lunes, 26 de julio del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo pudo surgir la Vida? ¡Es todo tan complejo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

“… la metafísica de Aristóteles: … es indicadora de todo lo que viene después (de la Física), y que se encuentra más allá de lo percibido”.

 

La sustancia cósmica? ¡La semilla de la materia! : Blog de Emilio ...

Ylem o sustancia cósmica que se cree está permeando todo el Universo para hacer posible la existencia de la materia que forma todos los objetos y (por evolución) la Vida.

 «

 

Aida. ¡El Universo y la Mente! Una prueba de la evolución de la ...

 

Una de las cosas que nos gustaría poder constar, es, precisamente, nuestra presencia aquí

 

Un pequeño espacio a la Astronomía: ¿Son las leyes de la ...

Y en todas sus regiones, por muy alejadas que se puedan encontrar, sucederán las mismas cosas

         Podemos leer en las piedras… ¡Cuentan tantas historias!

Con sus tres mil quinientos millones de años de edad, las rocas sedimentarias dispersas por algunas regiones del mundo, por ejemplo, en Australia Occidental (Grupo Warrawoona), nos regalan uno de los primeros atisbos e vida y el en la infancia de la biosfera. Esas rocas contienen estromatolitos y estructuras microscópicas que han sido interpretados como bacterias fósiles, aunque ese extremo aún siga en pleno debate. No obstante, las signaturas químicas proporcionan evidencias sólidas de la antigüedad de la vida, aunque el tipo de biolo´gia responsable de ellas siga siendo incierto. En las investigaciones geológicas de la vida primigenia de la Tierra seguimos mirando a través de un cristal oscuro.

Imagen relacionada

Muchas veces pasamos junto a sistemas rocosos sin pensar que, en ellos, están presentes un sin fin de del pasado que nos hablan de la vida y, son los geólogos los que, pacientemente se internan por lugares perdidos del mundo en busca de esa huella que nos hable del surgir de la vida.

El vestigio geológico, como dijo James Hutton, no presemnta “ni vestigios de un principio ni perspectiva de un futuro”. Las perspectivas de un futuro siguen siendo remotas, pero durante las últimas décadas los paleontólogos han desenterrado lo que verdaderamente considerar los vestigios del proncipio de la vida.

Los insectos ya se camuflaban hace 100 millones de añosAsí eran los coleópteros (y sus presas) hace 100 millones de años

                        Insectos fosilizados de millones de años de edad

Paleoecología del Mesozoico atrapada en un trozo de ámbar prehistórico

También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados hace 4.000 millones de años.

”fosil01”

Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo Warrawoona, 3.446 Ga-© Frances Westall.

Estas estructuras han sido atribuidas a bacterias fosilizadas. La cantidad de carbono restante unida a estos microfósiles es generalmente muy débil ( 0,01-0,5% con puntas excepcionales hasta el 1%) lo que hace particularmente difícil el análisis del carbono orgánico. No obstante, se han podido determinar los isótopos de carbono y presentan un enriquecimiento variable pero así y todo significativo en carbono 12, lo que habitualmente se traduce en un origen biológico. En general, las moléculas biológicas producidas por fotosíntesis se caracterizan por un enriquecimiento en 12C en relación con los carbonatos minerales. Así, la relación 12C/13C pasa de 88,99 en los carbonatos minerales de referencia a valores comprendidos entre 90,8 y 91,7 en las moléculas orgánicas biológicas.

 

Aunque no son plantas, las cianobacterias son uno de los principales seres vivos capaces de realizar la fotosíntesis, y  están sujetos al mismo intercambio de gases. En ellos los gases fluyen a través de la membrana y la pared celular por transporte pasivo.

Arguyendo un parecido entre las cianobacterias modernas y los microfósiles de Pilbara, William Schopf, de la Los Angeles, ha descrito estos últimos como fósiles de cianobacterias. Estas bacterias ancestrales, pues, ya habrían practicado la fotosíntesis oxigenada. Interpretación muy importante ya que situaría la fotosíntesis oxigenada muy atrás en los tiempos geológicos, mientras que los indicios bioquímicos más antiguos de la fotosíntesis oxigenada encontrados en esquistos carbonados, también en Australia, sólo se remontan a 2.700 millones de años.

Category: Isotopo Estable - PALEOCIENCIA

Según el inglés Martin Brasier, de la Universidad de Oxford, las estructuras contendrían efectivamente carbono orgánico enriquecido en isótopo 12, pero la materia orgánica sería de origen puramente químico y no biológico. Podría proceder de la reacción del hidrógeno con el monóxido de carbono (reacción llamada de Fischer-Tropsch), dos gases presentes en los fluidos de las fuentes hidrotermales. La acumulación de materia orgánica en microestructuras sería debida a la cristalización del cuarzo en la vena hidrotermal, y el importante enriquecimiento en carbono 12 sería el resultado de procesos puramente químicos. La explicación de Brasier, no obstante, no es totalmente convincente porque no es probable que la reacción de Fischer-Tropsch produjera moléculas tan complejas como los kerógenos (materia orgánica compleja, insoluble en los disolventes habituales) depositados en las venas hidrotermales.

