martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Inmensidad del Universo y, la “pequeñez” de los seres…

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 
     Una serie de factores coincidieron en la formación del planeta Tierra para que, en él, surgiera la Vida

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. Según los los datos que tenemos la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.

Real Circulo de Labradores | 17 de enero, conferencia 'La Tierra primitiva  y el origen de la vida'

Como todo en nuestro Universo, la Tierra primitiva evolucionó, llegó el Oxígeno y una atmósfera amable para que, los seres vivos que ahora la poblamos, encontráramos en ella un exo-sistema ideal para la vida.

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

Atmósfera terrestre: composición, capas, funciones - LifederCómo se llenó de oxígeno la atmósfera de la Tierra | Ciencia | EL PAÍS

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la foto-disociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

     La imagen del cielo de Canarias nos puede servir para mostrar una atmósfera acogedora para la vida

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

File:Ammonia World.jpg

Es cierto que la realidad puede ser mucho más imaginativa de lo que nosotros podamos imaginar. ¿Habrá mundos con formas de vida basadas en el Silicio? Aunque me cuesta creerlo, también me cuesta negarlo toda vez que, la Naturaleza nos ha demostrado, muchas veces ya, que puede realizar cosas que a nosotros, nos parecen imposibles y, sin embargo, ahí está el salto cuántico… Por ejemplo.

El coronavirus es un ser vivo?Artículo Periodístico 351º: “¿Vida inteligente extraterrestre?” - La Voz de  La Palma | La Voz de La Palma

La Vida está ahí fuera, y, como en la Tierra, la habrá “inerte”, es decir, no consciente, y, también es lógico pensar que otras sean parecidas a la nuestra, conscientes de Ser, con las diferencias normales de su habitat

Los biólogos, por ejemplo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Vida en el Universo
VIDA EN EL UNIVERSO

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

        Para nosotros ha pasado mucho tiempo, y, sin embargo, para el Universo ha sido solo un instante

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

          No podemos saber si alguien nos observa

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente. Precisamente por eso, hay que suponer que en todas las regiones del Universo, por muy lejos que puedan estar, las cosas serán las mismas que aquí podemos observar, y, la vida, no sería una excepción, sino la regla.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN PUEDEN VERSE AFECTADOS DE MANERA ADVERSA. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por Mde espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

Planetario Galileo Galilei

Observamos el inmenso Universo tratando de desvelar sus secretos

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más. De todas las maneras, nosotros somos una parte esencial del universo: La que siente y observa, la que genera ideas y llega a ser consciente de que es, ¡la parte del universo que trata de comprender!

emilio silvera

Nuevos Materiales, nuevos procesos, nuevos dispositivos. II

Autor por Emilio Silvera    ~    Archivo Clasificado en Física... ¡Y mucho más!    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Una investigación ha desarrollado una nueva estructura cuántica capaz de emitir fotones individuales de color rojo. El avance, que se publica en la revista Nature Materials, se basa en el confinamiento cuántico que se genera en cada uno de los puntos y que les permite modular la energía de la luz que emiten.

En este trabajo han participado investigadores de la Universidad de Zaragoza, el Institut de Recerca en Energia de Catalunya (IREC), la Universidad de Barcelona y del Instituto de Ciencia de Materiales de Barcelona del CSIC. El investigador Jordi Arbiol de este último explica:

“El resultado final son hilos unidimensionales, de tamaño nanométrico, compatibles con la tecnología electrónica actual, que permitirían crear dispositivos a mayor escala con un control total de la emisión de luz, fotón a fotón”.

Pero centrémonos en el trabajo que aquí se presenta hoy y que comienza hablando de los…

Resultado de imagen de nanohilos cuánticos

Nanohilos

No sólo las moléculas, los Nanotubos o el grafeno son las apuestas para sustituir al silicio. Otros elementos como los Nanohilos fabricados a partir de materiales semiconductores o los Nanohilos metálicos tendrán también cierto protagonismo. En concreto, los Nanohilos semiconductores presentan un gran potencial como transistores pero también presentan aplicaciones en campos como octoelectrónica o en la fabricación de censores biológicos. Por otro lado los Nanohilos metálicos, cuya síntesis controlada es más difícil, poseen gran interés como interconectores.

