Feb
23
Estrellas cercanas que podrían faciliar la Vida
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (14)
Hay una veintena de estrellas que se encuentran dentro de un radio de acción marcado por los doce años-luz de distancia al Sol. ¿Cuál de ella se nos presenta como la más probable para que, algunos de sus planetas pudieran albergar alguna clase de vida, incluso Vida Inteligente? La estrella más cercana a nosotros es Alfa Centauri que, en realidad es un sistema estelar situado a unos 4.37 años-luz de nosotros (unos 42 billones de kilómetros). En realidad, se trata de un sistema de tres estrellas.
Esta impresión artística muestra una vista de la superficie del planeta Próxima b orbitando la estrella enana roja Próxima Centauri, la estrella más cercana al sistema solar, el planeta que tal vez pueda albergar vida.
Alfa Centauri contiene al menos un planeta del tamaño terrestre con algo más de la masa de la Tierra que está orbitando a Alfa Centauri B. Sin embargo, su cercanía a la estrella, unos 6 millones de kilómetros lo hace tener una temperatura de más de 1.ooo ºC lo que parece ser muy caliente para albergar alguna clase de vida.
Alfa Centauri, seguramente por su cercanía a nosotros, ha ejercido siempre una sugestiva atracción para nosotros cuando miramos el cielo nocturno. Resulta ser, en su conjunto, la tercera estrella más brillante de todas, y junto con Hadar (Beta Centauri), las dos en la imagen de arriba, es una muy importante y útil referencia para la localización de la Cruz del Sur. Además, y como se trata de una estrella triple, Alpha Centauri A, la componente principal, se constituye en una buena candidata para la búsqueda de planetas del mismo tipo que la Tierra.
Las tres estrellas se formaron a partir de la misma nebulosa de materia interestelar. El trio de estrellas se van orbitando las unas a las otras a un ritmo como de vals, unidas por los lazos invisibles de la fuerza gravitatoria que generan y con la que se influyen mutuamente. Lo cierto es que las estrellas triples gozan de pocas probabilidades para albergar la vida, porque no pueden mantener a sus planetas en una órbita estable y segura, la inestablidad que producen las tres estrellas en esos posibles planetas, parece que sería insoportable para formas de vida inteligente. Claro que, las distancias a las que se encuentran unas estrellas de otras es grande y… ¿Quién sabe? Nunca podemos afirmar nada sin haberlo confirmado.
La siguiente estrella más allá de Alfa Centauri es la estrella de Barnard, situada a 6 años-luz aproximadamente de nuestro Sol, o, lo que es lo mismo, a unos sesenta mil billones de kilómetros de distancia. Esta estrella parece contar con una familia de planetas. Sin embargo, es una estrella muy vieja, casi tanto como el propio universo, y, por tanto, es deficitaria en la mayoría de los elementos químicos esenciales para la vida. Es poco prometedora para buscar vida en sus alrededores.
Las 10 estrellas más cercanas al Sol se encuentran en un rango de distancia entre los 4 y 10 años luz. Para tener una idea, la Vía Láctea mide unos 100.000 años luz, lo cual convierte a estas estrellas en verdaderas vecinas:
- Alfa Centauri (que, en realidad, es un sistema de tres estrellas): a 4,2 años luz.
- Estrella de Barnard: a 5,9 años luz.
- Wolf 359: a 7,7 años luz.
- Lalande 21185: a 8,2 años luz
- Sirio (un sistema binario de estrellas): a 8,6 años luz
- Luyten 726-8 (otro sistema binario): a 8,7 años luz.
- Ross 154: a 9,7 años luz
- Ross 248: a 10,3 años luz
- Epsilon Eridani: a 10,5 años luz.
- Lacaille 9352: a 10,7 años luz
Más allá de Barnard existe un cierto numero de estrellas, todas ellas poco prometedoras para la existencia de vida y de inteligencia porque, o son demasiado pequeñas y frías para emitir la clase de luz que la vida tal como la conocemos requiere, o demasiado jóvenes como para que haya aparecido la vida inteligente en los planetas que las circundan. No encontraremos otra estrella que pueda albergar la vida y seres inteligentes hasta que no viajemos a una distancia próxima a los once años-luz del Sol.
Épsilon Eridani está situada a unos 10,5 años-luz del Sol, es una de las estrellas más cercanas al Sistema Solar y la tercera más próxima visible a simple vista. Está en la secuencia principal, de tipo espectral K2, muy parecida a nuestro Sol y con una masa algo menor que éste, de unas 0,83 masas solares. Es joven, sólo tiene unos 600 millones de años de edad mientras que el Sol tiene 4.600 millones de años.