Formación de Hierro Bandeado | Geofrik's Blog

                         Los Hierros Bandeados de Isua (Groenlandia): las rocas sedimentarias más antiguas

 Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de donde se han encontrado Bacterias fósiles de una antigüedad aproximada de 3.500 millones de años.

Resultado de imagen de Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguas

Franjas blancas en el afloramiento rocoso de Akilia, en Groenlandia, que esconden partículas de carbono que, en un principio se consideraron señales de vida.

Imagen relacionada

Muchas veces hemos opido hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un esótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrogeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.

Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc.

En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.

                   Escenas que nos llevan hacia atrás en el tiempo (65 millones de años)

Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, por ejemplo, que el primer ojo o el primer ser fotosintético se remontan aún más en el tiempo de lo que pensábamos.

La Biografía de la Vida 09. La vida en el Arcaico | El Cedazo2016 noviembre 28 : Blog de Emilio Silvera V.

Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, …

Frances Westall, del CNRS francés, y sus colaboradores han analizado unos tapetes microbianos fósiles encontrados en el cinturón Barberton Greenstone sudafricano y llegado a la conclusión de que la fotosíntesis ya existía al menos hace 3300 millones de años.

Estas capas de microbios crecían en una Tierra en la que no había oxígeno libre, una Tierra muy distinta a la que conocemos ahora. Probablemente su hábitat era la línea costera a muy baja profundidad bajo la superficie. Un sitio en el que había agua y la luz del Sol llegaba sin dificultad. Esa tonalidad, probablemente verde-azulada, sería la que cambiaría el planeta gracias a la luz y la evolución.

               ¡La Vida! Que estuvo presente en el pasado… ¡De tántas maneras!

Los microorganismos fósiles más antiguos fueron encontrados en los sedimentos de Barberton, en África del Sur, y de Pilbara, en Australia. Estos sedimentos, de una antigüedad de entre 3.200 y 3.500 millones de años, son ligeramente más jóvenes que las rocas de Groenlandia. Los sedimentos se han conservado bien y muestran la existencia de abundante vida en las aguas litorales de poca profundidad, y quizá incluso cerca de la superficie del agua (algunos biofilms tienen una estructura laminada que parece indicar una vida bacteriana que ya utilizaba energía ). Los microfósiles identificados comprenden estructuras filamentosas con una longitud de entre diez y algunos cientos de micras, bastoncillos de algunas micras de largo y estructuras esféricas y ovoides de aproximadamente 1 micra de diámetro.

Estructuras halladas en muestras basálticas del Océano Índico

Los trabajos realizados en Orleans, en el Centro de biofísica molecular del CNRS, por Frances Westall podrían aportar una explicación intermedia. Se han observado al microscopio electrónico morfologías de microfósiles tales como biofilms, polímeros, cascarones, filamentos, bastoncillos, en las muestras de sílice tomadas en Pilbara en zonas limítrofes con las venas hidrotermales de Schopf, pero nunca en el interior mismo de las venas. Estas morfologías contienen carbono identificado por microanálisis con el microscopio electrónico. Parece, en efecto, que las bacterias ancestrales vivían, y posteriormente fueron fosilizadas, en rocas sedimentarias cercanas a venas hidrotermales. Las venas hidrotermales pueden muy bien haber arrastrado la materia orgánica de las bacterias muertas y/o fosilizadas (por lo tanto, enriquecidas en carbono 12), materia orgánica que habría sido depositada nuevamente más arriba en las venas hidrotermales, para formar las famosas estructuras carbonadas complejas descritas por Schopf. Las estructuras de Schopf, pues, sólo serían restos de materia orgánica bacteriana y no bacterias fosilizadas. Esta explicación, por lo tanto, es intermedia entre el todo bacteriano de Schopf y el todo químico de Brasier. No obstante, afirma la presencia de vida bacteriana hace unos 3.500 millones de años.

”fosil02”

Izquierda: Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años.

Derecha: Bacterias fósiles de una antigüedad de aproximadamente 3.500 millones de años

Las rocas más antiguas susceptibles de presentar trazas de vida son sedimentos de una antigüedad aproximada de 3.750 millones de años descubiertos en el sudoeste de Groenlandia.

