“ALMA observa cómo se forman las galaxias en el universo temprano. Image Credit: ESO”
Dicen debajo de la Imagen:
“ALMA consiguió captar una señal tenue, pero clara, de carbono (que brillaba intensamente) de una de las galaxias, llamada BDF2399. Sin embargo, este resplandor no provenía del centro de la galaxia, sino más bien de uno de sus lados.”

“El Atacama Large Millimeter/submillimeter Array (ALMA) se ha utilizado para detectar las nubes de gas con formación estelar más distantes encontradas hasta ahora en galaxias normales del universo temprano. Las nuevas observaciones permiten a los astrónomos empezar a ver cómo se construyeron las primeras galaxias y cómo despejaron la niebla cósmica en la época de reionización. Esta es la primera vez que pueden verse este tipo de galaxias como algo más que manchas difusas.”

Ninguna de estas explicaciones nos demuestran cómo se formaron las galaxias en verdad, a pesar de la presencia de la expansión cósmica del universo que habría hecho dispersar la materia que estaban destinadas a formas esas galaxias, ¿Qué había allí, para retener la materia y que las galaxias se pudieran formar?
“Cuando se forman las estrellas, reina el pandemónium. Un caso antológico es la región de formación estelar NGC 6559 . Arriba podemos ver nebulosas de emisión de hidrógeno en rojo brillante; nebulosas de reflexión de polvo azules, oscuras nebulosas de absorción de polvo y las estrellas que se han formado de ellas.”
Observatorio Info

Más que “materia oscura”, yo apostaría por Sustancia Cósmica, la materia primigenia del Universo
En los temas que hemos tratado en otros trabajos, la protagonista ha sido la “hipotética” materia y energía oscura que, según algunos modelos supone el 90% de la materia que compone el universo. El tema dio pie a opiniones y algún debate que principalmente llevaron adelante Kike y Fandila (antiguos contertulios de este lugar) que, con sus indudables conocimientos y formas de aplicar la lógica, nos llevaron de la mano, con alguna metáfora incluida, a que podamos comprender mejor como son las cosas que, no siempre, coinciden con la realidad que algunos nos dibujan.

Nadie sabe contestar esa pregunta
Y, nuestra obligación, aunque el dibujo sea hermoso, armonioso y hasta placentero, debemos desconfiar, y, tomarlo, tan sólo como algo posible, algo que podría ser pero que de momento no es. Acordaos de aquel sabio que nos dijo: Todas las cosas son”. Con aquella simple frase, elevó a las “cosas” a la categoría de ser. Claro que las cosas a las que se refería estaban allí y podíamos contemplarlas. Por el contrario, la “materia oscura” nadie la vio nunca, es algo imaginario y supuesto que, al parecer, nos señalan algunos indicios observados, por lo demás, nada podemos concretar de ella.
¿Qué debe existir algo que justifique el inusual movimiento de las galaxias? Sí, pero ¿Qué es?
/posters-increiblemente-bella-galaxia-espiral-en-el-espacio-profundo-en-algun-lugar.jpg.jpg)
Nuestro Universo es tan complejo que, seguramente, todo lo que hemos podido saber de él, es sólo una pequeñísima parte de lo que es. Quizá el inmenso trabajo y esfuerzo, el ingenio de muchos, la intuición de algunos, la genialidad de unos pocos, el avance, costoso avance en el campo de las matemáticas, todo ello unido como un todo, nos ha traído hasta aquí, un momento en el que, se podría decir sin temor a equivocarnos que estamos en la línea de partida para comenzar el camino hacia más grandes logros. Creerse más que eso, sería engañarnos a nosotros mismos, dado que, la cruda realidad es que sabemos menos de lo que creemos y decimos que sabemos.


Aquí se dio un gran paso para adentrarnos en la nueva Cosmología
Más arriba contemplamos la conocida y familiar imagen de una Galaxia y, si alguien nos preguntara como pudieron formarse las galaxias, la verdad sería que, no tendríamos contestación para esa pregunta. ¿Cómo es posible eso a estas alturas? Pues porque lo que podemos resumir de la moderna visión del universo se podría limitar a dos breves afirmaciones:

Primera; el universo ha estado expandiéndose desde que se formó, y en el proceso ha evolucionado desde las estructuras simples a las complejas.


