jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Música! Que incide en nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Descubren como afecta al cerebro tu canción favorita.

 

Un estudio revela los efectos en el cerebro de nuestras melodías preferidas. Los resultados se han publicado en Scientific Reports, una de las revistas de la editorial Nature

La música house, elemento clave de la evolución del cerebro humano ...La influencia de la música en el cerebro – Condición Anatómica

 

Los primeros acordes de nuestra canción favorita desencadenan un patrón común de actividad cerebral -se generan pensamientos y recuerdos­- independientemente de la persona que disfrute de la melodía. Sin embargo, hasta ahora no se conocía cómo se produce dicha activación en el cerebro. Los hallazgos, publicados este jueves en Scientific Reports, una de las revistas de la editorial Nature, podrían explicar por qué diferentes personas describen sentimientos y recuerdos similares al escuchar su pieza musical favorita, tanto si es una composición de Beethoven o Eminem.

Para entender por qué la gente tiene experiencias comparables, el grupo de investigación estadounidense evaluó las diferencias en las redes funcionales del cerebro (utilizando imágenes de resonancia magnética funcional, fMRI) en 21 personas que escucharon diferentes tipos de música, incluyendo rock, rap, y melodías clásicas. Los científicos identificaron modelos consistentes de la conectividad cerebral asociada a las canciones favoritas y demostraron que un circuito importante en los pensamientos introspectivos -la red neuronal por defecto (Default Mode Network o DMN, en inglés)- se conecta más cuando se escucha la música preferida.

La Música: LA MÚSICA Y NUESTRO CEREBRO

Como explica a Sinc Jonathan Burdette, profesor del Centro Médico Wake Forest Baptist (EE UU) y uno de los principales autores del estudio, “aunque no entendemos completamente lo que hace la DMN, es probable que tenga un papel importante en la determinación de quiénes somos y cómo encajamos en el mundo”. Los expertos se refieren a esto como pensamientos autoreferenciales. Según los autores, los resultados fueron inesperados “dado que las preferencias musicales son fenómenos individualizados y que la música puede variar mucho en complejidad rítmica, presencia o ausencia de la letra, consistencia, etc.”.

Nat "The King" Cole - Radio Gladys PalmeraCanciones viejas | desastrediario

    Canciones favoritas, viejas emociones

 

El trabajo pone de manifiesto que la escucha de una canción favorita altera la conectividad entre las áreas cerebrales auditivas y el hipocampo, una región responsable de la memoria y la consolidación de las emociones. Los expertos comprobaron así que al oír las melodías favoritas se produce una desconexión de las áreas de procesamiento de sonido del cerebro en las zonas de codificación de la memoria de dicho órgano. “Esto se debe probablemente a que al escuchar nuestra música favorita, no estamos creando nuevos recuerdos. Más bien, estamos aprovechando recuerdos y viejas emociones”, subraya Burdette.

Para los autores, estos hallazgos podrían tener importantes implicaciones en la terapia musical, sobre todo en la elección apropiada de la música capaz de involucrar a los circuitos cerebrales dañados.

En Física hablamos de masa, inercia…, ¡de tántas cosas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

CGKilogram.jpg

“El kilogramo (símbolo kg),​ antiguamente escrito como quilogramo,es la unidad básica de masa del Sistema Internacional de Unidades (SI).Desde el 20 de mayo de 2019 se define al fijar el valor numérico fijo de la Constanter de Planck, h constante de Planck, como 6.626 070 15 x 10-34 expresado en J·s (julios por segundo), unidad igual a kg·m2·s-1, estando el metro y el segundo definidos según c ( la velocidad de la luz en el vacío) y ΔνCs.·”

Patrones de medida del metro, utilizados de 1889 a 1960, compuestos de una aleación de platino e iridio.

“Metro (símbolo m). Es la unidad principal de unidades de longitud del Sistema Internacional de UnidadesUn metro es la distancia que recorre la luz en el vacío durante un intervalo de 1/299.792.458 de segundo, es decir, la velocidad de la luz, c, en el vacío.”

Clock-pendulum.gif

Un péndulo de un reloj marcando cada segundo

“El segundo (símbolo: s)​ es la unidad de tiempo en el Sistema Internacional de Unidades, el Sistema Cegesimal de Unidades y el Sistema Técnico de Unidades. Supone comúnmente una sesentava parte de un minuto (160) y es esencial para la medición en múltiples sistemas de unidades.”