Estos sedimentos demuestran la presencia permanente de agua líquida, de gas carbónico en la atmósfera y contienen kerógenos, moléculas orgánicas complejas. La relación isotópica del carbono está comprendida entre 90,2 y 92,4 en lo referente a la materia orgánica de los sedimentos de Groenlandia. Estos valores sugieren, pero no demuestran de manera cierta, la existencia de actividad fotosintética, y por lo tanto de vida primitiva, hace 3.800 millones de años. En efecto, materia orgánica muy antigua (a veces reducida a cristales de grafito) ha sufrido importantes modificaciones en el curso de la diagénesis.

Moléculas orgánicas complejas son encontradas en luna de Saturno ...Origen e Historia evolutiva de la vida

El anabolismoMolÉculas orgánicas

                  Muchos son los lugares en los que podemos encontrar moléculas orgánicas complejas

El producto final de degradación, los kerógenos, se compone de macromoléculas complejas estables resistentes, que pueden incluso ser transformadas en grafito puro durante el metamorfismo. Todos estos tratamientos pudieron muy bien generar los enriquecimientos en 12C observados. También hay que desconfiar mucho de la contaminación eventual de estas rocas por microorganismos más recientes, contaminación que, evidentemente, falseará los análisis. A causa de las múltiples transformaciones sufridas por estas rocas, hay muy pocas probabilidades de encontrar en ellas vestigios de microfósiles. En efecto, en los sedimentos de Groenlandia no se ha descubierto ninguna estructura parecida a bacterias fósiles.

También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados hace 4.000 millones de años, o incluso moléculas orgánicas constitutivas de tales autómatas, es prácticamente nula. De hecho, tres factores han contribuido a borrar sus indicios sobre la Tierra: la historia geológica accidentada de la Tierra (y en particular la tectónica de placas), la erosión debida a la presencia permanente de agua líquida y la propia vida, que produce enormes cantidades de oxígeno, un veneno para las moléculas orgánicas reducidas. Por lo tanto, podemos temer que las primeras páginas del libro de la historia de la vida queden para siempre en blanco.

                 Mapa de Australia con la región de Pilbara coloreada en rojo.

 

                                                                                            El grupo Warrawoona

Amphibole - Nephrite Jade Basic calcium magnesium iron silicate Lander County Wyoming 2077.jpg

La nefrita es un mineral de la clase 9 (silicatos), según la clasificación de Strunz.  Es una variedad dura y de grano fino de la actinolita; es el más común y menos valioso de los dos tipos de jade que existen, siendo el otro la jadeita y en la Pilbara del Este, Grupo Warrawoona: Las nefritas del este de Pilbara comprende sobre todo rocas volcánicas de facies de nefritas, correspondientes al Grupo Warrawoona, al cual se data entre 3517 y 3325 millones de años, y cantidades menores de rocas sedimentarias metamórficas así como varios tipos de rocas ígneas.

Resultado de imagen de Las rocas más antiguas de Australia

En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.

Estromatolitos

Son celulas que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares calidos y son el resultado de la union de seres uni- celulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.

En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.

Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos. Actualmente, estos restos están cuestionados tanto por su origen biológico por su edad.

Blog de la clase de Biología y Geología de 1º de Bachillerato del ...fosil de trilobites pseudosaukandia. cambrico m - Comprar Fósiles ...

 Fósiles del Cámbrico dan pistas sobre la evolución de la ...Un yacimiento con fósiles de decenas de nuevas especies de la ...

Puede parecer sorprendente que las bacterias puedan dejar fósiles. Sin embargo, un grupo particular de bacterias, las cianobacterias o “algas azul-verdosas”, han dejado un fósil que se extiende en el Precámbrico – las cianobacterias más viejas, como fósiles conocidos tienen casi 3.500 millones años, son los fósiles más antiguos actualmente conocidos. El grupo muestra lo que probablemente es el conservacionismo más extremo de morfología de cualquier organismo. Aparte de las cianobacterias, las bacterias fósiles identificables no son muy frecuentes. Sin embargo, bajo ciertas condiciones del medio químico, pueden reemplazarse células bacterianas con minerales, muchas veces pirita o siderita (carbonato férrico), formando réplicas de las células que una vez estuvieron vivas.

Cianobacterias esenciales en la historia y el futuro del planeta

Decíamos, en la datación de objetos más antiguos situados en las profundidades de la historia de la Tierra, el 14C no sirve, y, nos tenemos que valer de otros materiales cuya vida media sea más larga. ello, necesitamos un reloj mucho más imponente: un radioisótopo cuya vida media se mida en muchos millones de años o incluso, en miles de millones de años. El Potasio 40 (40k) se identificó inicialmente como un candidato prometedor para la geocronología. Este isótopo inestable se desintegra formando o bien Calcio 40 (40 Ca), que desafortunadamente no distinguirse de los iones de Calcio ya presentes en el mineral, o bien Argón (40 Ar), que no puede distinguirse. La Vida Media del 40K es de 1250 millones de años. Además, el Potasio es abundante y está ampliamente distribuido en los minerales que forman las rocas.