Segunda: la materia visible en el universo está organizada jerárquicamente: las estrellas agrupadas en galaxias, las galaxias en cúmulos y los cúmulos en supercúmulos.
El problema al que nos enfrentamos por tanto, es comprender como un universo cuya evolución está dominada por la primera afirmación, puede llegar a tener la estructura descrita en la segunda afirmación.

El problema de es explicar la existencia de la galaxias ha resultado ser uno de los más espinosos de la cosmología. Con todo derecho no deberían estar ahí y, sin embargo, ahí están. Es difícil comunicarl el abismo de frustración que este simple hecho produce entre los científicos. Una y otra vez han surgido nuevas revelaciones y ha parecido que el problema estaba resuelto. Cada vez la solución se debilitaba, aparecían nuevas dificultades que nos transportaban al punto de partida.


Cada pocos años, la American Physical Society, la Asociación Profesional de físicos, tienen una sesión en una de sus reuniones en la que los Astrofísicos hablan de los más nuevos métodos de afrontar el problema de las galaxias. Si te molestar en asistir a varias de esas reuniones, dos son las sensaciones contradictorias que te embargan:

En el Universo se forman muchos objetos pero, no siempre sabemos como lo hacen
Por una parte sientes un gran respeto por la ingenuidad de algunas propuestas que son hechas “de corazón” y, desde luego, la otra sensación es la de un profundo escepticismo hacia las ideas que proponían, al escuchar alguna explicación de cómo las turbulencias de los agujeros negros, las explosiones durante la formación de galaxias, los neutrinos pesados y la materia oscura fría resolvía todos aquellos problemas.
Lo cierto es que, a pesar de lo que se pueda leer en la prensa en comunicados oficiales, todavía no tenemos ese “bálsamo milagroso” que nos permita responder a una pregunta simple: ¿Por qué está el Universo lleno de galaxias, a pesar de la expansión del Hubble?

Es cierto, el Universo está lleno de cúmulos de galaxias y nosotros, tratando de saber de su presencia allí, hemos llegado a conseguir eliminar muchas de las respuestas equivocadas. Podemos estar ahora mucho más cerca de la verdad de lo que lo estábamos antes. Pero, de ninguna manera sería bueno que nos dejemos adormecer por la credulidad de los postulados modernos que parecen “sacados de la manga” del jugador cosmológico tramposo, para que la partida salga redonda. Claro que, una cierta dosis de escepticismo no implica que no podamos aceptar como probables y ciertas, algunas de las ideas generales implícitas en las soluciones propuestas que podrían, al final de todo el camino, ser parte de la solución que buscamos.
Formalmente podríamos exponer aquí al menos cinco razones para tratar de justificar el por qué, las galaxias, no deberían estar ahí presentes.

Los átomos antes que las galaxias
1º) Las Galaxias no pueden haberse formado antes que los átomos. No es un asunto trivial. Durante muchísimos años se estuvo tratando de entender este proceso, comenzando con ideas mágicas, hasta que a principios del siglo 19 se empezó a a comprender como funcionan las estrellas y el Universo.
Es un proceso algo complicado, por eso se tardo tanto en reconocerlo. En este momento la mejor teoria que explica el Universo es que comenzo con el Big-Bang, la explosión inicial que dio origen a todo. En la explosion, de origen todavia incierto, habia pura energia, y al expandirse se fue enfriando, como lo haria cualquier gas. Al llegar a un nivel de energia un poco mas bajo del inicial, se pudieron condensar de la energia las primeras particulas elementales (protones, neutrones, etc).

Cómo se formaron las partículas elementales? Descifrando el universo primigenio
Esto ocurrió en los primeros minutos. La famosa ecuación de Einstein E = mc2, implica que se puede transformar materia en energía, como en un reactor nuclear, y también la energía puede condensarse en materia, como en este caso. A los 300 mil años, el nivel de energía fue lo suficientemente bajo como para permitir la formación de los primeros átomos.

La existencia protones, electrones y neutrones dispersos, que cuando se juntaron fue para formar los elementos químicos mas elementales: Hidrogeno, Helio y algo de litio. Nada mas se formo, en la proporcion de 75% de hidrogeno, casi 25% de helio, y trazas de los otros elementos.

