edad entre 550.000 y 300.000 años.

Es cierto que los fósiles originales de la cueva de Zhoukoudian se perdieron en confusos hechos, pero algo que los creacionistas no mencionan es que existen otros yacimientos de Homo erectus en China e Indonesia.”

Imagen relacionada

Lo cierto es que resulta poco creíble lo de la primitiva pareja como padres de toda la Humanidad

Tampoco se ha llegado a ninguna conclusión satisfactoria con el hecho que plantea si la aparición del Ser humano tuvo lugar de una sola vez, derivando de una primitiva pareja por multiplicación, toda la Humanidad (versión textual del Génesis) o si fueron más de una pareja procedentes de diversos lugares de la Tierra, ésta última tesis se está imponiendo últimamente con mucha fuerza.

El acuerdo sobre cuál o cuáles fueron la cuna  o “cunas” de la Humanidad. Se habla con fuerza del hemisferio austral pero ¿dónde? Si el lugar o lugares, época y formas de nacimiento de la primera raza. o razas, humanas continúa siendo -¡y mucho más el de la vida!- y será con toda probabilidad, siempre, un gran misterio para la Ciencia y, cuando llegamos a este callejón sin salida, de alguna manera, sentimos frustración por intuir que nunca, podremos llegar a saber quiénes somos realmente, ni como llegamos a tener consciencia de SER.

Resultado de imagen de ¿Cómo surgió la vida en la Tierra?

Lo cierto es que tenemos una idea bastante aproximada de cómo pudo surgir la vida aquí en la Tierra pero, tampoco sabemos, a ciencia cierta, si su origen está en la propia Tierra, o, por el contrario, llegó desde fuera de ella. Lo que si sabemos con una claridad meridiana es que, los materiales necesarios para que la vida pudiera surgir, allá donde surgiera por vez primera, se transmutaron en las estrellas que, a partir del elemento más sencillo, el Hidrógeno, fusionó el Carbono, Oxígino, Nitrógeno y todos los demás de los que estamos hechos los seres vivos que pueblan la Tierra y -al menos para mí- otros muchos planetas del Universo.

Imagen relacionadaImagen relacionada

 En alguna ocasión hemos comentando aquí sobre el origen de la vida en nuestro planeta, la evolución, nuestros orígenes y algunos dones que nos adornan como el del habla y, sin olvidar el crecimiento de nuestro cerebro que ha posibilitado que “naciera” ¡la mente! Sin embargo, no nos hemos parado a pensar en algunos aspectos de la historia que nos llevarían a comprender cabalmente y que esa “historia de la vida” adquiera algún sentido, que la podamos comprender en todo su esplendor. Uno de esos aspectos, quizás el principal, sea la diversidad metabólica de los microorganismos procariotas, un aspecto clave para explorar la historia de “la vida primigenia”.

Convendría que profundizáramos más (y, asombremos) con las numerosas formas de metabolismos que utilizan los procariotas para vivir y que averigüemos donde encajan estos minúsculos organismos del árbol de la via antes de que podamos seguir escuchando las historias que paleontólogos nos puedan contar de sus andanzas a la búsqueda de fósiles que nos hablen de aquella vida en el pasado.

En la actualidad se acepta que los procariotas fueron los precursores de los organismos eucariotas. Sin embargo hay grandes diferencias entre esos dos grupos celulares. Una de esas diferencias reside en la organización génica y en los mecanismos de sintetizar el ARN mensajero. Algún trabajo biológico afirma que los eucariotas podrían proceder de cianobacterias termófilas ya que su organización génica recuerda rudimentariamente a la de los eucariotas.

Los organismos procariotas (bacterias y arqueas) y eucariotas (protistas, hongos, animales y plantas) comparten una bioquímica común, sin embargo difieren en un elevados número de procesos y de estructuras. A pesar de eso se considera a los procariotas como los precursores de la célula eucariota.  A lo largo de los años se han ido recogiendo datos experimentales que avalan esta teoría.

Resultado de imagen de ¿Cómo surgió la vida en la Tierra?

Sabemos que la vida en sí mismo empezó, quizás hace unos tres mil quinientos millones de años (así lo dicen fósiles encontrados en rocas de esa edad), cuando los flujos de energía, las moléculas y la información se combinaron para formar la primera célula viva. Desconocemos en qué consistió aquella primera fuente de energía, pero hace unos quinientos millones de años las células habían desarrollado ya una maquinaria que podía recoger la luz de la estrella más cercana a nosotros, el Sol, la fuente última de toda energía que existe en la Tierra.  La luz se utilizaba para descomponer el agua (H2O), produciendo Oxígeno, que era emitido a la atmósfera, y liberando también protones y electrones que, al combinarse con el dióxido de carbono del aire, se utilizaban para formar las complejas moléculas de la vida. Este sencillo pero poderoso proceso de fotosíntesis hacia posible que la vida surgiera y se propagara rápidamente.