Circón.Composición, usos, yacimientos y propiedades. Toda la ...

       Mineral de Circón

Sin embargo, lo que realmente necesitamos para datar las rocas muy antiguas es un sistema que funcione como las “cajas negras” de los avianes: un isótopo que no se pierta fácilmente en un mineral que no se altere fácilmente. Los circones, unos minerales que contienen uranio y se encuientran en los granitos y otras rocas igneas, son las cajas negras de la geología precámbrica. De hecho, el uranio enlazado a los cristales de circón en el de su formación nos proporcionan dos cronómetros fiables: el 238U se desintegra en Plomo 206 (206Pb) con una vida media de unos cuatro mil quinientos millones de años (la edad de la Tierra), mientras el osotopo 235U, abundante ( un 7 por mil), se desintegra en 207Pb con una vida media de algo más de setecientos millones de años. peculliaridad nos permite verificar por dos métodos las edades medidas en las rocas más antiguas de la Tierra y, podemos daber la edad de los fósiles hallados en ellas.

Un fósil millones de años dentro de nuestras células | Ciencia ...Proyecto Biosfera

Historia geológica de la tierra con Arturo ANONYMOUS: Eón ArcaicoEl Precámbrico, la Tierra joven

UD 13 HISTORIA DE LA TIERRA: ARCAICO Y PROTEROZOICO | BIOLOGÍA y ...

En la actualidad, nuestro conocimiento de la vida en ambientes arcaícos es a un tiempo frustrante y emocionante: frustrante porque tenemos muy pocas certezas, emocionante porque sabemos algo, por poco que esto sea. Además, es estimulante, pues el compañero de la ignorancia es la oportunidad. Así que nos quedan preguntas importantes que realizar sobre las rocas de Warrawoona y las de otros lugares que nos muestran fósiles que, no siempre sabemos descifrar. Si las rocas más antiguas que hemos podido identificar nos indican la presencia de organimos complejos, ¿queé clase de células vivían en tiempos aún más lejanos? Y, en última instancia…

¿cómo pudieron surgir?

¿Cuál es el origen de la vida?

El origen de la vida Tabla Figura

¿Quién puede contestar esa pregunta?

La vida fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Nosotros (creo), junto con la inmensa diversidad de clases de vida que en la Tierra han sido, estábamos presentes en las que el Universo tenía impresas en la evolución de Gaia. Sin embargo, la vida es muy distinta a todo lo demás porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida, y, esa evolución bioquímica de la materia para hacer posible la vida, se gestó, primero en las estrellas, más tarde en las explosiones supernovas que hicieron posible la transmutación de materiales sencillos en más complejos y, finalmente, en las Nebulosas donde se formaron nuevas estrellas y planetas que, cargados con estos materiales prebióticos, sólo tuvieron que esperar que, en algún plameta como la Tierra, situado en la Zona habitable de su estrella (el Sol) dejara que el Tiempo, con su transcurrir, hiciera el trabajo.

                           Muchos son los planetas situados en la zona habitable de “sus estrellas”

A grandes rasgos entendemos como pueden haber evolucionado las moléculas biológicas a partir de precursores simples presentes en la Tierra joven. Sin embargo, ssigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de froma tan compleja hasta llegar a “fabricar” una “máquina” tan maravillosa como nuestro cerebro de cuyas funciones, simplemente conocemos una muy superficial.

Si pensamos en cómo se pudo conformar el cerebro humano, una estructura de tal complejidad que, posiblemente, nada en el Universo se le pueda igualar, toda vez que, llegar a transiciones de fase que pasan por sucesos que parten la materia inerte y llegan hasta los pensamientos y los sentimientos…, no existe nada que se le pueda igualar.

¿Conoceremos algún día la verdadera Historia? Esperemos que, al menos, en su mayor parte sí.

emilio silvera

Moléculas vivas sorprendentes

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En matemáticas se pueden trazar líneas precisas y concretas que dividan en dos clases entes de naturaleza matemática. Una estructura geométrica se puede suporponer o no a su imagen especular. Una estructura asimétrica puede tener una lateralidad a la derecha o bien a la izquierda.

Cualquier número entero positivo es par o impar, y no hay ninguno de tales números para el cual su situación  a este respecto ofrezca la menor duda. Pero en el mundo, si exceptuamos el nivel subatómico de la teoría cuántica, las lineas divisortias son casi siempre difusas. El alquitrán, ¿es sólido o líquido?. Lo cierto es que, la mayoría de las propiedades físicas se “mueven” en un espectro continuo que hace que vayan cambiando de manera imperceptible de un extremo a otro del mismo.