Recrean la primera materia del Universo, y descubren que era una “sopa” de plasma perfecta para que se pudieran formar las primeras familias de partículas que darían lugar a la aparición de átomos, moléculas, células y cuerpos
Aquella primera “sopa de plasma primordial” posibilitó que se juntaran protones y neutrones para formar el elemento más simple del Universo: El Hidrógeno,

Así, podemos partir de la base cierta de que, hasta donde sabemos, podemos pensar en el Universo durante aquellas primeras etapas de la expansión de Hubble estaba formado por dos únicos constituyentes: materia y radiación. La materia sufrió una serie de congelaciones al construir gradualmente estructuras más y más complejas. A medida que tienen lugar estos cambios en la formación de la materia, la manera en que interaccionan, materia y radiación cambian radicalmente. Esto, a su vez, desempeña un papel fundamental en la formación de galaxias.

La liberación de los fotones hizo aparecer la luz y convirtió, un universo opaco en transparente
La luz y otros tipos de radiación interaccionan fuertemente con partículas libres eléctricamente cargadas, del tipo de las que existían en el plasma que constituía el universo antes de que los átomos se formara. A causa de esta interacción, cuando la radiación se mueve por este plasma, colisiona con partículas, rebotando y ejerciendo una presión del mismo modo que las moléculas de aire, al rebotar sobre las paredes de un neumático, mantienen el neumático inflado. Si se diese el caso de que una conglomeración de materia del tamaño de una galaxia tratase de formarse antes de la congelación de los átomos, la radiación que traspasaría el material habría destruido el conglomerado, y, la radiación tendería a quedar atrapada dentro de la materia. Si tratase de salir, sufriría colisiones y rebotaría.

2º) Las galaxias no tuvieron tiempo de formarse. La Gravedad es la gran fuerza desestabilizadora del Universo, nunca lo abandona del todo; siempre está actuando tratando de unir trazos de materia, En cierto sentido, la historia entera del Universo se puede pensar como un último y fútil intento de superar la Gravedad.

La fuerza de Gravedad tuvo un papel estelar en la formación de galaxias
“La gravedad es lo que hace que se unan entre sí trozos de materia, para formar planetas, lunas y estrellas. La gravedad es lo que hace que los planetas entren en órbita alrededor de las estrellas–como la Tierra que está en órbita alrededor de nuestra estrella, el Sol.”
Sería asombroso, dada la naturaleza universal de la fuerza gravitatoria, que no hubiera desempeñado un papel importante en la formación de las galaxias. Escribir sobre este apartado nos llevaría a tener que explicar muchas implicaciones que están presentes en la dinámica del universo en relación a la materia. De todas las maneras que la queramos mirar, la sensación que percibimos es la de que, en aquellos primeros momentos, podía existir “algo” (no sabemos qué) que generaba también, como la materia bariónica normal, fuerza gravitatoria. ¿Sería el Ylem, al que Aristóteles llamó sustancia cósmica primigenia?

3º) La turbulencia tampoco nos vale. El Impulso a través de la turbulencia es una idea simple, cuyas primeras versiones fueron aireadas alrededor de 1950. El postulado es: cualquier proceso tan violento y caótico como las primeras etapas del Big Bang no será como un río profundo y plácido, sino como una corriente de montaña, llena de espuma y turbulencias. En este flujo caótico podemos esperar encontrar remolinos y vórtices de gas. Lo cierto es que, en este maremagnun, era de todo punto imposible que las galaxias se pudieran formar.

La expansión del Universo es contraria a la formación de galaxias y cúmulos
4º) Las Galaxias no han tenido tiempo para formar cúmulos. Quizá estamos encontrando dificultades porque consideramos el problema de las galaxias desde un punto de vista muy estrecho. Quizá lo que deberíamos hacer es ver las cosas en una escala más grande y esperar que si entendemos como se forman los cúmulos de galaxias, la génesis de las galaxias individuales, se resolverá por sí misma. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones muy grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre como puede haber sido el universo cuando los átomos se estaban formando es que no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama modelo isotérmico.