Los semiconductores abaratarán el precio de la electrónica de los coches  eléctricos - Tecnología - Híbridos y Eléctricos | Coches eléctricos,  híbridos enchufablesIndustria electrónica - GIRBAU

                                                                           Nanohilos superconductores

En el caso de los Nanohilos formados de materiales Ni, Co o Fe se puede aprovechar también su potencial comportamiento magnetorresisitivo para ser usados en dispositivos de almacenamiento magnético. Los Nanohilos metálicos son interesantes a su vez porque los efectos de tamaño inducen en ellos la aparición de transiciones de fase martensíticas y la aparición de configuraciones no cristalinas.” Veamos que pasa con las Nanopartículas.

                                   Nanopartículas

Quizás, junto a los nanotubos de carbono, las nanopartículas representan los materiales que tienen una repercusión tecnológica más inmediata. Además de sus propiedades intrínsecas, las nanopartículas representan los materiales que tienen una repercusión tecnológica más inmediata. Además de sus propiedades intrínsecas, las nanopartículas, debido a su pequeño tamaño, pueden convertirse en diminutos dispositivos capaces de  realizar otras funciones, como transportar un medicamento específico por el torrente sanguíneo sin obstruirlo. Para lograr esto, las nanopartículas deben ser el soporte de capas de moléculas auto-ensambladas que confieren una funcionalidad adicional a las mismas.

Qué son las nanoparticulas? Descubre los tipos y aplicaciones | Nanotec

Como su propio nombre indica, el término “nanopartícula” designa una agrupación de átomos o moléculas que dan lugar a una partícula con dimensiones nanométricas. Es decir, que su tamaño está comprendido entre 1 y 100 nm. Dependiendo de cuáles sean los átomos o moléculas que se agrupan se originarán diferentes tipos de nanopartículas. Así, por ejemplo, tendremos nanopartículas de oro, de plata o nanopartículas magnéticas si están formadas por átomos de Fe o Co. Su pequeño tamaño hace que la relación superficie/volumen crezca y por tanto que estas estructuras tengan unas propiedades características y esencialmente distintas a las que presenta el material en volumen.

Una estrategia para la formación de nanopartículas es recubrirlas con distintas capas de manera tal que cada una aporte funcionalidades diferentes al sistema. Así, por ejemplo, recientemente se han descrito nanopartículas cuyo interior está formado por un material magnético, como el Co, seguido de una capa intermedia de SiO2 que aporta estabilidad al sistema y finalmente una superficie de oro.

El tamaño final de la nanopartícula es de 3 nm, y esta estructura laminar hace que tengan un núcleo magnético que posibilite su guiado, y una superficie de oro que facilite  el auto-ensamblado de moléculas orgánicas o biológicas para diferentes  aplicaciones. Entre éstas destaca su uso como biosensores. Para ello se inmoviliza material biológico, como ácido desoxirribonucleico (ADN) o el llamado ácido nucleico péptidico (PNA, del inglés peptide nucleic acid), que siendo un ácido nucleico artificial, presenta un “esqueleto” molecular formado por enlaces peptidicos y una estructura de bases nucleicas exactamente igual a la del ADN. El PNA puede reconocer cadenas complementarias de ADN, incluso con mayor eficiencia para la hibridación que la que representa el ADN para reconocer su hebra complementaria.

MoléCulas BiolóGicasBloques básicos de construcción de moléculas biológicas | Khan Academy en  Español - YouTubeMOLÉCULAS BIOLÓGICAS. - ppt descargarque diablos son las biomoleculas? aqui lo sabras - Docsity

Por este motivo, el PNA se ha propuesto como sonda para la fabricación de biosensores altamente eficientes. Estas macromoléculas unidas a superficies o nanopartículas son capaces de detectar diferentes analitos de interés, particularmente otras moléculas biológicas.