Epsilon Eridani es un joven espejo del sistema solar
Épsilon emite menos luz visible y luz ultravioleta que nuestra estrella, pero probablemente sea suficiente para permitir allí el comienzo de la vida que, si tenemos en cuenta el corto tiempo que ha pasado, no llegaría a poder ser inteligente. Claro que, los cálculos realizados sobre la vida de las estrellas en general y sobre esta en particular… ¡No son fiables! Y, siendo así (que los), tampoco podemos estar seguro de lo que en sus alrededores pueda estar presente. Se le descubrió un planeta orbitando a su alrededor, Épsilon Eridani b, que se descubrió en el año 2000. La masa del planeta está en 1,2 ± 0,33 de la de Júpiter y está a una distancia de 3,3 Unidades Astronómicas. Se cree que existen algunos planetas de reciente formación que orbitan esta estrella.
Más allá de Épsilon Eridani hay nueve estrellas que se encuentran todavía dentro de un margen de distancia del Sol que no sobrepasan los 12 años-luz. Sin embargo, todas ellas, menos una, son demasiado jóvenes, demasiado viejas, demasiado pequeñas o demasiado grandes para poder albergar la vida y la inteligencia. La excepción se llama Tau Ceti.
Tau Ceti está situada exactamente a doce años-luz de nosotros y satisface todas las exigencias básicas para que en ella (en algún planeta de su entorno) haya podido evolucionar la vida inteligente: Se trata de una estrella solitaria como el Sol -al contrario que Alfa Centauri- no tendría dificultad alguna en conservar sus planetas que no serían distorsionados por la gravedad generada por estrellas cercanas. La edad de Tau Ceti es la misma que la de nuestro Sol y también tiene su mismo tamaño y existen señales de que posee una buena familia de planetas. No parece descabellado pensar que, de entre todas las estrellas próximas a nosotros, sea Tau Ceti la única con alguna probabilidad de albergar la vida inteligente.
¿Quién sabe lo que en algunos de esos planetas que orbitan la estrella Tau Ceti pudiera estar pasando? Y, desde luego, dadas las características de su sistema solar y la cercanía que parece existir entre alguno de los mundos allí presentes, si algún ser vivo inteligente pudiera contempar el paisaje al amanecer, no sería extraño que pudiera ser testigo de una escena como la que arriba contemplamos. ¿Es tan bello el Universo! Cualquier escena que podamos imaginar en nuestras mentes… ¡Ahí estará! en alguna parte.
Es cierto que la vida, podría estar cerca de nosotros y que, por una u otra circunstancia que no conocemos, aún no hayamos podido dar con ella. Sin embargo, lo cierto es que podría estar mucho más cerca de lo que podemos pensar y, desde luego, es evidente que el Sol y su familia de planetas y pequeños mundos (que llamamos lunas), son también lugares a tener en cuenta para encontrarla aunque, posiblemente, no sea inteligente.
Con certeza, ni sabemos cuentos cientos de miles de millones de estrellas puede haber en nuestra propia Galaxia, la Vía Láctea. Sabemos más o menos la proporción de estrellas que pueden albergar sistemas planetarios y, sólo en nuestro entorno galáctico podrían ser cuarenta mil millones de estrellas las que pudieran estar habilitadas para poder albergar la vida en sus planetas.
Estas cifras asombrosas nos llevan a plantear muchas preguntas, tales como: ¿Estarán todas esas estrellas prometedoras dando luz y calor a planetas que tengan presente formas de vida, unas inteligentes y otras no? ¿O sólo lo están algunas? ¿O ninguna a excepción del Sol y su familia. Algunos astrónomos dicen que la ciencia ya conoce la respuesta a esas preguntas. Razonan que la Tierra es una clase de planeta ordinario, que contiene materiales también ordinarios que pueden encontrarse por todas las regiones del Universo, ya que, la formación de estrellas y planetas siempre tienen su origen en los mismos materiales y los mismos mecanismos y, en todas las regiones del Universo, por muy alejadas que estén, actúan las mismas fuerzas, las mismas constantes, los mismos ritmos y las mismas energías.
Gliese 581
Planetas como la Tierra y muy parecidos los hay en nuestra propia Galaxia a miles de millones y, si la vida hizo su aparición en esta paradisíaca variedad de planeta, estos astrónomos se preguntan, ¿por qué no habría pasado lo mismo en otros planetas similares al nuestro? ¿Tiene acaso nuestro planeta algo especial para que sólo en él esté presente la vida? La Naturaleza, amigos míos, no hace esa clase de elecciones y su discurrir está regido por leyes inamovibles que, en cualquier circunstancia y lugar, siempre emplea los caminos más “simples” y lógicos para que las cosas resulten como nosotros las podemos contemplar a nuestro alrededor. Y, siendo así (que lo es), nada aconseja a nuestro sentido común creer que estamos sólos en tan vasto Universo.
emilio silvera
Feb
23
De la Nanociencia a la Nanotecnología. 1ª parte
por Emilio Silvera ~
Clasificado en Física ~
Comments (5)
Es mucho lo que se habla de Nanotecnología y Nanociencia y, la mayoría de las veces, los actores de dichas conversaciones no tienen ni la menor idea de que va todo esto. Así que, para aclarar un poco el panorama y dejar una idea básica de esta moderna disciplina, aquí he transcrito un artículo de los Físicos D. José Angel Martín Gago y Pedro A. Serena Domingo que, fue publicado en la Revista Española de Física, Volumen 23, Número 4 de 2009 y que, para no hacerlo pesado, os pondré en varias partes.