Explicar aquí las implicaciones matemáticas a que nos llevaría explicar el modelo isotérmico, estaría bien pero, no parece imprescindible para finalizar este trabajo que, de manera sencilla, sólo trata de explicar que, las galaxias no se pudieron formar conforme a lo que hemos observado y sabemos del Universo, algo nos falta por saber y, alguna fuerza “oculta” debería haber estado allí presente para evitar que, la materia se dispersara con la expansión de Hubble y las galaxias se pudieran formar.

El material que conforma a las Nebulosas Planetarias, está ionizado por la radiación que emite en el ultra violeta, la estrella enana blanca que tiene en su centro. Los colores dependen de la clase de elementos que allí esté presente
5º) Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmicas sería contradictoria. Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿Dónde hubiera estado? siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta.
:format(jpg)/f.elconfidencial.com%2Foriginal%2Fa8d%2F7d5%2F93c%2Fa8d7d593cacfc33fddc9573f3dad7000.jpg)
La masa y la radiación del Universo primigenio estaban concentrados en una misma cosa
Supongamos que en el comienzo del universo materia y radiación estaban unidas. Si era así, allí donde se encontrara una concentración de masa, también habría una concentración de radiación. En la jerga de la Física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.

Sabemos que, para hacer galaxias, la materia del universo tuvo que estar muy bien distribuida en agregados cuando se formaron los átomos. Pero, todo este resultado choca con uno de los hechos más notables del universo que conocemos. Si consideramos la radiación de microondas, que llega hasta nosotros desde la dirección del Polo Norte de la Tierra, y luego nos volvemos y miramos la radiación que viene del Polo Sur, encontramos que son casi completamente idénticas. De esta notable uniformidad se deduce que cuando la radiación se despareja de la materia deberá de estar muy uniformemente distribuida por todo el universo.

El resultado final es este: lo que el proceso de formación de galaxias requiere del entorno de microondas y lo que observamos de su uniformidad son cosas diametralmente opuestas. Lo primero requiere radiación para ser reunida con la materia; así, si la materia estuviera agrupada cuando los átomos se formaron, habría trazas de esa agrupación en el fondo cósmico de microondas de hoy.
Por otra parte, la uniformidad observada en el entorno de microondas implica que la radiación nunca podría haber estado tan agrupada; si lo hubiera estado, hoy no sería uniforme. Cuando se hacen detallados cálculos numéricos, los astrofísicos encuentran que es imposible conciliar estas dos exigencias en conflicto. La radiación de microondas no puede ser uniforme y no uniforme al mismo tiempo.

Todos los razonamientos anteriores nos llevan a pensar y demuestran muy claramente que, no podemos dar por supuesto un universo lleno de galaxias y, si de hecho lo está, debemos buscar la causa real que lo hizo posible. Explicar ese universo ha sido mucho más difícil de lo que muchos llegaron a pensar y, como se dice en el título de este trabajo, no tenemos una explicación, ni las razones de peso que justifiquen la presencia de las galaxias.
¿Qué había y estaba presente en el comienzo del Universo, que nosotros desconocemos pero que, hizo posible que las galaxias se pudieran formar?
Yo no lo se.
Estamos de nuevo en el punto de siempre: Nuestros conocimientos son limitados. Nuestra ignorancia… ¡Infinita!
Emilio Silvera Vázquez

Pudo surgir en aguas aisladas y calientes bombardeadas por los rayos del Sol


Insectos fosilizados de millones de años de edad
Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo Warrawoona, 3.446 Ga-© Frances Westall.

También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados hace 4.000 millones de años.

Escenas que nos llevan hacia atrás en el tiempo (65 millones de años)
Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, por ejemplo, que el primer ojo o el primer ser fotosintético se remontan aún más en el tiempo de lo que pensábamos.


Podemos leer en las piedras… ¡Cuentan tantas historias!
Con sus tres mil quinientos millones de años de edad, las rocas sedimentarias dispersas por algunas regiones del mundo, por ejemplo, en Australia Occidental (Grupo Warrawoona), nos regalan uno de los primeros atisbos e vida y el en la infancia de la biosfera. Esas rocas contienen estromatolitos y estructuras microscópicas que han sido interpretados como bacterias fósiles, aunque ese extremo aún siga en pleno debate. No obstante, las signaturas químicas proporcionan evidencias sólidas de la antigüedad de la vida, aunque el tipo de biolo´gia responsable de ellas siga siendo incierto. En las investigaciones geológicas de la vida primigenia de la Tierra seguimos mirando a través de un cristal oscuro.
.

