jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Algo Positivo en 2.019?

Autor por Emilio Silvera    ~    Archivo Clasificado en a pesar de todo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Afortunado en la lotería

 

Seguramente, lo único positivo en el pasado año, ha sido que algunos tuvieron la suerte de ser agraciados con la Lotería de Navidad, lo cual, les dará la oportunidad de hacer algunos arreglos positivos en sus vidas y en la de los seres queridos.

 

Resultado de imagen de La situación políticaResultado de imagen de La situación política

 

Resultado de imagen de La situación políticaResultado de imagen de Negociar con separatistas para formar gobierno

Resultado de imagen de el brexitResultado de imagen de Venezuela y su politica

 

En lo político… ¿Qué vergüenza? Sale a la luz la ambición humana, la desconsideración por los demás, la falta de humanidad, la desvergüenza y el egoísmo personal y de los partidos despreciando el bien común y, desde luego, la solidaridad está ausente. Estamos contemplando como Estamentos de la “Justicia” se pliegan ante el poder, se le concede sitio y cargos a seres que sólo albergan el odio en sus corazones, a los que, el Gobierno en funciones, en lugar de haber puesto en su lugar, le ha dado un margen que sólo lleva a que se crean lo que pregonan, cuando deberían estar en prisión por lo que hicieron, y, los que han ido… Pronto estarán fuera ejerciendo como si nada hubieran hecho.

Nunca pudimos estar peor, y, mientras que al ciudadano le cuesta llegar a final de mes, muchos son los que, dilapidan el dinero en su beneficio, tienen prebendas y juegan con ventaja en detrimento de los demás, los que verdaderamente llevan el País adelante.

¡Estamos inmersos en una locura! ¿Cómo pudimos llegar hasta aquí?

Podría seguir hablando de otras muchas cuestiones que, al no ser el objetivo perseguido en este lugar, mejor dejarlo y no buscarnos complicaciones al poner las cosas en su lugar que nos llevaría de manera inexorable a tener que dejar al descubierto las atrocidades a las que muchos nos están llevando.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Resultado de imagen de http://extremisimo.com/wp-content/uploads/2009/09/swift-m31.jpgResultado de imagen de http://extremisimo.com/wp-content/uploads/2009/09/swift-m31.jpg

Una Galaxia es simplemente una pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, toda forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad, todo está interconectado y el funcionamiento de una cosa incide directamente en las otras. ¡Ah! Nada es pequeño ni grande, las dimensiones son relativas y dependen del contexto en el que las podamos medir.

¿Quién sabe? Con unas constantes diferentes podríamos tener cualquier clase de Universo incluso ¿Alguno en la sombra? Claro que grandes cambios pueden alterar otras cosas como las leyes, la lógica matemática subyacente o el de dimensiones del espacio tiempo. Tiene que concebir tipos de “vida” que ni podemos imaginar, serían completamente nuevos y que podrían existir en ambientes tan diferentes al nuestro que, incluso, teniéndolos a nuestro lado, no lo podríamos ver y, claro, al llegar a este punto nos suscita tener que hacer un examen más detallado de qué entendemos por vida, dado que esa vida de ese otro universo, sería tan vida como la del nuestro.

figaf.png

El problema de si las constantes universales son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias … Sí, en nuestro universo, si algo cambia, muchas otras cosas serían distintas. Ademaás de las reflejadas en el cuadro, existen otros muchas que, de variar en sólo una diezmilésima, lo cambiarían todo.

Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo. Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los aniles con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de , los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que presentimos.

El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, este punto de vista, puede considerarse un ente digno del estudio científico perfectamente legítimo.

Resultado de imagen de nuestro cerebro y la conciencia

La conciencia plantea un problema especial que no se encuentra en otros de la ciencia. En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo. Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)

Imagen relacionada

                   Lo cierto es que… ¡No sabemos!