Sin embargo, el concepto de nanopartícula debe concebirse en un sentido más amplio ya que no sólo puede estar basada en un núcleo inorgánico, pudiéndose sintetizar nanopartículas poliméricas. Yendo un poco más allá una cápsida vírica puede entenderse como una nanopartícula formada por una carcasa proteica. Esta cápsida vírica tiene dimensiones  nanométricas y, en muchos casos, burla con facilidad las membranas celulares. Por esta razón este tipo de “nanopartículas” se proponen para su uso en nanomedicina, y son el objeto de estudios básicos  en los que las herramientas como los microscopios de fuerzas atómicas juegan un papel esencial. En particular, estas herramientas nos permiten caracterizar las propiedades mecánicas y las condiciones de ruptura de cápsidas víricas así como la forma en la que dichas cápsidas se comportan ante, por ejemplo, cambios controlados de humedad.

Aplicaciones de la Nanotecnología, ejemplos y ventajas - IberdrolaQué es la nanotecnología y cuál es su funcionamiento? - Como Funciona QueE-Health Reporter | Nanotecnología: la medicina del futuro?El impacto estratégico de la nanotecnología

Las nuevas técnicas aplicadas a la nanotecnología están implicadas en muchos ámbitos de los adelantes futuros que ahora, ni podemos imaginar.

En un discurso recientemente impartido en la Universidad Europea de Madrid, William F. Clinton, ex-Presidente de los EE.UU, afirmó que ” el cometido del siglo XXI será salvar al mundo del cambio climático, regenerar la economía y crear empleo. El futuro más allá será la Nanotecnología y la biotecnología”. El propio W.F. Clinton fue el impulsor de la Iniciativa Nacional de Nanotecnología durante su mandato, convirtiendo durante los últimos 10 años a EE.UU en el líder mundial en la generación de conocimientos básicos y aplicados en el ámbito de la Nanotecnología.

Reseña de la nanotecnología | NanovaNanotecnología para el lavado de coches - My Cars FirstHistoria de la Nanotecnologia – NANOTECNOLOGIA-BIOTECNOLOGIA-BIOINGENIERIADesde tatuajes inteligentes hasta combustible para misiles: Los últimos  avances en nanotecnología

Nadie pone en duda las afirmaciones de W.F. Clinton sobre el papel de la Nanotecnología en nuestro futuro a medio y largo plazo, por lo que es imperativo estar suficientemente preparados para construir este nuevo paradigma científico. En el caso concreto de España, las dos últimas ediciones del Plan Nacional de I+D+I han encumbrado las investigaciones en Nanociencia y Nanotecnología a la categoría de Acción Estratégica. En la actualidad se están poniendo en marcha varios centros dedicados a Nanotecnología. Dichas iniciativas son producto, por lo general, de costosos impulsos puntuales, locales, dirigidos por científicos con iniciativa, pero no son fruto de una actuación de conjunto, planificada siguiendo una estrategia  quiada por unos objetivos ambiciosos, en los que impere la coordinación y el uso eficiente de los recursos. La actual coyuntura económica no invita al optimismo a este respecto, por lo que sería necesario poner en marcha iniciativas que promuevan la adquisición de infraestructuras, la formación de técnicos, la coordinación entre centros emergentes, etc.