En las fronteras de la Física del estado sólido
“La Nanociencia y la Nanotecnología es un conjunto de conocimientos teóricos y prácticos que nos permiten determinar como se comporta el denominado nano-mundo (el ámbito en el que el tamaño de los objetos tienen entre 1 y 100 nm). A partir de estos conocimientos se están haciendo continuamente interesantes y arriesgadas propuestas sobre nuevos procedimientos, materiales y dispositivos que muy probablemente se convertirán en los bienes de consumo que inundaran nuestras casas, oficinas, hospitales y vehículos, etc. en las próximas décadas. Demos un repaso a este interesante tema.”
Puede decirse que el comienzo de la Nanotecnología se remonta a 1959 cuando el físico y premio Nobel Richard Feynman pronunció en el Instituto de Tecnología de California su ahora famoso discurso. Feynman trató en su conferencia del problema de la manipulación individual de objetos tan pequeños como átomos y moléculas y de las múltiples oportunidades tecnológicas que ofrecería dicha manipulación. En aquel momento su discurso no tuvo una gran repercusión, pero hoy día muchas de sus predicciones se han cumplido con bastante exactitud.
N. Taniguchi
Sin embargo, la palabra “Nanotecnología” fue acuñada en 1974 por el profesor N. Taniguchi de la Universidad de Ciencias de Tokio en un artículo titulado “On the Basic Concept of Nanotechnology”, que se presentó en una conferencia de la Sociedad japonesa de Ingeniería de Precisión. En este contexto la Nanotecnología se presenta como la tecnología que nos permitirá separar, consolidar y deformar materiales átomo a átomo o molécula a molécula.
Feb
22
¡La Complejidad!
por Emilio Silvera ~
Clasificado en Caos y Complejidad ~
Comments (2)
“Un sistema complejo está compuesto por varias partes interconectadas o entrelazadas cuyos vínculos crean información adicional no visible ante el observador como resultado de las interacciones entre elementos. y, así pues, un sistema complejo, posee más información que la que da cada parte independiente.”
Todos hemos oído hablar, con más o menos frecuencia, de “Sistemas Complejos”, aquí mismo en estas páginas, la palabra sale a relucir con cierta frecuencia y, no me extraña que “la palabreja” cree una barrera, dado que, para muchas personas, “complejo” significa “complicado” y suponen automáticamente que, si un sistema es complicado, será difícil de comprender. La naturaleza posee una fuerte tendencia a estructurarse en forma de entes discretos excitables que interactúan y que se organizan en niveles jerárquicos de creciente complejidad, por ello, los sistemas complejos no son de ninguna manera casos raros ni curiosidades sino que dominan la estructura y función del universo.
La Tierra como sistema es un conjunto de cosas separadas que conforma una gran complejidad
Claro que, no siempre ese temor a lo difícil y complicado, está justificado y, tal suposición no es, necesariamente correcta. En realidad, un sistema complejo es tan solo un sistema que está formado por varios componentes más sencillos que ejercen entre sí una interacción mutua que, naturalmente, tiene sus consecuencias. Si miramos la imagen de arriba, vemos una inmensa y hermosa Nebulosa que está formada por una serie de “cosas” sencillas como lo son el gas hidrógeno y el polvo interestelar entre otros y, en presencia de energías, la gravedad y otros parámetros, ahí ocurren cosas tales como, el nacimiento de estrellas y la aparición de mundos…entre otras.
Los grandes triunfos de la Ciencia se han logrado, en gran medida, descomponiendo los sistemas complejos en sus componentes simples, es decir, estudiar por partes lo que allí está presente (en caso necesario, como primera aproximación, dando el paso suplementario de pretender que todos los componentes son más sencillos de lo que son en realidad) para llegar a comprender el todo.
En el ejemplo clásico del éxito que ha logrado este planteamiento para conocer el mundo que nos rodea, buena parte de la química puede entenderse mediante un modelo en el que los componentes simples son átomos, y para eso importa poco de qué están formados los núcleos. Ascendiendo un nivel, las leyes que describen el comportamiento del dióxido de Carbono encerrado en una caja pueden entenderse pensando en unas moléculas más o menos esféricas que rebotan unas contra otras y contra las paredes de su contenedor, y poco importa que cada una de estas moléculas esté formada por un átomo de Carbono y dos de Oxígeno unidos entre sí. Ambos sistemas son complejos, en sentido científico, pero fáciles de entender.