En el caso de la conciencia, sin embargo, nos encontramos con una simetría. Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada. Lo que realmente queremos es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes. Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, saber qué se siente al ser un murciélago. Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.

Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro , bastará nunca para que una persona daltónica consiga experimentar un color.

Resultado de imagen de Una persona daltónica

El daltonismo —llamado así en honor del químico inglés John Dalton, quien padecía esta deficiencia— es un defecto genético que consiste en la imposibilidad de distinguir algunos colores (discromatopsia). Aunque la confusión de colores entre un daltónico y otro puede ser totalmente diferente, incluso en miembros pertenecientes a la misma familia, es muy frecuente que confundan el verde y el rojo; sin embargo, pueden ver más matices del violeta que las personas con visión normal y distinguen objetos camuflados.

En un experimento mental filosófico, Mary, una neurocientífica del futuro daltónica, lo sabe todo acerca del sistema visual y el cerebro, y en particular, la fisiología de la discriminación del color. Sin embargo, cuando por fin logra recuperar la visión del color, todo aquel conocimiento se revela totalmente insuficiente comparado con la auténtica experiencia del color, comparado con la sensación de percibir el color. John Locke vio claramente problema hace mucho tiempo.

Las fotografías de los mejores paisajes de la primavera 7

Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: El cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árboles y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río, cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus por el ramaje que se mece movido por una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pronto pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para hacer la descripción empleáramos.

La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De diez personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.

Resultado de imagen de Resultado de imagen de El libre albedrío

                    Poder elegir entre diversos caminos

Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir. Sin embargo, la misma prueba, realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc., hace que el de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado. Esto nos sugiere que, la mente está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.

¿Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda siempre fuera de nuestro alcance?

¿O es de alguna manera posible, romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?

Resultado de imagen de Tener la conciencia de SerResultado de imagen de Tener la conciencia de Ser

La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en campo del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que suponemos nosotros mismos, ya que, con nuestro que podemos, en cualquier momento, provocar la propia destrucción.

Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda sentir. ¿Cómo se podría comparar la descripción de un gran amor con sentirlo, vivirlo física y sensorialmente hablando?

Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y marketing se empeñen, lo auténtico siempre será único. Si acaso, el que más se aproximar, a esa verdad,  es el poeta.

emilio silvera

Las Galaxias y la vida… ¡Reducen la Entropía!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Tierra, un planeta vivo
  • ¿Por qué en nuestro planeta hay vida y no la hay en ningún otro del sistema solar? (hasta donde sabemos)
  • ¿Todos los seres vivos son iguales?
  • ¿Qué tienen en común todos los seres vivos? ¿Que están basados en el Carbono?

Tras describir las funciones comunes de los SERES VIVOS, pensemos en la célula como organismo fundamental para la vida y clasificaremos los seres vivos en cinco reinos.

 

 

Resultado de imagen de Los cinco reinos de los seres vivosImagen relacionadaImagen relacionadaImagen relacionada

“Los seres vivos se clasifican en grandes grupos llamados reinos. Existen cinco reinos: el reino animal (animales), el reino vegetal (plantas), el reino hongos (setas, mohos y levaduras), el reino protoctistas (protozoos y algas) y el reino móneras (bacterias).”

               Estamos en un planeta lleno de vida y tal maravilla se nos olvida con frecuencia

Resultado de imagen de La mejor imagen de la Tierra

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida multiforme, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

Resultado de imagen de La vida se replicaResultado de imagen de Replicación humanaResultado de imagen de Nacimientos de seres humanos

                La vida es un signo de entropía negativa cuando se replica y reproduce

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Ahora, parece que han recapacitado y han enviado a Marte y otros lugares de nuestro entorno, una pléyade de ingenios que ya nos han enviado datos de imágenes de cómo son otros mundos y de las posibilidades que en ellos pueden existir de que la vida esté presente. De momento han encontrado hielo de agua, han diluido porciones de la tierra marciana en agua y debidamente tratada, han hallado la presencia de magnesio, sodio, potasio y cloruros.  En algunos lugares, como Titán, por ejemplo,  hay más que evidencia de agua porque las sales están allí con otros elementos esperanzadores y una atmósfera prometedora. Además han encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de estos lugares (también Marte) es que no son un mundos extraños, sino que, en muchos aspectos, son iguales que la Tierra fue en el pasado o podrá ser en el futuro. Por eso es importante que los estudiémos.

