miércoles, 15 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Por qué es difícil Viajar a Marte? I (Apuntes de la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Por qué es difícil ir a Marte?

 

 

                          Fotograma de la película ‘The martian’. AIDAN MONAGHAN

El estreno de la película ‘Marte’ (The Martian) ha despertado cierta curiosidad acerca de posibles futuros viajes humanos al planeta rojo. Después de haber ido a la Luna en varias ocasiones hace ya casi cinco décadas, y estando acostumbrados a ver astronautas viajar al espacio casi de forma rutinaria, es tentador pensar que enviar seres humanos a Marte pueda ser algo perfectamente plausible a día de hoy, o tal vez un tanto más complicado que lo hecho hasta ahora. Sin embargo, la realidad es que enviar seres humanos a Marte constituye un desafío de una dificultad y complejidad absolutamente descomunales que se aleja mucho de todo lo que se ha hecho hasta ahora en la historia de la exploración humana del espacio.

En esta y en la siguiente entrada hablaré de las razones por las que esta empresa constituye un desafío inmenso y sobre cómo se plantea en la actualidad una misión tripulada a Marte. Con objeto de ofrecer una perspectiva inicial para entender la dimensión del problema de una forma intuitiva, en esta entrada trataré de la razón principal que hace extremadamente difícil una misión a Marte, la razón de la que prácticamente se derivan casi todas las demás: la distancia.

Matt Damon in “The Martian.” Credit Aidan Monaghan/Twentieth Century Fox

 

Vemos astronautas viajar con frecuencia al espacio, a la Estación Espacial Internacional (ISS), antes a la estación Mir, a bordo de naves Soyuz, o antes a bordo del Transbordador Espacial, etc., y se suele tener la impresión de que el lugar al que se viaja en estas misiones es muy lejano; sin embargo, las altitudes típicas a las que estas estaciones y vehículos espaciales orbitan alrededor de la Tierra son de unos pocos cientos de kilómetros. La ISS, por ejemplo, orbita alrededor de la Tierra a una altitud que es equivalente a la distancia que hay en línea recta entre Madrid y Almería: unos 400 km. Esta región espacial a la que viajan los humanos de forma rutinaria está dentro de la conocida como ‘región de las órbitas bajas de la Tierra’, y técnicamente la llamamos LEO (del inglés Low Earth Orbit).

movimientos de la luna

 

La luna como satélite natural de nuestro planeta tierra, conjuntamente con los  movimientos de la luna, nos determinara el intervalo de tiempo del día, como los días, semanas, meses, hasta el año, de ahí surge la idea del porque son importante los movimientos de la luna.

 

Los viajes tripulados lunares implicaron viajar más allá de las órbitas LEO ya que la Luna orbita nuestro planeta a una distancia media de unos 380.000 km, lo que viene a ser unas 1.000 veces más lejos que las altitudes de estas órbitas bajas. Una tripulación y su nave se ponen en órbita alrededor de la Tierra poco después de su lanzamiento, mientras que la distancia a la Luna se cubría en las misiones Apolo en prácticamente 3 días.

En el caso de Marte la situación es muy diferente. Ir a Marte implica pasar de una misión geocéntrica a una centrada en el Sol, o heliocéntrica, lo que supone un salto enorme en las distancias involucradas. Aunque las distancias máxima y mínima entre la Tierra y Marte varían dentro de un cierto rango, la mínima distancia posible es de unos 55 millones de km y la máxima posible es de unos 400 millones de km.

Estas son distancias enormes en comparación a todo lo que se ha volado en misiones tripuladas al espacio hasta ahora. La distancia máxima a Marte viene a ser 1.000 veces mayor que la que hay entre la Tierra y la Luna, lo que viene a ser 1.000.000 de veces mayor que la distancia que separa la superficie terrestre de las órbitas LEO a las que se viaja normalmente.

Distancias aproximadas mínima y máxima posibles entre la Tierra y Marte. Como referencia, la distancia media de la Tierra a la Luna es de 380.000 km.

Sin necesidad de conocer nada más, los datos acerca de la distancia a Marte ya constituyen una buena pista para empezarnos a asomar a la magnitud del problema. Para apreciarlo mejor, y sin entrar en detalles relativos a métodos de propulsión o dinámica orbital, vamos a comparar en números redondos dos misiones tripuladas, una orbital alrededor de la Tierra para un solo tripulante y otra lunar de tres tripulantes, para hacernos una idea de la progresión en la masa necesaria de los cohetes involucrados para llevar a cabo estas misiones y entender el contexto de lo que supondrá una misión a Marte.