¿Será la meditación la manera?
“Los historiadores griegos llamaron Mesopotamia, que significa “país entre ríos”, a un basto territorio que se extendía desde las montañas del Kurdistan, a los montes Zagros y el Golfo Pérsico. Parajes de condiciones climáticas extremas que los ríos Tigris y Eúfrates hacían fértiles y habitables. Allí vivieron, entre otros, los sumerios, los acadios, los qutu, los semitas y los amorreos. Pueblos que cultivaron las bellas artes, idearon la escritura, fundaron las escuelas, iniciaron la medicina, la farmacopea y la química, impulsaron la religión, y crearon la administración para ordenar la vida de los ciudadanos.
Todos sabemos lo que es la masa y, desde la Relatividad Especial sabemos que también es energía


Estructuración del protoplasma-vivo como el plasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas. ¡Cuánto se habría excitado y cuán complacido habría estado Pasteur si hubiera conocido el famoso experimento de Miller! Pese a ser el mismo un teísta, Pasteur estaba convencido de que Dios creó la vida sobre la Tierra combinando precisamente fuerzas químicas y azar. Reconocía también, como sabemos, que los compuestos orgánicos de los seres vivos son ópticamente activos, es decir, poseen una asimetría interna capaz de desviar planos de luz polarizada. Estaba impresionado, con el hecho de que, fuera de los tejidos vivos, los compuestos asimétricos se encuentran siempre en forma racémica: una mezcla de moléculas orientadas a la derecha, y otras, orientadas a la izquierda. Solamente en estos tejidos vivos, los compuestos orgánicos tienen una lateralidad bien definida.

“Ciclofilina: La Ciclofilina A es una enzima presente en el citosol con estructura de barril beta con dos alfa hélices y una beta lámina. Esta ciclofilina, unida a la ciclosporina A, inhibe a la fosfatasa dependiente de calcio/calmodulina, calcineurina.”

Calcineurina, funciones:
“La calcineurina es una enzima dependiente del
calcio y una proteína fosfatasa estimulada por la
calmodulina. Es responsable de la activación de la transcripción de la
interleucina-2 (IL-2), proteína a su vez responsable de la estimulación del crecimiento y diferenciación de los
linfocitos T.”
La calcineurina es una proteína que juega un papel crucial en la regulación del sistema inmunitario y en la función celular. Es una fosfatasa dependiente del calcio y la calmodulina que defosforila ciertos residuos de proteínas, lo que afecta la activación de las células T y la expresión de genes relacionados con la inflamación. Además, la calcineurina puede modular la función de los canales de calcio en las células.

En la imagen 1ª de arriba podemos ver la estructura de molécula de ciclosporina A en forma de corona, izquierda de la imagen (representación de bolas y varillas) y unida a su diana por la que ejerce su función farmacológica (representada como modelo de esferas). Se une a la ciclofilina (en blanco) y esta a su vez a la Calcineurina. Esta última es la encargada de permitir la respuesta inmune de los linfocitos por lo que ésta queda bloqueada. Siempre hemos querido saber sobre el origen de la vida y los secretos que la rodean y cómo apareció en nuestro mundo.

Diapositivas de metabolismo de carbohidratos
El protoplasma-vivo para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj y Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.

Michurín estudió la relación del organismo y el medio. Los fermentos de las estructuras protoplasmáticas determinaban sus reacciones por la velocidad y la dirección, estableciendo una relación con el medio. Se establecía un círculo de fenómenos relacionados y ordenados regularmente. Se producían asimilaciones y desasimilaciones de sustancias orgánicas con el fin de autoconservación y auto-renovación del protoplasma.

En la base de la organización de todo individuo está la célula, y en la célula el protoplasma vivo, en cuya compleja estructura morfológica y química reside el principio de todas las funciones vitales. Inicialmente la organización morfológica de la célula sólo se conocía a través de los medios ópticos. Dentro de los límites de su poder resolutivo; con la introducción del microscopio electrónico amplió notablemente los conocimientos sobre la estructura celular, al conseguirse aumentos hasta 200 veces superior a los obtenidos por los medios ópticos.
Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar la cuestión del proceso del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma vivo, ese sustrato material que será la base de todos los seres vivos, sin excepción.