Fijémonos, por ejemplo, en el Campo Magnético Terrestre. En esencia, los planetas generan un campo magnético por efecto dinámo. Para ello se requiere que el planeta rote; debe contener una región con un fluido conductor de la electricidad y debe existir convección en dicho fluido. No se puede asegurar pero parece ser que si en la Tierra no hubiese tectónica de placas el transporte convectivo hacia la superficie podría no tener lugar, la dinamo no funcionaría y el campo magnético terrestre sería prácticamente nulo o, al menos, mucho menor que el actual. Sin la protección que nos brinda el campo magnético, la atmósfera podría desaparecer a causa del continuo bombardeo de las partículas de alta energía procedentes del viento solar. Todos estos componentes son estudiados por separado y, más tarde, los juntamos en un todo que nos lleva a la comprensión de este Sistema Complejo.
Claro que la clave para poder llegar al conocimiento del “sistema complejo” consiste en saber elegir los componentes adecuados sencillos que conforman el todo para poder realizar el análisis necesario que nos lleve hasta las respuestas que buscamos. En muchas ocasiones hemos explicado aquí, lo que hay en las Nebulosas como la de arriba y lo que ocurre en ellas para que, finalmente, nazcan estrellas nuevas.
Hay cuestiones, a un nivel más abstracto del que hemos oído hablar también con cierta frecuencia. Acordaos de que, poco después de que Einstein publicara sus trabajos sobre relatividad especial, el matemático alemán que arriba podéis ver se dio cuenta de que, en cierto modo, el tiempo debía ser considerado como la cuarta coordenada complementaria de las tres coordenadas del espacio. En su discurso de inauguración de la 80 reunión de la Asamblea general alemana de científicos naturales y físicos el 21 de septiembre de 1908 pronunció una célebre frase:
“Las ideas sobre el espacio y el tiempo que deseo mostrarles hoy descansan en el suelo firme de la física experimental, en la cual yace su fuerza. Son ideas radicales. Por lo tanto, el espacio y el tiempo por separado están destinados a desvanecerse entre las sombras y tan sólo una unión de ambos puede representar la realidad”.
Desde entonces el espacio-tiempo cuatridimensional pasó a llamarse espacio de Minkowski. Si empleamos x,y y z para las tres coordenadas del espacio, tomaremos ct para la cuarta coordenada de tiempo, siendo c la velocidad de la luz. Sin embargo debemos multiplicar ct por otro factor que, sin destrozar la armonía del sistema tetradimensional de las coordenadas haga a la coordenada de tiempo físicamente diferente de las tres coordenadas espaciales. La matemática nos suministra precisamente este factor conocido como una “unidad imaginaria” que se designa con el símbolo i (i= raíz cuadrada de -1).

- “Es un hecho notorio que los procesos que ocurren en el universo observable son irreversibles, mientras que las ecuaciones que expresan las leyes fundamentales de la física son invariantes bajo inversión temporal. La emergencia de la irreversibilidad a partir de la física fundamental ha sido un tema que ha preocupado a físicos, astrónomos y filósofos desde que Boltzmann formulara su famoso teorema “H”.
- ¿Es un sistema complejo un fotón? La propiedad del fotón, de la luz, es que es algo que oscila tan rápidamente que en realidad es como si estuviera en dos sitios a la vez, o sea algo que está pero que no está ?
Cómo se entiende algo así
- “¿Tengo que reconocer que está ha sido la incógnita que más me ha costado despejar, todo un desafío a la lógica, a la matemática. Aunque en realidad era sencillo, porque lo cierto es que lo tenía en las narices. ¡Claro! esa es la esencia de nuestra mágica ecuación, e =m.c
2
- , ¡”
masa en movimiento
- !,es decir, más de lo mismo. Digamos que la mecánica cuántica en realidad no es más que la Vida llevada a su mínima expresión.
Los números complejos, con una parte real y otra imaginaria, también juegan un papel esencial en los formulismos de la mecánica cuántica. La propia probabilidad de los sucesos cuánticos llega a expresarse en función de números complejos llamados amplitudes de probabilidad. La probabilidad real se halla a partir de estos números, sumando el cuadrado de su parte real y el cuadrado de su parte imaginaria.
Esto nos da una idea de la importancia de los estos números, tanto en la teoría de la relatividad como en la mecánica cuántica y nos ayuda a introducirnos en la teoría de Hartle-Hawking sobre los comienzos del universo, que supone un universo sin límites y con un tiempo imaginario, como se entiende la parte no real de un número complejo.
En cierta forma los ceros y los infinitos que aparecen en la física clásica son suavizados por la mecánica cuántica: La energía más baja en el vacío no es nunca cero, como tampoco es nunca cero la extensión de un punto físico . La existencia del cuanto de acción impide una energía cero del vacío, como impide la medida exacta, a la vez, de una variación de energía y del tiempo asociado a dicha variación.El punto físico menor sería la llamada longitud de Planck, del orden de 10-35 metros, lo que también elimina el infinito que resultaría de considerar las partículas subatómicas como puntuales: su densidad sería infinita y resultarían microscópicos agujeros negros.