Otro punto sobre el que no hay que descuidarse tiene que ver con la formación, en todos los niveles educativos, en Nanotecnología. En este sentido son numerosas las universidades españolas que ofrecen cursos de master y/o doctorado con contenidos relacionados con la Nanotecnología. Sin embargo, muchos de estos cursos tienen pocos estudiantes inscritos, al igual que ocurre con muchos estudios de grado relacionados con las ciencias básicas. La tarea de fascinar y atraer a nuestros jóvenes hacia la ciencia debe comenzar mucho antes. En este sentido, los conceptos inherentes a la Nanotecnología deben formar parte del conocimiento que debe llegar a los estudiantes de educación secundaria, como ocurre en países como Alemania, Finlandia, Taiwán, Japón, EE.UU., etc. Además, la Nanotecnología es una materia que causa cierta fascinación a los adolescentes por lo que puede ser un buen punto de partida para incentivar las vocaciones científicas. Esta ha sido una de las principales razones por las que los autores de este artículo junto con otros investigadores (Carlos Briones del Centro de Astrobiología y Elena Casero de la Universidad Autónoma de Madrid) accedieron a la petición de la Fundación Española de Ciencia y Tecnología (FECyT) para escribir una Unidad Didáctica de Ciencia y Tecnología. Dicho libro ya se encuentra en todos los institutos españoles de educación secundaria y bachillerato, y se puede descargar desde la web de la FECyT. Esperemos que esta pequeña contribución, junto con otras de mayor calado que deben promoverse desde las diversas administraciones públicas, permita tomar la senda que nos lleve a medio plazo hacia la tan ansiada sociedad basada en el conocimiento.

Nanotecnología para el lavado de coches - My Cars First

Fuente: Revista Española de Física. Volumen 23 Nº 4 de 2009

Los Autores:

D. José Ángel Martín Gago, del Instituto de Ciencia de Materiales de Madrid, Concejo Superior de Investigaciones científicas, Centro de Astrobiología /CSIC/INTA), Instituto Nacional de Técnica Aeroespacial, y, D. Pedro A. Serena Domingo, del Instituto de Ciencia y Materiales de Madrid y del Consejo Superior de Investigaciones Científicas.

¡Increíbles estructuras!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Recreación artística de un agujero negro. /NASA/JPL-Caltech

Un enorme agujero negro, cien mil veces más masivo que el Sol, se ha encontrado detrás de una nube de gas tóxico que flota alrededor del corazón de la Vía Láctea. Este gigante invisible sería el segundo más grande que se ha visto en nuestra galaxia después de Sagitario A, el agujero negro super-masivo ubicado en su centro. El nuevo descubrimiento, publicado en Nature Astronomy es la mejor evidencia de una clase de agujeros negros de masa intermedia, cuya existencia podría explicar cómo crecen los agujeros negros super-masivos.

Presentada la galaxia más lejana descubierta hasta ahora | Ciencia | EL PAÍSObservatorio W. M. Keck - Wikipedia, la enciclopedia libreEstrellas orbitando durante 20 años el agujero negro central de nuestra  galaxia | Microsiervos (Ciencia)Hallada la estrella más cercana al agujero negro central de la Vía Láctea |  www-revista.iaa.es

En el centro galáctico se observan estrellas que llevan más de 20 años dando vueltas alrededor del Agujero Negro que allí habita.

 Imagen del centro de nuestra galaxia, la Vía Láctea, donde hay un agujero negro. Un agujero más masivo tendrá un mayor horizonte de sucesos (la frontera a partir de la cual nada, si siquiera la luz, puede escapar). Un agujero de 10.000 millones de soles en el centro de la Vía Láctea tendría un horizonte inmenso.

Los dos agujeros negros más masivos que se encontraron hasta la fecha fueron hallados en el corazón de dos galaxias gigantes, situadas a varios cientos de millones de kilómetros de la Tierra. Los agujeros negros tienen una masa más de 10 mil millones de veces mayor a la del Sol, un récord, indica un artículo publicado en la revista científica Nature.

 

Casi siempre la unión de dos agujeros negros gigantes vienen de la mano de la colisión de las galaxias que los contienen en su centro galáctico. Y, además de que la galaxia se transmuta en una sola mayor, el agujero también.

Localizan cientos de agujeros negros gigantes que no paran de crecer

Localizan cientos de agujeros negros gigantes que no paran de crecer (Texto completo en: http://actualidad.rt.com/ciencias/view/55686-localizan-cientos-agujeros-negros-gigantes-paran-crecer) La noticia nos dice que la nueva concentración está tan alejada de la Tierra que está literalmente situada “al borde del Tiempo”,  ya que algunos se encuentran a una distancia de varios miles de millones de años luz de la Tierra.