Imagen relacionada

La primera contaminación global y los primeros desastres ecológicos tuvieron lugar hace dos mil millones de años, cuando el Oxígeno, ese residuo tóxico de la fotosíntesis, comenzó a concentrarse en la atmósfera terrestre. El Oxígeno, la sustancia fundamental de la vida animal, es una molécula relativamente inestable y tóxica. De hecho, en en sí misma un tipo de radical libre y puede arrebatar electrones a otras moléculas, descomponiéndolas para formar otros radicales libres aún más tóxicos. Es la razón por la que la mantequilla y otros alimentos se vuelven rancios, el hierro se oxida y algunos anumales mueren en una atmósfera de oxígeno puro.

De la relación del Oxigeno y nosotros podríamos hablar muy extensamente pero, nos salimos del tema que os quería comentar y que, a estas alturas está acabando. Por cierto, es incluso posible que el Oxígeno de nuestra atmósfera fuera un veneno para hipotéticos seres extraterrestres invasores y nos librara de ellos por el simple hecho de que éste, no podría nunca ser su mundo.

           Mirando el árbol filogenético de la Vida, nos damos cuenta de su diversidad y complejidad

Es cierto que, con mucha frecuencia, aparecen aquí trabajos que versan sobre la vida, ese misterio que nos lleva a querer buscar sus orígenes y a saber, cómo y para qué surgió aquí en el Planeta Tierra. Nos interesamos por cada uno de pasos evolutivos y nos llama la atención ese larguísimo ciclo que llevó la vida desde aquella célula replicante hasta los seres humanos. Pero, ¿hay algo más interesante que la Vida para poder estudiarlo? Seguramente con la Biología, Física, la Química y la Astrofísica, cada vez sabremos un poco más sobre tan inmenso misterio.

En ese árbol de arriba, sólo somos una pequeña rama.

emilio silvera

¿Viaje a Marte en 2.030? ¡Ya veremos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Viaje a Marte: Noticia de Prensa

Resultado de imagen de Las tripulaciones para viajar a Marte serán de diferentes razas

           ‘Las tripulaciones van a ser de diferentes orígenes culturales’

Gabriel González de la Torre, doctor en Neuropsicología en la universidad de Cádiz nos ha visitado en ‘Boulevard’ para explicarnos las pruebas que se están llevando a cabo de cara a los viajes a Marte

Se espera que el ser humano llegue a Marte en la década del 2030.  La NASA anunció que los astronautas que quieran viajar a Marte tendrán que vivir en la Luna durante un año. Y después de este año lunar comenzaría el viaje al planeta rojo que duraría unos 900 días, 3 años.

La NASA, que celebra su 60 aniversario este año, está volcada en la preparación del viaje a la Luna y a Marte. Hay un equipo especializado que trabaja para saber si realmente el ser humano está preparado para este tipo de viajes.

 

 

Resultado de imagen de Las tripulaciones para viajar a Marte serán de diferentes razas

Existe un proyecto de la NASA que analiza cómo afectan los aspectos culturales y sociales de la tripulación en largas exploraciones espaciales como la de Marte.

Y es que más allá del esfuerzo tecnológico de la investigación dirigida a asegurarse que esos viajes serán materialmente posibles, hay otra vertiente muy a tener en cuenta, la vertiente psicológica.

En ‘Boulevard’ hemos entrevistado a Gabriel González de la Torre, el neuropsicólogo que dirige al equipo de españoles que participa en este proyecto internacional de la NASA.

Resultado de imagen de Icarus, una instalación subterránea en la Universidad de Pensilvania,Resultado de imagen de Icarus, una instalación subterránea en la Universidad de Pensilvania,

Resultado de imagen de Era, un simulador de la NASA en Houston en el que se imita el interior de una nave espacial

Se están realizando experimentos en 3 espacios, Icarus, una instalación subterránea en la Universidad de Pensilvania, Hera, un simulador de la NASA en Houston en el que se imita el interior de una nave espacial, y la estación antártida alemana Neumayer III, que posee condiciones de aislamiento total.

En palabras del doctor González de la Torre, el objetivo de este estudio de 4 años es ‘identificar un perfil idóneo para este tipo de misiones’ y ver si ‘un grupo pequeño de personas va a desarrollar su propia cultura’.

Además añade que experimentan ‘situaciones límite’ para ver cómo ‘reaccionan y tratan de solucionarlos’.