domingo, 19 de septiembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡El Universo! A veces pienso que, ¡sabe lo que hace!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el big bang y a una posterios fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

Resultado de imagen de El efecto triple alfa

Hay procesos en el Universo que, si pudiera ser posible contemplarlos en directo, serían dignos del mayor asombro. Por ejemplo, a mí me maravilló comprender como se podía formar Carbono en las estrella y, de cómo éstas se valían del llamado “Efecto Triple Alfa” para conseguirlo.

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

                        Cadena Protón-Protón

Las reacciones internas que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón (carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

Archivo:Keplers supernova.jpg

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara arriba a través del gas que entran, el resultado es el choque más violento del Universo.

La imagen es un zoom del centro de la galaxia M82, una de las más cercanas galaxias con estrellas explosivas a una distancia de sólo 12 millones de luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y , con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

El más conocido remanente estelar, la Nebulosa del Cangrejo cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio saber sobre los procesos estelares en este tipo de sucesos.

El pulsar de la nebulosa del cangrejo, en rojo del hubble

dejámos una relación de materriales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitan Cook negociaban por el afecto de las tahitianas.

La muerte de una estrella supergigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y, más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Que maravilla!

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planete Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos los que se encuentran la química biológica para la vida.

 

Si a partir de las Nebulosas que se forman cuando las estrellas masivas llegan al final de sus vidas, pueden surgir planetas la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuantas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

Resultado de imagen de Bellas Nebulosas

¡Qué gran secreto tiene el Universo! ¿Cómo se las arregla para crear, las precisas condiciones que dan lugar al surgir de la Vida?

emilio silvera

Ese fino equilibrio que permite la presencia de la vida en el universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad.  En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

                                         Hasta el momento sólo sabemos de la vida en la Tierra

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar.  Poco a poco hemos llegado a apreciar cuán precaria es.  Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas.  Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

Resultado de imagen de El Yucatán, los dinosaurios y el meteorito

Cuando comento éste tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron.  Sin embargo, a aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo.  Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos.  Se desarrollo la diversidad una vez desaparecidos los grandes depredadores.  Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que, hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros.  Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Resultado de imagen de NUevos mundos descubiertos

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

Creo que la clave está en  los compuestos del carbono, toda la vida terrestre actualmente conocida exige también el Agua como disolvente. Y como para el carbono, se supone a veces que el agua es el único producto químico conveniente para cumplir este papel. El amoníaco (el nitruro de hidrógeno) es la alternativa ciertamente al agua, la más generalmente posible propuesta como disolvente bioquímico. Numerosas reacciones químicas son posibles en disolución en el amoníaco, y el amoníaco líquido tiene algunas semejanzas químicas con el agua. El amoníaco puede disolver la mayoría de las moléculas orgánicas al menos así como el agua, y por otro lado es capaz de disolver muchos metales elementales. A partir de este conjunto de propiedades químicas, se teorizó que las formas de vida basada en el amoníaco podrían ser posibles. También se dijo del Silicio. Sin embargo, ninguno de esos elementos son tan propicios para la vida como el Carbono y tienen, como ya sabemos, parámetros negativos que no permiten la vida tal como la conocemos.

Hasta rel momento, todas las formas de vida descubiertas en la Tierra, están basadas en el Carbono.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Resultado de imagen de El Homo habilis

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Todas las células están formadas por elementos químicos que al combinarse forman una amplia variedad de moléculas que a su vez forman agregados moleculares y éstos los diversos organelos celulares. Los elementos constitutivos de las biomoléculas más importantes son las que más abajo se relacionan (el carbono es el elemento que se presta a más situaciones, entre ellas la de ser la base de la vida).
Resultado de imagen de El carbono
  • C: Carbono
  • H: Hidrógeno
  • O: Oxígeno
  • N: Nitrógeno
También son importantes los siguientes:
Resultado de imagen de El fósforo
  • P: Fósforo
  • Fe: Hierro
  • S: Azufre
  • Ca: Calcio
  • I: Yodo
  • Na: Sodio
  • K: Potasio
  • Cl: Cloro
  • Mg: Magnesio
  • F: Flúor
  • Cu: Cobre
  • Zn: Zinc
Las biomoléculas pertenecen a cuatro grupos principales denominados:
Resultado de imagen de Hidratos de Carbono
  1. Glúcidos o Hidratos de Carbono
  2. Lípidos
  3. Proteínas
  4. Ácidos Nucleicos

El el gráfico de arriba  están resumidas sus funciones.