En este Universo nuestro… ¡Todo cambia a medida que el Tiempo pasa!
Según alguna teoría que circula por ahí, si comenzamos en el momento presente y vamos hacia atrás en el tiempo, lo que aparentemente sería el punto origen de la descripción del tiempo real convencional, la naturaleza del tiempo cambia: la componente imaginaria del tiempo se hace más y más prominente hasta que, en último término, lo que debería ser la singularidad de la teoría clásica se desvanece. El Universo existiría porque es una estructura matemática auto-consistente. Puede imaginarse el tiempo real como una línea que va del principio al final del Universo.
El Principio y el final: El BIg Bang y la muerte térmica del Universo
Pero también puede considerarse otra dirección del tiempo en ángulo recto al tiempo real. Esta última se denomina la dirección imaginaria del tiempo. En el tiempo imaginario, no habría ninguna singularidad en la que dejaran de regir las leyes de la Ciencia, ni ninguna frontera del Universo tras la cual tuviera que apelarse a Dios. El Universo no sería creado ni destruido. Simplemente existiría. Quizás el tiempo imaginario sea el auténtico tiempo real y lo que llamamos tiempo real sea sólo un producto de nuestra imaginación. En el tiempo real, el Universo tiene un principio y un fin. En el tiempo imaginario no hay singularidades ni límites.
Tiempo imaginario no se refiere a la imaginación: hace referencia a los números complejos. Como demostraron Einstein y Minkowsky, el espacio-tiempo constituye una geometría cuatridimensional. Es posible ir aún más lejos de estos conceptos. Si se miden las direcciones del tiempo utilizando números complejos, se obtiene una simetría total entre espacio y tiempo, que es, matemáticamente, un concepto muy bello y natural”. Don N. Page: ” En la formulación de la ausencia de límites de Hartle-Hawking, el tiempo es imaginario, y en vez de tener un borde es como si se tratara de la superficie del planeta Tierra. Suponiendo tiempo imaginario, el Universo no tuvo comienzo, no tiene límite, es una totalidad en sí mismo.
He tenido la oportunidad de leer el Libro de Roger Penrose (uno de los físicos actuales más brillantes), titulado, El camino a la realidad, y él nos comenta: “… los números complejos componen una notable unidad con la naturaleza. Es como si la propia naturaleza estuviera tan impresionada por el alcance y consistencia del sistema de los números complejos como lo estamos nosotros, y hubiera confiado a estos números las operaciones detalladas de su mundo en sus escalas más minúsculas”. Se refiere a la mecánica cuántica, pero realmente su importancia se refleja en toda la naturaleza, porque la cosmología, en los primeros instantes del universo se confunde con el mundo microscópico de las partículas elementales.
Claro que, los “Sistemas Complejos” están por todas partes y, tanto ers así que, nosotros mismos somos un buen ejemplo y llevamos con nosotros, el “sistema” más complejo de todos: Nuestro cerebro es, sin dudarlo y hasta donde puede llegar nuestros conocimientos actuales, el más complejo de los sistemas.
Claro que, si hablamos de complejidad de sistemas, el universo sería el mejor de los ejemplos. Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.
Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.
La vida que surgió en el planeta Tierra a partir del polvo de estrellas
¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas.
Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.
Estos son los escenarios en los que se formaron los elementos de la vida
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
¿No es inmensamente complejo todo esto?
Una galaxia es un gran sistema cerrado
En realidad, los Sistemas complejos constituyen y se manifiestan en la inmensa mayoría de los fenómenos observables. Sin embargo, y aquí radica una de sus propiedades más interesantes, la abundancia y diversidad de los sistemas complejos (sean de tipo físicos, químicos, biológicos, sociales, etc.) no implica una innumerable e inclasificable diversidad de conductas dinámicas diferentes. Todo lo contrario, los sistemas complejos poseen propiedades genéricas, independientemente de los detalles específicos de cada sistema o de la base material del mismo.
Primera generacion (1945-1956) Las computadores del Presente
De esta manera, por ejemplo, una computadora construida con bulbos, otra con transistores y una más con relevadores electromagnéticos; serían capaces de realizar, en principio, las mismas tareas de procesamiento de datos. Podríamos incluso ir mas lejos con este ejemplo y agregar que el sistema nervioso humano posee propiedades tales como memoria difusa y reconocimiento de patrones que funcionan de la misma manera en como funciona una computadora de bulbos o de transistores. Lo que comparten, son una estructura interconectada y formada por elementos individuales (neuronas o circuitos electrónicos) que interactúan para intercambiar información y modificar sus estados internos. Ello hace posible la emergencia de fenómenos globales y colectivos semejantes, sin que los detalles materiales del sistema sean del todo relevantes.
De esta manera, es posible identificar propiedades dinámicas similares entre una computadora, el sistema nervioso, el sistema inmunológico, la tectónica de placas, una sociedad de insectos, el crecimiento urbano, las economías de mercado, el tráfico vehicular, etc. a pesar de la aparente disparidad entre estos sistemas.