                                        En alguna ocasión me he referido al comentario que hizo Darwin:

“… los materiales primigenios… en alguna pequeña charca caliente, tendrían la oportunidad de hacer el y organizarse en sistemas vivos…”

Resultado de imagen de Charca caliente en el Yellowstone

 

“Modelo matemático revela el origen de la colorida gama de las albercas termales en el Parque Nacional Yellowstone”

 

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo,  es difícil no conjeturar que allí, junto a esos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas, incluso desconocidas para nosotros como ocurre aquí mismo en nuestro planeta.

Resultado de imagen de Descubren otros sistemas planetariosResultado de imagen de Descubren otros sistemas planetariosResultado de imagen de Descubren otros sistemas planetariosResultado de imagen de Descubren otros sistemas planetarios

Súpertierras que son fáciles de detectar por su inmensas masas pero, los planetas terrestres también están por ahí, orbitando a miles y miles de estrellas y a la distancia adecuada poder contener la vida. Los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON). Están ahí, dispersos por las Nebulosas que forman sus materiales en estrellas y mundos.

Lee Smolin, de la Universidad de Waterloo,  Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas y mundos.

Nuestro hogar dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas – de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por doscientos mil millones de estrellas que describen órbitas en torno al centro del disco.

El Sol, en realidad, sólo es importante para nosotros al ser el cuerpo central de nuestro Sistema Solar, y con mucho, la estrella más cercana al planeta Tierra y la única que se puede estudiar con todo lujo de detalles. Se clasifica como una estrella G2V: una estrella amarilla con una temperatura efectiva de 5.770 K ( espectral G2) y una enana de la secuencia principal (clase de luminosidad V). Los detalles de su composición son sobradamente sabidos por todos y cabe destacar su abundancia de hidrógeno – 71% en masa- y de helio el 27% y elementos más pesados hasta completarlo. Por lo tanto, nuestro Sol no destaca por nada entre esa multitud de de cientos de miles de millones de estrellas.

Recorre su órbita a una distancia del centro que viene a ser más o menos dos tercios del diámetro. En el centro de la Galaxia las estrellas forman una protuberancia, de tal modo que desde el exterior daría la sensación de estar viendo un enorme huevo frito, en el que la protuberancia sería la yema. Sin embargo, el modo en que este disco gira revela que todo el material brillante (materia bariónica) que compone la parte visible de la Vía Láctea queda sujeto por el tirón gravitatorio que la propia masa galáctica genera. Otros hablan de una materia invisible que no brilla ni emite radiación y que viene a ser más o menos diez veces mayor que la materia visible de la Galaxia y que suponen diseminada en un halo situado alrededor de ella, extendiéndose mucho más allá del borde del disco de estrellas brillantes.

Descubrir qué es realmente esta materia oscura (si existe, yo prefiero llamarla no luminosa o materia escondida) constituye un tema de crucial interés para los astrónomos, pero no entraremos en eso, ya que, para lo que estamos tratando, no tiene importancia. Muchas galaxias en forma de disco se caracterizan por una especie de serpentinas que se alejan en espiral desde su centro, lo que hace que se les aplique el nombre de galaxias espirales. Es fácil estudiar las pautas que siguen los llamados “brazos espirales”, porque las galaxias se encuentran relativamente cerca unas de otras, si comparamos estas distancias con sus tamaños.