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

Resultado de imagen de Mundos imaginarios

                    Sí, imaginamos demasiado pero… ¿Qué hay más poderoso que la imaginación?

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

   \alpha =   \frac{e^2}{\hbar c \ 4 \pi \epsilon_0} =   7,297 352 568 \times 10^{-3} =   \frac{1}{137,035 999 11}

¿Cuántos secretos están en esos números escondidos? La me´canica cuántica (h), la relatividad (c), el electromagnetismo (e-). Todo eso está ahí escondido. El número 137 es un número puro y adimensional, nos habla de la constante de estructura fina alfa (α), y, el día que sepamos desentrañar todos sus mensajes… ¡Ese día sabremos!

                                                                  Extraños mundos que pudieran ser

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”

 

Las constantes de la naturaleza ¡son intocables!

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

Ahora, cuando miramos el Universo, comprendemos, en parte, lo que ahí está presente.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por Mde espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina a, que es aproximadamente 1/137.  Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar.  Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de Beta (αF) el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protoneshaciendo estable el núcleo y el átomo.

 

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

 

 

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

Resultado de imagen de Una constante de estructura fina diferente ausentaria la vida

Nuestro universo es tal como lo conocemos gracias a que las constantes universales son las que son y las fuerzas fundamentales actúan tal como hemos podido desvelar. Cualquier cambio es ese sentido sería fatal para la presencia de la vida y, del universo entero.

Decía más arriba: “Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar.  Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de Beta (αF) el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.”

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de α, entonces, a menos que  a> 0,3 α½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos.Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros.  Por el contrario, si adecreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida

Situados a 30.000 años-luz del centro galáctico, en una región tranquila.

Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:

Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.

“IRAS F00183-7111 es un Galaxy iperluminosa infrarrojos (HyLIRG) [1] , que se encuentra en la constelación del Tucán , cuya luz ha tardado alrededor de 3,5 billón años para llegar a la Tierra.”

Co,mo podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más nartural en el universo y estará presente en miles de millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.

emilio silvera

El Universo Asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Este es el aspecto que tiene la región central de nuestra galaxia, a 26.000 años luz de la Tierra

Este es el aspecto que tiene la región central de nuestra galaxia, a 26.000 años luz de la Tierra - Archivo

 

Nos dicen: “Los agujeros negros supermasivos “crean” planetas rocosos como la Tierra.”

 

Resultado de imagen de Violentas emisiones de energía en agujeros negros supermasivos

 

Sus violentas emisones de energía pueden transformar mundos gaseosos similares a Neptuno en otros parecidos al nuestro, según una nueva investigación

 

 

 

Resultado de imagen de Violentas emisiones de energía en agujeros negros supermasivos

 

 

Un equipo de investigadores del Centro de Astrofísica Harvard Smithsonian en California y la Northwestern University en Illinois han descubierto que los planetas gaseosos similares a Neptuno que hay cerca del centro de la Vía Láctea han sido “transformados” en mundos rocosos similares a la Tierra por las violentas emisiones de energía del agujero negro que ocupa el centro galáctico.

El hallazgo, recién publicado en The Astrophysical Journal Letters, ha sido posible gracias a la combinación de simulaciones informáticas con datos del descubrimiento de exoplanetas y observaciones en rayos X y ultravioleta de numerosas estrellas y agujeros negros.

Resultado de imagen de Violentas emisiones de energía en agujeros negros supermasivos

“Resulta algo descabellado pensar que los agujeros negros puedan configurar el destino evolutivo de un planeta -afirma Howard Chen, que ha dirigido la investigación- pero ese puede ser el caso de lo que sucede en el centro de nuestra galaxia”.

En su investigación, Chen y su equipo examinaron con cuidado los alrededores del agujero negro supermasivo más cercano, Sagitario A*, la “bestia” de cuatro millones de masas solares que se encuentra en el centro de nuestra Vía Láctea.