El paso del tiempo convierte en líquido, gas o sólido algunos materiales y, a otros, los deforma hasta perder su estructura original para convertimos en lo que antes no eran. Nada permanece, todo cambia. Sea cual fuere la línea de división, habrá algunos casos en los que no podamos definirla y, en otros, habrá objetos tan próximos a ella que el lenguaje ordinario no será lo suficientemente preciso como para poder afirmar a qué lado pertenece. Y, la propiedad de la vida, está, precisamente, en uno de esos continuos.

Para porbar esto basta que consideremos los virus: son las estructuras biológicas más pequeñas que se conocen  con la propiedad de poder “comer” (absorber sustancias situadas en sus proximidades), crecer y fabricar copias exactas de sí mismas.

Son mucho más pequeños que una bacteria (en realidad, algunos virus infectan las bacterias) y pasan sin dificultad a través de un filtro de porcelana fina que, aunque a nosotros nos parezca que está completamente sellada y su superficie es totalmente hermética y lisa, para ellos, tan “infinitamente” pequeños, ofrece miles de huecos por los que poder colarse. (De hecho, ahora mismo tenemos a esa maldita familia del Covid19 que nos está atacando de manera mortal).

Nuevas grabaciones en vídeo de un virus que infecta a las células sugiere que los virus se expanden mucho más rápido de lo que pensábamos. El descubrimiento de este mecanismo permitirá crear nuevos fármacos para hacer frente a algunos virus. En la punta de un alfiler caben millones de ellos. De hecho, los virus tienen el tamaño de una décima de micrómetro (diezmillonésima parte del metro).

El mundo de lo muy pequeño es fascinante y, por ejemplo, si hablamos de átomos, se necesitarían aproximadamente una cantidad para nosotros inconmensurable de átomos (602.300.000.000.000.000.000.000) para lograr un solo gramo de materia. Fijáos que hablamos de lo pequeño que pueden llegar a ser los virus y, sin embargo, el Hidrógeno con un sólo protón es el átomo más ligero y su masa es 400.000 veces menor que la masa de un virus, como antes dije, el organismo vivo más pequelo que se conoce. El virus más diminuto conocido mide unos o,00000002 m; su tamaño es 2.000 veces mayor que el del átomo. Y, en la punta del alfiler que antes mencionamos cabrían 60.000.000.000 (sesenta mil millones) de átomos.

Como los virus son menores que la longitud de onda de la luz, no pueden observarse con un microscopio luminoso ordinario, pero los bioquímicos disponen de métodos ingeniosos que les permiten deducir su estructura, ya que pueden verlos mediante bombardeos con rayos X u otras partículas elementales.

En realidad, se puede decir que un cristal “crece”, pero lo hace de un modo ciertamente trivial. Cuando se encuentra en una solución que contiene un compuesto semejante a él, dicho compuesto se irá depositando sobre su superficie; a medida que esto ocurre, el cristal se va haciendo mayor, pero el virus, igual que todos los seres vivos, crece de una manera más asombrosa: toma elementos de su entorno, los sintetiza en compuestos que no están presentes en el mismo y hace que se combinen unos con otros de tal manera que lleguen a dar una estructura compleja, réplica del propio virus.

Coronavirus 2019-ncov y antecedentes de virus con células de ...

Si no hallamos pronto la manera de eliminar esta amenaza… ¡Mal irán las cosas! De vez en cuando aparece una señal de la Naturaleza que nos pone en el sitio que debemos ocupar, nos dice que no somos tanto como nos creemos ser, y que, un simple e infinitesimal “bichito” puede darnos una gran lección de nuestras carencias.

Los virus sólo se multiplican en células vivientes. La célula huésped debe proporcionar la energía y la maquinaria de síntesis, también los precursores de bajo peso molecular para la síntesis de las proteínas virales y de los ácidos nucleicos. El ácido nucleico viral transporta la especificidad genética para cifrar todas las macromoléculas específicas virales en una forma altamente organizada.

Preventivistas aconsejan cómo actuar por brote de coronavirus 2019 ...Infección por el coronavirus SARS-CoV-2 (COVID-19) -- Web de ...

El poder que tienen los virus de infectar, e incluso matar, un organismo, se debe precisamente a esto. Invade las células del organismo anfitrión, detiene su funcionamiento y lo sustituye, por decirlo de alguna manera, por otros nuevos. Ordena a la célula que deje de hacer lo que normalmente hace para que comience a fabricar las sustancias necesarias para crear copias de sí mismo, es decir, del virus invasor.

El primer virus que se descubrió, y uno de los más estudiados, es el virus sencillo que produce la “enfermedad del mosaico” en la planta del tabaco. Cristaliza en forma de barras finas que pueden observarse a través del microscopio electrónico. Recientemente se ha descubierto que cada barra es, en realidad, una estructura helicoidal orientada a la derecha, formada por unas 2.000 moléculas idénticas de proteína, cada una de las cuales contiene más de 150 subunidades de aminoácidos.