         Una fuerza misteriosa hace que las figuras se repitan en las formas de los objetos

Andrómeda (que no es la que arriba vemos), la galaxia espiral más cercana comparable a la Vía Láctea, se encuentra con respecto a nosotros a una distancia de poco más de dos millones de años luz; parece una gran distancia, pero la galaxia de Andrómeda es tan grande (un poco mayor que la Vía Láctea) que, incluso a esa distancia, vista desde la Tierra cubre un trozo de cielo del tamaño de la Luna, y puede observarse a simple vista en una noche despejada y sin luz lunar, si nos situamos lejos de las ciudades y de otras fuentes de emisión de luz.

Los brazos espirales, que son una característica tan llamativa en galaxias como la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa.

 [M42 - La Gran Nebulosa de Orión]

                                                                                La hermosa Orión

No hay misterio alguno en cuanto al modo en que mantienen esa forma espiral. Se debe exclusivamente a un fenómeno de retroalimentación.  Las nubes gigantescas a partir de las cuales se forman las estrellas pueden contener hasta un millón de veces la masa del Sol cuando empieza a contraerse gravitatoriamente para formar estrellas. Cada nube que se contrae produce, no una sola estrella de gran tamaño, sino todo un conglomerado de estrellas, así como muchas estrellas menores. Cuando las estrellas brillantes emiten luz, la energía de esta luz estelar (especialmente en la parte ultravioleta del espectro) forma una burbuja dentro de la nube, y tiende a frenar la formación de más estrellas. Sin embargo, una vez que las estrellas de gran masa han recorrido sus ciclos vitales y han explotado, sembrando además el material interestelar con elementos de distintos tipos, la onda expansiva ejerce presión sobre las nubes interestelares cercanas y hace que éstas comiencen a contraerse.

Las ondas procedentes de distintas supernovas, al entrecruzarse unas con otras, actúan mutuamente barrer el material interestelar y formar nuevas nubes de gas y polvo que se contraen produciendo más estrellas y supernovas, en un ejemplo clásico de interacción que se mantiene por sí sola en la que intervienen una absorción de energía (procedentes de las supernovas) y una retroalimentación.

Si la nube es demasiado densa, su interna se contraerá gravitatoriamente de manera rápida, formando unas pocas estrellas grandes que recorren sus ciclos vitales rápidamente y revientan la nube en pedazos antes de que puedan formarse muchas estrellas. Esto significa que la generación siguiente de estrellas nace de una nube más delgada, porque ha habido pocas supernovas que barrieran material formando pedazos densos. Si la nube es tan delgada que su densidad queda por debajo de la densidad óptima, nacerán muchas estrellas, y habrá gran cantidad de explosiones supernovas, lo cual producirá gran número de ondas de choque que barrerán el material interestelar, acumulándolo en nubes más densas.

        Sí, siento debilidad por esta Nebulosa que, para los astrónomos, es un gran laboratorio espacial

De esta manera, por ambas partes, las retroalimentaciones operan para mantener un equilibrio aproximadamente constante entre la densidad de las nubes y el de supernovas (y estrellas de tipo Sol) que se producen en cada generación. La propia pauta espiral resulta del hecho de que la galaxia realiza movimiento de rotación y está sometida al tirón gravitatorio que crea la fuerza de marea proveniente de esa materia no luminosa.

Claro que, la materia interestelar es variada. Existen nubes de gas y polvo fríos, que son ricas en interesantes moléculas y se llaman nubes moleculares gigantes; a partir de estas nubes se forman nuevas estrellas (y planetas). Hay nubes de lo que consideraríamos gas “normal”, formadas por átomos y moléculas de sustancias tales como el hidrógeno, y quizá tan caliente como una habitación cerrada toda la noche y con la temperatura de dos cuerpos dormidos y emitiendo calor. Además, hay regiones que se han calentado hasta temperaturas extremas mediante la energía procedente de explosiones estelares, de tal modo que los electrones han sido arrancados de sus átomos formar un plasma cargado de electricidad.