El transbordador espacial de la NASA "Atlantis" inicia ...Estación Espacial Internacional - Wikipedia, la enciclopedia libre

Cuando hablamos de masa, nos estamos refiriendo a la medida de la inercia de un cuerpo, es decir, su resistencia a la aceleración. Todos sabemos la inmensa cantidad de combustible que se necesita para enviar al espacio exterior a esos transbordadores que llevan suministros y astronautas al espacio exterior para el mantenimiento de la Estación Espacial Internacional. El esfuerzo, es vencer la masa que se quiere transportar hasta que esta, alcanzando los 11 km/s de velocidad, pueda escapar de la fuerza de gravedad de la Tierra y poder así, cumplir con su cometido.

Ley de la gravedad de Isaac Newton - GravedadLos días en la Tierra se están haciendo más largos

De acuerdo con las leyes de Newton del movimiento, si dos masas distintas, m1 y m2, son hechas colisionar en ausencia de cualquier otra fuerza, ambas experimentaran la misma fuerza de colisión. Si los dos cuerpos adquieren aceleraciones a1 y a2, como resultado de la colisión, entonces m1 a1 = m2 a2. Esta ecuación permite comparar dos masas. Si una de las masas se considera como una masa estándar, la masa de todas las demás puede ser medida comparándola con esta masa estándar. El cuerpo utilizado para este fin es un cilíndro de un kilógramo de una aleación de platino iridio. llamado el estándar internacional de masa (como se deja explicado más arriba). La masa definida de esta forma es llamada masa inercial del cuerpo.

Las masas también se pueden definir midiendo la fuerza gravitacional que producen. Por tanto, de acuerdo con la ley de gravitación de Newton, mg = Fd2 / MG, donde M es la masa de un cuerpo estándar situado a una distancia d del cuerpo de masa mg; F es la fuerza gravitacional entre ellos, y G es la constante gravitacional. La masa definida de esta forma es la masa gravitacional. En el siglo XIX, Roland Eötvös (1848-1919) demostró experimentalmente que las masas inerciales y gravitatorias son indistinguibles, es decir, m1 = mg.

IMAGEN ROTACION TIERRA.gif (512×512) | Rotación de la tierra ...

Aunque la masa se define formalmente utilizando el concepto de inercia,  es medida habitualmente por gravitación. El peso (W) de un cuerpo es la fuerza con la que un cuerpo es atraído gravitacionalmente a la Tierra, corregido por el efecto de la rotación, y es igual al producto de la masa del cuerpo y la aceleración en caída libre (g), es decir, W = mg.

masapeso002

            Kilogramo patrón.

El kilogramo (unidad de masa) tiene su patrón en: la masa de un cilindro fabricado en 1880, compuesto de una aleación de platino-iridio (90 % platino – 10 % iridio), creado y guardado en unas condiciones exactas, y que se guarda en la Oficina Internacional de Pesos y Medidas en Sevres, cerca de París.

masapeso001
Una balaza mide solo cantidad de masa.

La masa es la única unidad que tiene este patrón, además de estar en Sevres, hay copias en otros países que cada cierto tiempo se reúnen para ser regladas y ver si han perdido masa con respecto a la original.

No olvidemos que medir es comparar algo con un patrón definido universalmente.

¿Y el peso?

De nuevo, atención a lo siguiente: la masa (la cantidad de materia) de cada cuerpo es atraída por la fuerza de gravedad de la Tierra. Esa fuerza de atracción hace que el cuerpo (la masa) tenga un peso, que se cuantifica con una unidad diferente: el Newton (N).

La UNIDAD DE MEDIDA DEL PESO ES EL NEWTON (N)

Masa, Peso, Densidad

Entonces, el peso es la fuerza que ejerce la gravedad sobre una masa y ambas magnitudes son proporcionales entre sí, pero no iguales, pues están vinculadas por el factor aceleración de la gravedad.