Las moléculas de proteínas se enrollan alrededor de una barra central imaginaria que va de un extremo a otro del cristal. Sumergido en la proteína (y no en la parte central, como podría pensar un estudiante) hay una única hebra helicoidal, enroscada hacia la derecha, de un compuesto de carbono llamado ácido nucleico. El ácido nucleico es una proteína, pero igual que éstas es un polímero: un compuesto con una molécula gigante formada por moléculas más pequeñas enlazadas de manera que formen una cadena.
Un polímero es una macro-molécula en la que se repite n veces la misma estructura básica (monómero). En el caso del hule, las cadenas pueden tener desde n=20 000 hasta n=100 000.
Diagrama de doble hélice de adn | Vector Gratis
La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena. b) Una timina de un lado se une con una adenina del otro. c) Una citosina con una guanina. Las unidades menores , llamadas nucleótidos están constituidas por átomos de Carbono, Ox
oxígeno, Nitrógeno, Hidrógeno y Fósforo; pero donde las proteínas tienen unas veinte unidades de aminoácidos, el ácido nucleico tiene solamente cuatro nucleótidos distintos. Se pueden encadenar miles de nucleótidos entre sí, como lo hacen las sub-unidades de aminoácidos de las proteínas en una variedad prácticamente infinita de combinaciones, para formar cientos de miles de millones de moléculas de ácido nucleico. Exactamente igual que los aminoácidos, cada nucleótido es asimétrico y orientado a la izquierda. A causa de ello, la espina dorsal de una molécula de ácido nucleico, igual que la de una molécula de proteína, tiene una estructura helicoidal orientada hacia la derecha.
Recientemente se han descubiertos unas moléculas sorprendentes con irregularidades en su quiralidad. Por ejemplo, existen segmentos anómalos de ADN que se enroscan al reves. Este ADN “zurdo” se halló por primera vez en un tubo de ensayo, pero en 1987 se ideó un procedimiento para identificar dichos segmentos anómalos en células vivas. El papel del ADN invertido no está claro, y pudiera estar implicado en los mecanismos que ponen en marcha mutaciones que nos lleven a ser hombres y mujeres del futuro con otros “poderes” que vayan más allá para que, de esa manera, podamos llegar a comprender la Naturaleza de las cosas y, en definitiva, nuestra propia naturaleza que, de momento, sigue siendo un gran misterio para nosotros.
IZQUIERDA Y DERECHA EN EL ORIGEN DE LA VIDA
                Izquierda y Derecha en el origen de la Vida
pagina_05
Esta cosita tan pequeñita… ¡tendría tanto que contarnos! La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros.
Lo cierto es que todo está hecho de esas pequeñas partículas…
Las partículas elementales del Multiverso – Namaskar
Quarks y Leptones. Las estudiamos y observamos los comportamientos que en situaciones distintas puedan tener y, una de las cuestiones que resultó curioso constatar es que,   existen partículas subatómicas que podríamos llamar pares y otras que podríamos llamar impares, porque sus combinaciones y desintegraciones cumplen las mismas propiedades que la suma de enteros pares e impares. Una partícula de paridad par puede partirse en dos de paridad par, o en dos de paridad impar, pero nunca en una de paridad par y otra de paridad impar (esto implica la conservación de la paridad). Y, de la misma manera que existen principios de conservación para la paridad, el momento angular, la materia…, también es un hecho irreversible ese principio que nos lleva a saber que, a partir de la materia “inerte”, surgieron los “seres” más pequeños que conocemos y que hicieron posible el surgir de la inmensa variedad de formas de vida que la evolución hizo llegar hasta nosotros que, estamos aquí hablando de todas estas cuestiones curiosas que nos llevan a saber, un poco más, del mundo en el que vivimos, de la Naturaleza y, de nosotros.
emilio silvera

¿De dónde surgió todo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                      Detectan pruebas de la Relatividad de Einstein en el monstruoso corazón de la Galaxia

 

“En Cosmología, las Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo Marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que

 metalesalcalinos003

Lepidolita, una de las mayores fuentes del raro rubidio y del cesio. El rubidio también fue descubierto,

José German Vidal Palencia y la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (119)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ELECTRÓN, PROTÓN, ORIGEN DESCUBIERTO

(Electron, Proton, Origin Discovered)

Investigador independiente

 Germán Vidal Palencia

México, D.F., a 27 de septiembre de 2015

14. CONCLUSIÓN

http://farm5.static.flickr.com/4082/4926930572_8c5822e95c.jpg

La idea que actualmente se tiene sobre la constitución de la materia no permite vislumbrar cómo ésta se presentó en el cosmos. Solo se sabe que en el pasado remoto se encontraba reunida en una pequeña región del espacio universal. Expandiéndose violentamente a partir de un Big Bang. A continuación, poco a poco irían surgiendo las galaxias con sus estrellas. 10.000 millones de años después, se originan estructuras planetarias, entre ellas la que ahora forma al Sistema Solar, con sus planetas y demás astros. Debieron transcurrir otros 4.500 millones de años para que la vida apareciera en nuestro planeta. Y varios cientos de millones de años más tarde, también la vida humana inteligente sobre él. A partir de entonces, se inician intentos humanos por describir gradualmente el entorno planetario y cósmico en general, así como los fenómenos lumínicos relacionados con ellos.