La aportación fundamental de la ciencia de los sistemas complejos en la tarea de conocer y transformar nuestra realidad, es identificar los principios y fundamentos generales de la operación de dichos sistemas sin importar los detalles particulares de su realización material. Así por ejemplo, podemos imaginar un biólogo del futuro que estudiaría el fenómenos llamado “vida” desde una perspectiva de principios (tal vez leyes?) generales.
Tal biólogo tendría conciencia de que el fenómeno “vida” tal y como existe en la Tierra es tan sólo un caso particular de como “la vida” se ha manifestado bajo las condiciones particulares de la Tierra, expresándose bajo la forma de una realización material muy específica (una bioquímica de carbono dominantemente levógira). Sin embargo, este biólogo estaría preparado para identificar el fenómeno “vida” si acaso fuera detectado en otro planeta o parte del universo bajo otras realizaciones materiales especificas, de la misma manera que un físico hoy en día sabe que la ley de gravitación lo mismo es valida para la superficie de la Tierra que para la superficie de Marte o cualquier otra parte del universo.
No sabemos lo que ahí fuera nos podremos encontrar en un futuro lejano
El ejemplo puede ir aún más lejos. Podemos imaginar un sociólogo del futuro que será capaz de identificar los principios generales del fenómeno “social” independientemente de que este ocurra en grupos humanos, animales, microbios, plantas, robots o incluso, si su colega biólogo tiene suerte, en grupos sociales fuera de nuestro planeta.
¿Estaremos capacitados alguna vez para determinar las partes “sencillas” de los Sistemas Complejos para llegar a saber?
emilio silvera
Feb
21
Velocidades aluninantes
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
Tener la oportunidad de leer a Gerard t´de Hoft, para el aficionado a la Física, puede ser, un auténtico placer. En sus palabras se visualizan los fenómenos que ocurren en el interior del átomo, se comprende como funciona el mundo de las partículas y las interacciones que entre ellas se producen, y, desde luego, se puede llegar a una profundidad de conocimiento que va más allá del nivel ordinario. Para que podáis emitir un veredicto sobre la veracidad de mis palabras, a continuación os transcribo algunos de sus conceptos y maneras de ver la Física.
En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse.
Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas sub-nucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.
Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿Cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.
Feb
20
La energía de nuestro organismo: ¡Las mitocondrias!
por Emilio Silvera ~
Clasificado en Biologia ~
Comments (0)
La mayor parte del material genético se encuentra en los cromosomas en el interior del núcleo de la célula, pero las mitocondrias, unos orgánulos del interior celular que producen la energía que se utiliza en el metabolismo, también contienen una pequeña cantidad de ADN denominado ADN mitocondrial.
Las alteraciones del material genético de las mitocondrias es la causa de algunas enfermedades que se transmiten con un patrón característico debido a que las mitocondrias solo se heredan de la madre. Todos los hijos e hijas de una mujer afectada heredarán las mitocondrias con la mutación y serán afectados por la enfermedad (figura 1), mientras que ninguno de los hijos e hijas de un hombre afectado heredaran la alteración ni desarrollaran la enfermedad (figura 2).
Figura 1. Patrón de herencia mitocondrial cuando la madre está afectada (azul).


Nuestros cuerpos contienen aproximadamente diez mil billones de unos bichitos llamados mitocondrias, que invadieron a los antepasados de nuestras células hace alrededor de mil millones de años. Las mitocondrias están acostumbradas a vivir dentro de nosotros, y nosotros nos hemos acostumbrado de tal manera a tenerlas por todas partes, que ahora no podemos vivir separados. Ellas forman parte de nosotros y nosotros formamos parte de ellas.
Producen casi toda nuestra energía y nosotros nos encargamos de alimentarlas y cobijarlas. Nuestras mitocondrias tienen todavía su propia ADN, heredado sólo de nuestras madres, por lo que este ADN podría proceder de una única mujer que estaría en el origen de los seres humanos actuales: una Eva mitocondrial.
La Eva mitocondrial madre de todos los seres humanos
Pero estos huéspedes celulares que parecen vivir pacíficamente en simbiosis con el resto de las células, puede ser también ser un enemigo que mata silenciosamente desde dentro. Siempre que una célula muere, hay una serie de pistas que conducen a las mitocondrias y que muestran como están implicadas en enfermedades devastadoras e incapacidades físicas o mentales, así como en el propio proceso de envejecimiento. El invitado indispensable se convierte en asesino en serie de proporciones monstruosas.