Cuando se estudia la complejidad del cuerpo Humano, el asombro llega a nuestras mentes. ¿Cómo es posible que se haya podido organizar una estructura tan compleja que funciona a la perfección, sin que haya intervenido ningún arquitecto o Ingeniero? ¿A quien otorgamos la autoría?
A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma vivo era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma vivo, era precisamente, según ellos, la causa específica de la vida. Y, a todo ello, sin olvidarse del Carbono, la base de todo signo de vida que conocemos.

Pero el estudio concreto del protoplasma vivo desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma vivo.

Estructuración del Protoplasma vivo
Es bien conocido que la masa básica del protoplasma vivo es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia coacervática fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma vivo. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.


Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma vivo y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma vivo son dos sistemas distintos y contrarios.
Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma vivo. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma vivo es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.

Es de vital importancia para la formación del protoplasma vivo que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma vivo lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.
Por otra parte, en todo esto debemos tener en cuenta un gente que, siendo ineludible para la vida, está siempre presente en todo lo que a ella concierne. El Agua.

El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en estado sobre-enfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación.

Más rápidos o más lentos, todos los eres vivos se mueven
Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.
Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.

Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.
Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.
Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma vivo, es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.

El ácido pirúvico (ver otros nombres en la tabla) es un ácido alfa-ceto que tiene un papel importante en los procesos bioquímicos. El anión carboxilato del ácido pirúvico se conoce como piruvato. El ácido pirúvico es un compuesto orgánico clave en el metabolismo. Es el producto final de la glucolisis, una ruta metabólica universal en la que la glucosa se escinde en dos moléculas de piruvato y se origina energía (2 moléculas de ATP).
Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.
Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.

Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.
Las encimas
Estructura de la triosafosfato isomerasa. Conformación en forma de diagrama de cintas rodeado por el modelo de relleno de espacio de la proteína. Esta proteína es una eficiente enzima involucrada en el proceso de transformación de azúcares en energía en las células.
La enzimología, al igual que las disciplinas experimentales que han surgido como ramas del tronco común que es la biología, tiene una historia propia construida a través de observaciones, experiencias, pruebas y teorías.
Se inició con el estudio de los procesos de fermentación y de putrefacción y Antoine-Laurente Lavoisier fue el primero en plantear sobre bases cuantitativas el proceso de la fermentación alcohólica, al observar una relación entre cantidad de azúcar presente y productos formados durante el proceso.
Un estudio de la síntesis de distintas sustancias en el protoplasma vivo demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.
No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma vivo.

La Biología Físico-Química
La bioquímica, es la rama de la Química y de la Biología que tiene por objetivo principal el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de Carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas las que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.
Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma vivo y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.
Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma vivo, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.
Hidrógeno


Todos sabemos de su importancia para la vida
En el siglo XVI se observó que cuando el ácido sulfúrico actuaba sobre el hierro se desprendía un gas combustible. En 1766 Henry Cavendish demostró que dicho gas era una sustancia distinta a otros gases también combustibles, confundiendo el gas obtenido, al que llamo <<aire inflamable>>. Provenía del hierro y no del ácido sulfúrico, también demostró que el gas en el aire y en el oxígeno se formaba Agua.

La Atmósfera
Es la capa de gas que rodea a un cuerpo celeste que tenga la suficiente masa como para atraer ese gas. Los gases son atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, con lo que tienen atmósferas muy profundas. Si no se dan ciertos parámetros, el protoplasma vivo de la vida, nunca habría hecho acto de presencia.
– Nitrógeno (78%) y
– Oxígeno (21%)

El 1% restante lo forman el argón (0,9%), el dióxido de Carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de Carbono, helio, neón, kriptón y xenón.
Ozonosfera y sodiosfera

Desde 15 hasta 60 kilómetros de altitud, el ozono, que en las zonas próximas al suelo se encuentra sólo en pequeñas cantidades, aparece en porcentajes más sensibles y forma la ozonosfera. Este ozono absorbe la radiación ultravioleta procedente del Sol, haciendo posible de es modo la existencia de vida en la Tierra.
Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma vivo, y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.

Las propiedades químicas de las sustancias integradoras del protoplasma vivo, en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.
Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma vivo es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.


Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.
En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.
La Teoría Celular


Llegados a este punto debemos profundizar un poco más en la constitución de los seres vivos. Para ello debemos saber la teoría celular, enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).
La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos: todos están compuestos por células y por productos elaborados por ellas. Aunque la idea de que la célula es el “átomo” de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.
La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Anton Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto).


Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sola lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, la existencia de capilares en la membrana interdigital de las ranas.
Ahora sabemos que tanto los paramecios como los organismos superiores están formados por una o más células, almacenan y transportan la energía, duplican su material genético y utilizan la información que ese material contiene para sintetizar proteínas siempre de la misma forma. Todos estos procesos, que están presentes en todas las células, son los que forman la maquinaria de la vida.

Sustancias orgánicas que nos dan las vitaminas
Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.
Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.

Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.
Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.

De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).
En 1878 el biólogo alemán Walter Fleming descubrió que se podían teñir unas estructuras existentes en el interior del núcleo y llamo cromatina a la materia que las formaban.
Como las células de la preparación morían al teñirse, y en una preparación existían células en muy diferentes etapas de crecimiento y división, Fleming pudo estudiar estas etapas y comprender cómo evolucionaba la vida de la célula.
Al comenzar el proceso de división celular la cromatina forma una especie de hilos que se denominan, con mucha lógica, cromosomas (cuerpos coloreados) y Fleming llamó al proceso de división celular mitosis, una palabra griega que significa hilo.
En 1887 el biólogo belga Edouart van Beneden contó el número de cromosomas de células de diferentes especies y llegó a la conclusión de que el número de cromosomas es una característica de la especie. Todas las células humanas tienen 46 cromosomas.
También descubrió que los espermatozoides y los óvulos tenían la mitad de los cromosomas de las células normales, y dedujo que al unirse conservaban todos sus cromosomas, con lo que recuperaban el número característico de la especie.

Tanto Fleming como van Beneden comprendieron que eran los cromosomas del huevo los que determinaban las características del animal que se iba a formar, pero no podían saber el mecanismo por el que lo hacían.
Por entonces se empezó a llamar citoplasma vivo al conjunto de protoplasma vivo y orgánulos que están comprendidos entre el núcleo y la pared o membrana celular, y se empezaron a estudiar estos orgánulos.
Así, en 1898 el biólogo alemán Carl Benda descubrió las mitocondrias, que en griego significa hilos de cartílago. Ahora sabemos que son los órganos que se encargan de la obtención de energía a partir de azúcar y oxígeno. Ese mismo año Golgi descubrió el complejo que lleva su nombre.

Aminoácidos y azúcares de la vida están ahí presentes
Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.
Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.

Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.
Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva.


1.-Todos los seres vivos están formados por células y sus productos. Por tanto la célula es la unidad anatómica del organismo.

2.-Todas las células proceden de otras células preexistentes y éstas, a su vez, de otras células. Esto lo certificaron los viejos científicos con el axioma omnis cellula e cellula, latinajo que significa lo que todos ustedes suponen, que toda célula procede de otra célula.

3.-La célula es la unidad funcional del organismo.

4.-La célula es también la unidad genética del organismo.
Básicamente la célula está formada por tres elementos:
• Núcleo
• Membrana y
• Citoplasma

La membrana envuelve la célula confiriéndole su individualidad. Dicho de otra manera, la célula es una unidad separada de otras células por su membrana.
El citoplasma está formado por un líquido llamado citosol (solución celular) y gran cantidad de gránulos que reciben el nombre genérico de organelos y que más adelante describiremos. Adelantemos que en estos organelos hay una gran actividad ya que se encargan de funciones digestivas y respiratorias.
El núcleo está separado del resto del citoplasma por otra membrana, la membrana nuclear. En su interior se encuentra el material genético que crea los patrones para producir nuevas células con las características de nuestra especie. Una célula humana siempre producirá otra célula humana.
Hablar de nosotros mismos es demasiado complejo para que, científicamente podamos abarcar todo lo que somos ym sólo poco a poco podemos ir comprendiendo la grandeza que en nosaotros está representada como esa parte del universo que piensa, tiene ideas y sentimientos y, en definitiva, es la materia del Universo evolucionada hasta su más alto grado hasta el momento conocido.
Emilio Silvera Vázquez