El hombre descubre que la luz que nos inunda proveniente del Sol puede ser estudiada y analizada cada vez más profundamente. En 1678 Christian Huygens propone la Teoría Ondulatoria de la Luz. En ese entonces no existen indicios de que la luz pudiera estar formada por corpúsculos, sólo se sospecha que está constituida por ondas que se desplazan en el espacio.

Sobre la teoría corpuscular, “En 1704, Newton escribió su obra más importante sobre óptica, Opticks, en la que exponía sus teorías anteriores y la naturaleza corpuscular de la luz, así como un estudio detallado sobre fenómenos como la refracción, la reflexión y la dispersión de la luz.

Refracción: Imágenes, fotos de stock y vectores | Shutterstock

Aunque sus ideas acerca de la naturaleza corpuscular de la luz pronto fueron desacreditadas en favor de la teoría ondulatoria, los científicos actuales han llegado a la conclusión (gracias a los trabajos de Max Planck y Albert Einstein) de que la luz tiene una naturaleza dual: es onda y corpúsculo al mismo tiempo. Esta es la base en la cual se apoya toda la mecánica cuántica.” (35)

Sin embargo, a pesar de los actuales avances en la mecánica cuántica, a partir de esta tesis hemos detectado errores de fondo en lo que se refiere al establecimiento de sus bases. En el Quinto Congreso Solvay que se celebró en octubre de 1927 en Bruselas, para dilucidar el tema “Electrones y Fotones”, se cometió un error fundamental al denominar fotón a la relación de Planck. Considérese que determinaron llamar fotón a una ecuación matemática (E=hv) y no a un posible corpúsculo. Por ejemplo, como el nombre que se adjudica a un electrón, un protón o un neutrón, o inclusive a un planeta o una estrella. Ellos no son ecuaciones, son entes físicos.

43)

Sí los congresistas acordaron extraer la palabra fotón de la teoría referida a “Atomos de Luz” del físico-químico estadounidense llamado Gilbert Newton Lewis (1875-1946), quien “En 1926 acuñó el término “fotón” para la menor unidad de energía radiante.” (21), también debieron adjudicar este concepto al “cuanto de acción” de Planck, descrito a partir de su constante h, que es a la que se refería Gilbert, y no al “cuanto de luz” de Einstein, que es la relación de Planck.

Después de este congreso, en el futuro de la mecánica cuántica no pasó nada trascendente en cuanto al conocimiento adquirido desde aquella época, relacionado con lo que ahora se conoce como fotón. Lo relevante es que tal error ha significado un freno para el avance de la física cuántica moderna.

La comunidad científica presente en ese congreso donde acudieron los más renombrados personajes de la física y la química, “Fue una generación de oro de la ciencia, posiblemente como no ha habido otra en la historia. Diecisiete de los veintinueve asistentes eran o llegaron a ser ganadores de Premio Nobel, incluyendo a Marie Curie, que había ganado los premios Nobel en dos disciplinas científicas diferentes (Premios Nobel de Física y de Química).(36)  Los científicos allí reunidos  convinieron cambios necesarios para la física cuántica del momento. Sin embargo, como lo hemos visto en esta tesis, la confusión latente sobre las radiaciones electromagnéticas al definirse como fotón a cada frecuencia de radiación EM diferente, ha impedido ahondar en las propiedades que ellas tienen, dado que estas son parte constituyente de toda materia existente.

La recomendación a seguir derivado de este problema es actuar con la misma autoridad científica con que en aquella época aplicaron los congresistas para llamar fotón al “cuanto de luz” de Einstein. La comunidad científica contemporánea debe también tomar la decisión de dar marcha atrás y hacer como dijo Gilbert Newton Lewis: deben nombrar fotón al “cuanto de acción” de Planck, que es la menor unidad de energía radiante conocida. Su teoría fue publicada en octubre de 1926, exactamente un año antes de que se llevara a cabo el Congreso Solvay en octubre de 1927. Por cierto que Gilbert no fue invitado a ese importante evento científico.