Resultado de imagen de Violentas emisiones de energía en agujeros negros supermasivos

Como es sabido, el material que cae dentro del agujero negro durante sus periodos de “alimentación”, genera violentas llamaradas de rayos X e ultravioleta. De hecho, telescopios de rayos X como el observatorio Chandra, de la NASA, o el XMM Newton de la Agencia Espacial Europea han captado numerosas evidencias de brillantes estallidos generados por Sagitario A* en un periodo que abarca desde hace unos seis millones de años hasta hace poco más de un siglo.

“Nos preguntamos que efecto tendrían estos arrebatos de Sagitario A* sobre los planetas cercanos -dice John Forbes, otro de los autores del estudio-. Y nuestro trabajo demuestra que el agujero negro podría cambiar drásticamente la vida de esos planetas”.

Resultado de imagen de Planetas parecidos a la Tierra

       ¿Planetas creados por agujeros negros masivos? Es la primera vez que podemos oír algo así pero….

En concreto, los autores de la investigación consideraron los efectos que provocaría el enorme agujero negro en planetas con masas comprendidas entre la de la Tierra y la de Neptuno y que se encontraran a menos de 70 años luz del agujero negro.

Y hallaron que los rayos X y la radiación ultravioleta podrían barrer, literalmente, una buena parte de la gruesa atmósfera gaseosa de esos planetas cercanos. E incluso, en algunos casos, eliminarla por completo, dejando desnudos y a la vista los núcleos rocosos de esos mundos, muchos de ellos más masivos que nuestro planeta, y que reciben el nombre de supertierras.

Resultado de imagen de Hallan una súper Tierra

“Estas supertierras son uno de los tipos más comunes de planetas descubiertos por los astrónomos fuera de nuestro Sistema Solar -afirma Avi Loeb, otro de los autores-. Nuestro trabajo demuestra que, en el entorno adecuado, esos mundos podrían haberse formado de formas muy extrañas”. Los investigadores están convencidos de que la acción de los agujeros negros es, de hecho, la forma más común en que las supertierras se forman en el corazón de muchas galaxias.

Un desafío insuperable

 

 

 

Resultado de imagen de Descubren un planeta cerca de un agujero negro

 

No parece que, si la noticia es cierta, ningún planeta cercano a un agujero negro, tenga mucho porvenir

 

Sin embargo, y a pesar de que muchos de estos planetas se encuentran en las zonas habitables de sus estrellas (a la distancia precisa para que su temperatura superficial permita la existencia de agua líquida), el entorno en el que se encuentran sería un desafío prácticamente insuperable para cualquier forma de vida que pudiera surgir en ellos. Las explosiones de supernovas y los estallidos de rayos gamma, en efecto, dañarían en estos mundos la química de cualquer atmósfera que hubieran podido conservar. Por no hablar de que sucesivos estallidos del agujero negro podrían terminar por destruir por completo a las atmósferas supervivientes.

Para colmo, estos mundos estarían también a la merced de graves perturbaciones gravitatorias, provocadas por el paso de una estrella, que podrían empujarlos lejos de sus soles y terminar así con las posibilidades de vida. Este tipo de encuentros se dan con frecuencia en las proximidades de un agujero negro supermasivo como Sagitario A*, ya que la región está superpoblada de estrellas.

Resultado de imagen de El centro de la Galaxia

A este respecto, los investigadores han calculado que en un radio de 70 años luz alrededor del centro galactico la separación media entre estrellas es de “apenas” entre 75.000 y 750.000 millones de km, mientras que en nuestra región de la galaxia la estrella más cercana al Sol se encuentra a más de 40.000 millones de km de distaancia.

“En general -afirma Loeb- se acepta que las regiones más internas de la galaxia no son favorables par la vida. Sin embargo, y a pesar de tods los inconvenientes, en ese entorno estelar tan denso la posibilidad de panspermia, donde la vida se transmite por contacto interestelar o interplanetario, sería mucho más común. Y este proceso podría dar a la vida una oportunidad de luchar para surgir y perdurar”.

Detectar directamente estos planetas no es una tarea sencilla y supone, de hecho, un desafío formidable, tanto por la distancia del centro galáctico (26.000 años luz desde la Tierra), como por la superpoblación de estrellas y el bloqueo de la luz por parte de enormes masas de polvo y gas.

A pesar de ello, la tarea se podrá acometer gracias a la próxima generación de grandes telescopios terrestres, que será desplegada dentro de unos años.

Reportaje de prensa