La diferencia entre una célula del hígado normal y otra cancerosa es demostrada aquí claramente por la localización de las mitocondrias (coloración roja) . La célula sana a la izquierda, demuestra muy pocas mitocondrias cerca de la pared de externa de la célula. Como puede ver, se mantienen densamente arracimadas (agrupadas) alrededor del núcleo de la célula (representado aquí como el agujero central negro). En la célula del cancerosa a la derecha, las mitocondrias se disgregan a través de la célula, no se arraciman. Observe el color rojo apagado de las mitocondrias disfuncionales. Fotografía obtenida con la tecnología Sandia’s biocavity laser
Casi todas las células de nuestro cuerpo contienen mitocondrias –alrededor de mil cada célula-. El “mitocondrión” es una bestia incansable que no cesa de adoptar formas distintas. Si se captara su aspecto en una única foto instantánea poco favorecedora, se vería algo parecido a un gusano, pero un gusano que se retuerce, se divide en dos y se fusiona con otros gusanos. Así pues, en ocasiones podemos captar un mitocondrión que parece un zepelín, y otras veces algo parecido a un animal con múltiples cabezas o colas, o bien podríamos ver una red de tubos y láminas que se entrecruzan. El mitocondrión es un monstruo antiguo y maternal – un dragón con un apetito monstruoso, que se come a su vez todo lo que nosotros hemos comido y lo respira a continuación en forma de fuego.
Las mitocondrias consumen prácticamente todo el alimento y el oxígeno que se introduce en el cuerpo, y producen la mayor parte del calor que éste genera. Sin embargo, este monstruo es diminuto –su tamaño es de una micra, es decir, una milésima de milímetro: mil millones de mitocondrias cabrían en el interior de un grano de arena.
Las mitocondrias tienen su propio ADN y su propia identidad, pero esto no significa ningún litigio entre ellas y nosotros. En parte somos mitocondrias; ellas constituyen aproximadamente un décimo del volumen de todas nuestras células juntas, una décima parte de cada uno de nosotros.
Dado que son prácticamente la única parte de la célula que tiene color, las mitocondrias constituyen el color de nuestras células y nuestros tejidos. Si no fuera por la melanina de nuestra piel, la mioglobina de nuestros músculos y la hemoglobina de nuestra sangre, seríamos del color de las mitocondrias, es decir, de un rojo amarronado. Además, si esto fuera así, cambiaríamos de color cuando hiciéramos ejercicio o corriéramos hasta perder el aliento, de tal forma que podría decir si alguien está usando mucha o poca energía…
Las mitocondrias son las centrales eléctricas de nuestras células y producen casi toda nuestra energía. No obstante, son unas centrales eléctricas con bastantes fugas de energía, lo cual tiene unas consecuencias terribles.
Guy Brown
“Llegué a creer (dice Guy Brown, autor de todas estas ideas e investigaciones) que los productos del diseño biológico (evolutivo) –la vida y todas sus manifestaciones- eran mucho más eficientes y eficaces que algunos productos de la creatividad humana, tales como las máquinas y la cultura. Nos han enseñado que mil millones de años de evolución han perfeccionado el diseño de la célula hasta tal punto que ningún diseñador humano podría mejorarlo, ningún avaro podría economizar más en el uso de energía, ningún técnico de gestión podría mejorar la adjudicación de recursos, ningún ingeniero podría lograr que hubiera menos fallos en el funcionamiento. Está ampliamente difundida la creencia de que la cultura humana no debería interferir con la naturaleza, porque la naturaleza está mejor diseñada que la cultura, y esta creencia causa el temor de que los científicos se entrometan en la naturaleza, como sucede en la medicina, la ingeniería genética, la clonación o los pesticidas.”
Los cloroplastos son orgánulos aún mayores y se encuentran en las células de plantas y algas, pero no en las de animales y hongos. Su estructura es aún más compleja que la mitocondrial: además de las dos membranas de la envoltura, tienen numerosos sacos internos formados por membrana que encierran el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía, y va acompañado de liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.
Sean cuales sean los méritos de esas creencias, lo cierto es que, nuestras células ciertamente no son tan eficientes como creíamos que eran. Un ejemplo sería lo que parece un defecto espectacular en el diseño de nuestras mitocondrias: tienen fugas. La electricidad de electrones se escapan de las mitocondrias para producir radicales libres no tóxicos, y la electricidad de protones se escapan produciendo calor: no se trata de fugas pequeñas o insignificantes, sino que son grandes y constituyen una amenaza para la vida.
Lo que no podemos poner en duda es, el hecho cierto de que, nuestro complejo organismo está inmerso en una variedad y en una diversidad rica en parámetros que deben cumplir unos cometidos predeterminados que llevan a un todo simétrico de engranaje perfecto y, cuando algo falla en él, el sistema se reciente y el funcionamiento decae.
La célula se define como la unidad mínima de un organismo capaz de actuar de manera autónoma. Todos los organismos vivos están formados por células, y en general se acepta que ningún organismo es un ser vivo si no consta al menos de una célula. Algunos organismos microscópicos, como bacterias y protozoos, son células únicas, mientras que los animales y plantas están formados por muchos millones de células organizadas en tejidos y órganos. Aunque los virus y los extractos acelulares realizan muchas de las funciones propias de la célula viva, carecen de vida independiente, capacidad de crecimiento y reproducción propios de las células y, por tanto, no se consideran seres vivos.