Más allá de ellos se extiende un horizonte de fenómenos, detrás del cual se encuentran objetos tan distantes y antiguos, que su radiación nunca nos alcanzará. El objeto más alejado descubierto en el estudio es un agujero negro súper-masivo llamado ULASJ1234+0907.
272 263
Se encuentra en la dirección de la constelación de Virgo, tan alejada que la luz que emite ha tardado 11.000 millones de años en alcanzar la Tierra, por lo que lo vemos igual a como era en el Universo temprano. La masa de este objeto monstruoso es de aproximadamente 10.000 millones de masas solares y además supera 10.000 veces la masa del agujero negro ubicado en el centro de nuestra Vía Láctea, lo que lo convierte en uno de los agujeros más masivos jamás vistos.
La órbita de una estrella alrededor de un agujero negro de la Vía Láctea  volvió a confirmar la Teoría de la Relatividad de Albert Einstein - InfobaeCuántas estrellas absorbe un agujero negro? | PúblicoLa mayor predicción de Einstein, comprobada por primera vez alrededor de un  agujero negroPor qué Einstein no pudo aceptar los agujeros negros?Un test de la relatividad general en el agujero negro supermasivo de la Vía  Láctea | Actualidad | Investigación y CienciaPresencian la espaguetización de una estrella según es devorada por un agujero  negro | Ciencia
                                 Finalmente, la estrella se espaguetiza y es engullida por el A.N.
Unos astrónomos estadounidenses han descubierto la existencia de una estrella que gravita alrededor de un agujero negro super-masivo en el corazón de la Vía Láctea, el astro más cercano jamás encontrado junto a este cuerpo devorador de materia. El equipo de científicos de la Universidad de California, en Los Ángeles (UCLA), afirman que el descubrimiento ayudará a probar la teoría de la relatividad general de Einstein y sus predicciones acerca de cómo los agujeros negros curvan el espacio y distorsionan el tiempo.

La estrella, bautizada como SO-102, está orbitando cerca del agujero negro situado en el centro de la Vía Láctea cada 11 años y medio terrestres, mucho más rápido que los 60 años o más que normalmente les lleva al resto de las estrellas orbitar alrededor del mismo. Esta es la segunda estrella descubierta que presenta una órbita tan corta, -la otra, SO-2, gravita alrededor del agujero negro cada 16 años- gracias a nuevas técnicas mejoradas de imagen.

 

 

 

 