En el lenguaje común, el peso y la masa son frecuentemente usados como sinónimos; sin embargo, para fines científicos son muy diferentes. La masa es medida en kilogramos; el peso, siendo una fuerza, es medido en newtons (símbolo N. Unidad del SI de la fuerza, siendo la fuerza requerida para comunicar a una masa de un kilogramo una aceleración de 1 m s –2). Es más, el peso depende de donde sea medido, porque el valor de g es distintos en diferentes puntos de la superficie de la Tierra. La masa, por el contrario, es constante donde quiera que se mida, sujeta a la teoría especial de la relatividad. De acuerdo con esta teoría, publicada por Albert Einstein en 1905, la masa de un cuerpo es una medida de su contenido total de energía.

Energía cinética
Energía potencial gravitatoria
Energia Potencial Gravitatoria
Energía química
Qué es la ENERGÍA QUÍMICA? (Definición y Ejemplos) - YouTubeEnergia quimica | Energía, Tipos de energia

Por tanto, si la energía del cuerpo crece, por ejemplo, por un aumento de su energía cinética o temperatura, entonces su masa también crece. De acuerdo con esta ley, un aumento de energía ΔE está acompañado de un aumento de masa Δm, en conformidad con la ecuación de masa-energía  Δm = ΔE/c2, donde c es la velocidad de la luz. Por tanto, si un kilo de agua se eleva de temperatura en 100 K, su energía interna aumentará en 4 x 10 –12 kg. Este es, por supuesto, un incremento despreciable y la ecuación de masa-energía es sólo significativa para energías extremadamente altas. Por ejemplo, la masa de un electrón es siete veces mayor si se mueve con relación a un observador al 99% de la velocidad de la luz.

Lexus imagina las naves espaciales del futuro en 'Valerian ...El futuro de la exploración en Marte

Naves espaciales del futuro que pudieran viajar a velocidades cercanas a c (299,792.458 m/s), la velocidad de la luz en el vacío, verían incrementada su masa, ya que, al ser esa velocidad un límite impuesto por el Universo, a medida que la nave se acercara a ese límite, se vería frenada y, su fuerza inercial se convertiría en masa según la fórmula E= mc2

Cuál es la velocidad de la luz? | EndesaEl principio de constancia de la velocidad de la luz — Cuaderno de ...

Ya sabemos que, se ha comprobado una y mil veces que, la teoría de Einstein de la relatividad especial es cierta en el sentido de que, al ser la velocidad de la luz el límite de velocidad del Universo, nada puede ir más rápido que la luz, cuando un cuerpo viaja a velocidades cercanas a la de la luz, a medida que se acerca a ella, puede ver como su masa aumenta, ya que, la energía de movimiento se convierte en masa al no poder conseguir su objetivo de marchar más rápido que la luz.

13 Relatividad

Muones lanzados a velocidades cercanas a c, aumentaron su masa 10 veces

En los anillos enterrados en las entrañas de la Tierra (en el Acelerador de partículas LHC), haces de partículas son lanzadas a la velocidad de la luz para que colisionen y, su peso aumenta conforme se van acercando a ese límite marcado por el universo.

La masa relativista de un cuerpo medida por un observador (un físico del LHC que mide el aumento de masa de los protones a medida que adquieren velocidad en el acelerador de partículas del CERN) con respecto al cual este cuerpo se mueve. De acuerdo con la teoría de Einstein, la masa m de un cuerpo moviendose a velocidad v está dada por  m = m0/√ (1 – v2 / c2), donde m0 es su masa en reposo y c es la velocidad de la luz. La masa relativista solo difiere significativamente de la masa en reposo si su velocidad es una fracción apreciable  de la velocidad de la luz. Si v = c/2, por ejemplo, la masa relativista es un 15% mayor que la masa en reposo.

Proyecto manhattan. BMódulo 1 Física de partículas - ppt descargar

Según las consecuencias obtenidas en el proyecto Manhattan, lo que sí es seguro es que, una pequeña fracción de materia, contiene una gran cantidad de energía. Según nos decía Asimov: “…un sólo gramo de materia se podría convertir en energía eléctrica que bastaría para mantener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años. O bien, la energía que representa un sólo gramo de materia es equivalente a la que se obtendría de quemar unos 32 millones de litros de gasolina”.

Una cosa si que nos puede quedar muy clara: Aunque sabemos algunas cosas sobre la masa y lo que entendemos por la energía, no podemos decir que, al día de hoy, “sepamos de verdad”, lo que la masa y la energía son.

Seguiremos aprendiendo.

emilio silvera