La densidad de materia entre las estrellas es escasa, dado que estas la obsorbieron y la que había están convertidas en cuerpos homogéneos que brillan y generan calor transformando el material más sencillo en otro más complejo y pesado. También, alrededor de estas estrellas se forman los mundos.

Dentro del medio interestelar las densidades varían. En la modalidad más común, la materia existente las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, pocos investigadores destacaron allá por 1.990 en que todos estos aspectos –composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

Creo que llevan toda la razón. También la Tierra, como sistema cerrado, es “un sistema vivo” (Gaia) que, se recicla y renueva mediante los fenómenos naturales que podemos ahora contemplar y, hasta comprender.

emilio silvera

¡La velocidad de la luz! Según Asimov

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz? Isaac Asimov nos lo cuenta así:

“Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2, la bomba atómica lo confirmó). Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increiblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa.

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

Resultado de imagen de La Luna

La Luna

Cuando le explicas a una persona lo que pasa con la velocidad de la luz…

Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita.

Imagen relacionada

                     La luz del Sol tarda 8 minutos en llegar a la Tierra

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales.  Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

Universo completa

Puede que existan otros universos de la misma manera que son miles de millones de millones de  estrellas o de galaxias en el nuestro. Sin embargo, no sabemos como serán esos otros universos y que fuerzas fundamentales o que constantes universales lo regirán pero, una cosa es cierta, si las constantes son diferentes a las de este universo nuestro… ¡La vida no estará presente! Al menos, en la forma que aquí la conocemos.

Pero sigamos con Asimov y sus explicaciones de la velocidad de la luz.

Resultado de imagen de La energía se convierte en masa si nos acercamos a la velocidad de la luz cResultado de imagen de La energía se convierte en masa si nos acercamos a la velocidad de la luz c

La masa aumenta con la velocidad, cuando se acerca a c (la velocidad de la luz en el vacío), al tratarse del límite que impone el Universo para que cualquier objeto se desplace, la velocidad se irá frenando y la energía cinética se convierte en masa.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacío es una muestra.

Imagen relacionadaImagen relacionada

                      La luz está dentro de la materia y en el universo… ¡por todas partes!

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.

Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

Resultado de imagen de La velocidad de los fotones por el espacio

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada.

Einstein en su teoría de la relatividad especial de 1.905, nos decía que en nuestro universo nada puede ir más rápido que la luz. También nos dejó dicho que masa y energía don dos aspectos de una misma cosa. Que la materia se puede convertir en energía (ahí está la bomba atómica como demostración) pero, ¿es posible hacer lo contrario y convertir energía en materia?

Sí sería posible convertir energía en materia, pero hacerlo en grandes cantidades resulta poco práctico. Veamos por qué.

Según la teoría de Einstein, tenemos que E = mc2, donde e representa la energía, medida en ergios, m representa la masa, medida en gramos, y c es la velocidad de la luz en centímetros por segundo.

La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:

3×1010 × 3×1010, ó 9×1020.

Por tanto, c2 es igual a 900.000.000.000.000.000.000.

Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías.  Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

O digámoslo de otro modo: si fuese posible convertir en energía eléctrica la energía representada por un solo gramo de materia, bastaría para tener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años.

O bien: la energía que representa un solo gramo de materia equivale a la que se obtendría de quemar unos 32 millones de litros de gasolina.

Nada tiene de extraño, por tanto, que las bombas nucleares, donde se convierten en energías cantidades apreciables de materia, desaten tanta destrucción.

La conversión opera en ambos sentidos. La materia se puede convertir en energía y la energía en materia. Esto último puede hacerse en cualquier momento en el laboratorio, donde continuamente convierten partículas energéticas (como fotones de rayos gamma) en 1 electrón y 1 positrón sin ninguna dificultad. Con ello se invierte el proceso, convirtiéndose la energía en materia.

Pero estamos hablando de una transformación de ínfimas cantidades de masa casi despreciable. ¿Pero podremos utilizar el mismo principio para conseguir cantidades mayores de materia a partir de energía?