El agujero negro situado en el centro de la Vía Láctea, conocido como Sagitario A, ha expulsado la llamarada de rayos X más brillantes jamás observada hasta ahora, según ha informado la NASA. Según han explicado los expertos, Sagitario A lanza estas llamaradas una vez al día, aunque de menos intensidad, sin que aún conozca la razón de este fenómeno.
Lo cierto es amigos míos que, noticias de este tipo, se producen con mucha frecuencia cada vez a medida que los ingenios tecnológicos van ganando en prestaciones y precisión. Ya es difícil dudar de la existencia de estos “monstruos” devoradores de materia a los que, de momento no hemos llegado a conocer tan bien como nos gustaría y esconde algunos secretos que debemos desvelar, ya que, en esos secretos pueden estar encondidas algunas importantes respuestas a preguntas planteadas que nadie ha sabido contestar.
M42: La Gran Nebulosa de Orión | Imagen astronomía diaria – Observatorio |  MENADEL PSICOLOGÍA Clínica y Transpersonal Tradicional (Pneumatología)
                      La Nebulosa de Orión es una de las más grandes maravillas del cielo nocturno
Es mucho lo que desconocemos incluso estando situados en “nuestra vecindad”. La última noticia que me llega es que “Un equipo de investigadores, entre ellos Hervé Bouy, del Centro de Astrobiología (CSIC-INTA), ha descubierto lo que parece ser un cúmulo estelar “camuflado” entre la Tierra y la Nebulosa de Orión. La investigación aparece en la revista Astronomy&Astrophysics“.
Qué pasaría si una persona cayera en un agujero negro?
      Agujeros negros gigantes con miles de masas solares que ejercen una fuerza gravitatoria inevitable
Pero siguiendo con el tema de esta portada, los agujeros negros gigantes, lo cierto es que hablamos de ello pero, en realidad, no somos conscientes de la enormidad del objeto. Pensemos que nuestro Sol (el objeto más grande del Sistema solar), ya nos resulta inmenso y tiene una masa de 1,989 x 1030 kg y nos hablan de agujeros negros con masas ¡10.000 millones de veces superiores! ¿Qué estragos no podrán causar éstos monstruos del espacio en sus inmediaciones? ¡Pobres estrellas que pasen por allí!
Descubren el agujero negro más cercano a la Tierra
Esta ilustración muestra las órbitas de los objetos en el sistema estelar triple HR 6819. El sistema consta de una estrella interior (órbita en azul) y un agujero negro (órbita en rojo), así como una tercera estrella en una órbita más amplia (también en azul).
Nuestra suerte ha sido que no tenemos ninguno por las inmediaciones del Sistema Solar y, el más cercano que conocemos está bastante alejado de nosotros como para que nos tengamos que preocupar. ¿Os imaginais lo que serán las fuerzas de marea producidas por semejante gigante? El Tiempo y el Espacio se distorsionaran en su presencia y haría imposible situarse cerca para poder observarlo.
              Imagen de 3C273 recogida por el Telescopio Espacial Hubble.
3C273 es un quásar radio-silencioso, y fue también la primera fuente extra-galáctica de rayos X descubierta en 1.970.  Su luminosidad es variable en casi todas las longitudes de onda, desde las ondas de radio a los rayos gamma en escala de días a décadas. Se ha observado polarización  en radio, infrarrojo y óptico, lo cual sugiere que una gran cantidad de emisión es por radiación sincrotrón, creada por el jet de partículas cargadas moviéndose a velocidades relativistas. Las observaciones de VLBI en radio de 3C273 muestran movimientos propios  de la fuente de algunas regiones de emisión que aparentemente se mueven a velocidades super.lumínicas.
En mayo el agujero negro del centro de la Vía Láctea se volvió 75 veces más  brillante durante dos horas y nadie sabe por quéHallan un agujero negro, 1.500 millones de veces mayor que el sol, en los  albores del universo | El Imparcial
3C 273 se halla en el corazón de una galaxia elíptica  gigante de tamaño de 30 segundos de arco  en su eje mayor y una magnitud aparente de aproximadamente 16, que se traducen a la distancia a la que se halla en una magnitud absoluta de alrededor de -23 -la luminosidad esperable en una galaxia más brillante de un cúmulo de galaxias,  comparable a galaxias de su tipo mucho más cercanas pero con desde luego mucha menos actividad cómo por ejemplo la M87 en el Cúmulo de Virgo- y un diámetro en su eje mayor de más de 300000 años-luz respectivamente. Este quásar tiene también un jet  observable en longitud de onda visible, que mide 150 000 años-luz de largo asociado a un agujero negro supermasivo, de más de 6 mil millones de de masas solares,  y a su disco de acreción.
Imagen relacionada
De todas las ideas concebidas por la mente humana, desde los unicornios y las gárgolas hasta la construcción de aceleradores de partículas como el LHC, la más increíble, seguramente podría ser haber imaginado la existencia de agujeros negros y que, dicha imagen concebida por nuestras mentes, sea, una realidad en nuestro Universo. Algo tan masivo que genera tan ingente fuerza de gravedad que ni la luz puede huir de su radio de acción. Allí, desaparecen el Tiempo y el Espacio que son distorsionados hasta el infinito.
¿Qué sorpresas nos esperan aún? Algunos dicen que ahí, en esos agujeros devoradores de materia, se encuentra la entrada hacia otros universos y otro tiempo y que, mientras que en nuestro Universo la materia es devorada, al otro lado, la salida es un Agujero Blanco que la expulsa en ese “otro mundo”.
¡Será por imaginar!
emilio silvera