La biología estudia las células en función de su constitución molecular y la forma en que cooperan entre sí para constituir organismos muy complejos, como el ser humano. Para poder comprender cómo funciona el cuerpo humano sano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen.
Entre las células procariotas y eucariotas hay diferencias fundamentales en cuanto a tamaño y organización interna. Las procariotas, que comprenden bacterias y cianobacterias (antes llamadas algas verdeazuladas), son células pequeñas, entre 1 y 5 µm de diámetro, y de estructura sencilla; el material genético (ADN) está concentrado en una región, pero no hay ninguna membrana que separe esta región del resto de la célula.
Las células eucarióticas, que forman todos los demás organismos vivos, incluidos protozoos, plantas, hongos y animales, son mucho mayores (entre 10 y 50 µm de longitud) y tienen el material genético envuelto por una membrana que forma un órgano esférico conspicuo llamado núcleo. De hecho, el término eucariótico deriva del griego núcleo verdadero, mientras que pro-cariótico significa antes del núcleo.
Citoplasma y citosol
El citoplasma comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos, como se describirá más adelante. La solución acuosa concentrada en la que están suspendidos los orgánulos se llama citosol. Es un gel de base acuosa que contiene gran cantidad de moléculas grandes y pequeñas, y en la mayor parte de las células es, con diferencia, el compartimiento más voluminoso (en las bacterias es el único compartimiento intracelular). En el citosol se producen muchas de las funciones más importantes de mantenimiento celular, como las primeras etapas de descomposición de moléculas nutritivas y la síntesis de muchas de las grandes moléculas que constituyen la célula. Aunque muchas moléculas del citosol se encuentran en estado de solución verdadera y se desplazan con rapidez de un lugar a otro por difusión libre, otras están ordenadas de forma rigurosa.
El citoplasma de las células eucariotas se encuentra atravesado por un conjunto de tubos, vesículas y cisternas, que presentan la estructura básica de la membrana citoplásmica. Entre esos elementos existen frecuentemente intercomunicaciones, y adoptan la forma de una especie de red, entre cuyas mayas se encuentra el citoplasma. Este sistema membranoso es llamado en la actualidad sistema vacuolar citoplásmico, integrándose en él la membrana nuclear, el retículo endoplásmico y el complejo de Golgi. Estas estructuras ordenadas confieren al citosol una organización interna que actúa como marco para la fabricación y descomposición de grandes moléculas y canaliza muchas de las reacciones químicas celulares a lo largo de vías restringidas.
Es tan amplio el tema que estamos tratando que, de un tema me paso a otro y, podemos perder la visión de lo que queríamos expresar, así que finalizaré con las mitocondrias y su función principal.
La principal función de las mitocondrias es generar energía para mantener la actividad celular mediante procesos de respiración aerobia. Los nutrientes se escinden en el citoplasma celular para formar ácido pirúvico que penetra en la mitocondria. En una serie de reacciones, parte de las cuales siguen el llamado ciclo de Krebs o del ácido cítrico, el ácido pirúvico reacciona con agua para producir dióxido de carbono y diez átomos de hidrógeno. Estos átomos de hidrógeno se transportan hasta las crestas de la membrana interior a lo largo de una cadena de moléculas especiales llamadas coenzimas. Una vez allí, las coenzimas donan los hidrógenos a una serie de proteínas enlazadas a la membrana que forman lo que se llama una cadena de transporte de electrones.
La cadena de transporte de electrones separa los electrones y los protones de cada uno de los diez átomos de hidrógeno. Los diez electrones se envían a lo largo de la cadena y acaban por combinarse con oxígeno y los protones para formar agua.
La energía se libera a medida que los electrones pasan desde las coenzimas a los átomos de oxígeno y se almacena en compuestos de la cadena de transporte de electrones. A medida que éstos pasan de uno a otro, los componentes de la cadena bombean aleatoriamente protones desde la matriz hacia el espacio comprendido entre las membranas interna y externa. Los protones sólo pueden volver a la matriz por una vía compleja de proteínas integradas en la membrana interior. Este complejo de proteínas de membrana permite a los protones volver a la matriz sólo si se añade un grupo fosfato al compuesto difosfato de adenosina (ADP) para formar ATP en un proceso llamado fosforilación.
El ATP se libera en el citoplasma de la célula, que lo utiliza prácticamente en todas las reacciones que necesitan energía. Se convierte en ADP, que la célula devuelve a la mitocondria para volver a fosforilarlo.
¡Mitocondrias! Parte de nuestro sistema interno. Sin ellas, no podríamos vivir y, hace ya mucho tiempo que, humanos y mitocondrias hicieron un contrato para formar, esa simbiosis que nos une desde tiempos ancestrales.
emilio silvera