Resultado de imagen de Un experimento que trata de convertir energía en materia

Imagen relacionadaImagen relacionada

                                       Aquí tratan de convertir luz en materia

Bueno, si un gramo de materia puede convertirse en una cantidad de energía igual a la que produce la combustión de 32 millones de litros de gasolina, entonces hará falta toda esa energía para fabricar un solo gramo de materia, lo que nos lleva al convencimiento de que no sería muy rentable invertir el proceso.

Resultado de imagen de La dispensadora de alimentos del Enterprise de Star Trek

Con solo pedirlos allí aparecían como surgidos de la nada

Recuerdo en este punto cómo los viajeros espaciales de la Nave Enterprise, cuando tienen hambre, le piden a una dispensadora de alimentos lo que desean comer o beber, y la máquina, a partir de la energía, le facilita todo aquello que necesiten. La serie Star Trek, unas de las mejores que han sido realizadas, reflejan algunas licencias que como esta de la máquina dispensadora, no explican de dónde precede la fuente de energía que utilizan y, que según lo que se ve, tendría que ser inagotable.

Antes de que llegara Einstein, los físicos del siglo XIX creían que la materia y la energía eran dos cosas completamente diferentes. Materia es todo aquello que ocupaba un espacio y que poseía masa. Y al tener masa también tenía inercia y respondía al campo gravitatorio. La energía en cambio, no ocupaba espacio ni tenía masa, pero podía efectuar trabajo. Además, se pensaba que la materia consistía en partículas (átomos), mientras que la energía, se componía de ondas.

Por otra parte, esos mismos físicos del XIX creían que ni la materia ni la energía, cada una por su parte, podía ser creada ni destruida. La cantidad de materia del universo era constante, igual que la cantidad total de energía.  Había pues una ley de conservación de la energía y de conservación de la materia.

Resultado de imagen de Convertir masa en energíaResultado de imagen de Convertir masa en energía

Convertir energía en materia es más fácil que lo contrario, y, aunque masa y energía son dos aspectos de la misma cosa… ¡Convertir energía en masa no será fácil!

Albert Einstein, en 1.905, les demostró que la masa es una forma muy concentrada de energía. La masa podía convertirse en energía y viceversa.  Lo único que había que tener en cuenta era la ley de conservación de la energía. En ella iba incluida la materia.

Hacia los años veinte se vio además que no se podía hablar de partículas y ondas como si fuesen dos cosas diferentes. Lo que se consideraban partículas actuaban en ciertos aspectos como si de ondas se tratara, y lo que normalmente se consideraban ondas actuaban en ciertos aspectos como partículas.

Así podemos hablar de ondas del electrón, por ejemplo; y también de partículas de luz, o fotones. Pero existe una diferencia entre la una y el otro, mientras que la partícula que denominamos electrón, posee una “masa en reposo” mayor a cero, los fotones por el contrario, no tienen masa alguna, por ese motivo, estas partículas se mueven siempre a una velocidad de 299.792’458 metros por segundo a través del vacío, no debemos olvidar que un fotón es una partícula de luz.”

Fórmula relativista de adición de velocidades.

En matemáticas se llama prolongación de una función a la extensión de su dominio más allá de sus singularidades, que se comportan como frontera entre el dominio original y el extendido. Normalmente, la prolongación requiere incluir algunos cambios de signo en la definición de la función extendida para evitar que aparezcan valores imaginarios puros u otros números complejos. La matemática de la teoría de la relatividad puede ser aplicada a partículas que se mueven a una velocidad mayor que la de la luz (llamadas taquiones) si aceptamos que la masa y la energía de estas partículas pueden adoptar valores imaginarios puros. El problema es que no sabemos qué sentido físico tienen estos valores imaginarios.

Claro que, estas nuevas teorías nunca han podido ser comprobadas mediante ningún experimento, así que, se quedan en el limbo de las conjeturas.

emilio silvera