Se demuestra, a partir de las ideas de Einstein sobre el “Efecto Fotoeléctrico” y el “Efecto Compton” descubierto por el físico Arthur Compton, que la luz se comporta como partícula además de como onda. Pero se especifica y concluye en esta obra, que las radiaciones electromagnéticas constituidas como ondas, cada una de ellas va asociada a una partícula de energía h, indistinguibles unas de las otras (todas iguales). Dicho esto, acogiendo las propias ideas de Planck: “…Su mente dio al fin con dos pasos en el campo de la estadística que hacían posible explicar perfectamente las observaciones de Rubens. El primero de ellos establecía que la energía emitida y absorbida sólo lo hacía en forma de paquetes pequeños pero finitos, y el segundo agregaba que tales paquetes eran indistinguibles uno del otro.” (7)

El caso es que el cosmos está inundado de partículas electromagnéticas discretas de energía h. Es a partir de estas partículas que la materia se encuentra formada. Durante los procesos radiantes pueden asociarse estas partículas separadas a diferentes distancias unas de las otras, pudiendo detectarse con instrumentos ópticos y electrónicos la frecuencia por segundo con que viajan a través del espacio, como ocurre con la luz roja, los rayos x, las ondas de radio, etc., etc.

44)

Es claro que la separación diversa entre partículas EM con sus ondas asociadas, que se conoce por la frecuencia por segundo con que llegan a un detector, está determinada por el tipo de reacción nuclear o atómica de donde son emitidas, que puede darse en las estrellas, en las reacciones químicas, etc. Ello no quiere decir que dada la separación entre partículas determinándose frecuencias diversas en las diferentes radiaciones EM, cambie el estatus físico de cada partícula, inclusive tampoco las partículas energéticas consideradas en paquete, al que ahora mismo se le denomina fotón o cuanto de luz.

Nosotros llamamos subfotón a las partículas y sus ondas asociadas de radiación EM de energía h indicada por la constante de Planck. Todas energéticamente iguales, independientemente de si van separadas a mayor o menor distancia unas de las otras durante sus movimientos a través del espacio. Sin embargo, Fotón sería la palabra más apropiada para estas partículas de energía radiante.

Al paquete de energía al que ahora mismo se llama fotón, en su lugar simplemente se le debería denominar radiación electromagnética roja, azul, de rayos x, gamma, etc. De antemano cada una de ellas tiene una frecuencia y energía específica conocida y reconocible científicamente. No se requiere de alguna palabra adicional para conocer las características de las radiaciones EM, tal como lo es la palabra fotón, aplicada modernamente, pero que resulta obsoleta. Mientras esto no ocurra, el campo de la física teórica seguirá científicamente congelada, como ocurre desde que se celebró el V Congreso Solvay, hace 88 años.

Sin embargo, considerando plausible la aplicación de rigor científico para la determinación de los conceptos que utiliza la ciencia, es de confiarse que más tarde o más temprano estaremos llamando fotón a todos y cada uno de los corpúsculos que integran a las radiaciones electromagnéticas, sin importar cuál sea la frecuencia por segundo con que viajen a través del espacio, en cualquiera circunstancia con que éste se halle presente. La energía de cualquier tipo de radiación EM, siempre será conocida mediante la ecuación E=hv, reconocida como cuanto de luz de Einstein, y también como relación de Planck.

Para finalizar, queremos decir al lector que estamos conscientes de que todos estaríamos esperando una conclusión de la obra que se enfocara en el tema que sugieren los títulos de la compilación. Sin embargo, ha decir verdad, los elementos de investigación correspondientes han superado estas expectativas pues en el afán de ir adaptándolos a la física contemporánea, en esta se descubrieron inconsistencias que han impedido un avance fluido en las nuevas argumentaciones que estarían por  construirse, sobre todo al intentar incrustar el contenido teórico de la tesis con el de índole estándar ya establecido. Preferimos concluir, enfatizando el resultado de la investigación teniendo en consideración los términos vistos en estos párrafos. Después de todo, el éxito que esperamos al presentar este trabajo, dependerá de que la comunidad científica valore nuestro aviso y considere una revisión de los puntos de conflicto señalados. Como trabajo paralelo, seguiremos desarrollando la tesis basándonos en los términos ya descritos, en cada uno de los capítulos realizados hasta el momento.

45)

REFERENCIAS

7.- Información recuperada el 2 de agosto de 2015 de: La nueva física cumple cien años. http://www.gobiernodecanarias.org/educacion/3/usrn/lentiscal/2-CD-Fiisca-TIC/HistoriaCiencia-F/Cien%20a%C3%B1os%20de%20mec%C3%A1nica%20cu%C3%A1ntica.pdf

21.- Información recuperada el 6 de julio de 2015 de: Gilbert N. Lewis.

https://es.wikipedia.org/wiki/Gilbert_N._Lewis

35.- Información recuperada el 22 de septiembre de 2015 de: Isaac Newton

https://es.wikipedia.org/wiki/Isaac_Newton

36.- Información recuperada el 23 de septiembre de 2015 de: Congreso Solvay. https://es.wikipedia.org/wiki/Congreso_Solvay