Empezamos con la primera misión orbital del Programa Mercury de principios de los ’60: la Mercury 6 de John Glenn. Aquí se precisó de un cohete Atlas de 120 toneladas y 29 metros de altura para poner en una órbita de 200 km de altitud media alrededor de la Tierra una masa útil de 1,2 toneladas formada por una cápsula Mercury con su único tripulante, el cual permaneció en el espacio 5 horas.

Veamos ahora lo que cambia la situación al tener a la Luna como destino unas 1.000 veces más lejos. En el caso del Apolo 17 -la última misión de exploración lunar-, su módulo de mando y servicio más su módulo lunar, sumando todo cerca de 50 toneladas, hubieron de ser lanzados a la Luna por el poderoso cohete Saturno V de unas 3.000 toneladas y de 110 metros de altura para una misión de una duración total de unos 12 días y medio en la que 2 de sus tripulantes permanecieron sobre la superficie lunar algo más de 3 días.

Cohete lunar Saturno V junto al cohete Atlas del Programa Mercury para un tripulante (Transbordador Espacial incluido como referencia). Fuente: http://historicspacecraft.com/.

Vemos así el salto cuantitativo necesario cuando queremos ir a otro mundo que está 1.000 veces más allá de las órbitas bajas de la Tierra tanto en la masa útil a lanzar (de 1,2 a 50 toneladas) como en el tamaño del cohete lanzador requerido (de 120 a 3.000 toneladas). Comparemos todo esto con una misión a Marte. Aquí la tripulación constará de 6 astronautas y su duración, tomando como ejemplo la oportunidad en 2037, sería de 174 días para la ida y 201 días para la vuelta, con una estancia de 539 días en Marte. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de centenares de toneladas de combustible. Todo esto supone un total de 914 días, o 2 años y medio.

Como vemos, el salto entre la Luna y Marte es descomunal, ya que doblar la tripulación y extender la duración a cerca de 73 veces la de la misión lunar más larga, supone la necesidad de proveer y transportar cerca de 150 veces más suministros. Por otra parte, una mayor duración de viaje interplanetario supone la necesidad de proveer a la tripulación de mayor protección contra las radiaciones, lo que se consigue en parte añadiendo aún más masa, aunque este problema no está aún resuelto.

Otro problema de la larga duración es que las cosas se rompen a lo largo de tanto tiempo. O bien se tendrá que mejorar sustancialmente la durabilidad de los equipos o estos habrán de poder ser repuestos por recambios que también habrá que transportar, lo que implica una mayor masa. Las naves de carga que visitan la ISS pueden abastecerla de repuestos cuando algo se estropea a bordo pero esta opción no será posible en una misión a Marte.

Una vez dicho todo esto, al igual que cuesta más acelerar y frenar un camión que un turismo por tener el primero más masa, tengamos en cuenta que enviar más masa a Marte implica transportar también más combustible para acelerar toda esa carga hacia Marte, para frenarla a la llegada a ese planeta, y para volver a la Tierra desde allí; y pensemos que todo ese combustible (centenares de toneladas) también hay que lanzarlo al espacio inicialmente.

En total, para una misión a Marte se requerirá lanzar al espacio entre 850 y 1.250 toneladas. Esta es una cantidad enorme si tenemos en cuenta que la Ia ISS tiene una masa de unas 420 toneladas y que una nave con la que estamos familiarizados como el Transbordador Espacial solo podía enviar al espacio entre 15 y 25 toneladas aproximadamente, dependiendo de la altitud de la órbita final. El Ariane 5 es capaz de poner unas 20 toneladas en órbita baja alrededor de la Tierra, al igual que el cohete ruso Protón, por ejemplo.

Así pues, a partir de todo esto, y sin saber mucho más, ya podemos anticipar de forma intuitiva que no se podrá utilizar un único cohete para ir a Marte, sino que se precisarán varios lanzamientos de cohetes -tanto o más poderosos que el Saturno V de los años ’60- para ensamblar en el espacio distintos elementos de propulsión, módulos de combustible, hábitats y naves, que habrán de enviarse a Marte por separado y por anticipado, además de la nave con la tripulación, que sería enviada en último lugar. Entraremos en estos detalles en la siguiente entrada.

Aunque depende de diversos factores, se requerirán, de hecho, del orden de 10 lanzamientos de cohetes con la capacidad del Saturno V o similar; pero recordemos que el número total de cohetes Saturno V que se enviaron a la Luna en todo el Programa Apolo fue de 9. El Saturno V fue retirado de servicio después del Porgrama Apolo pero ostenta el récord, aún a día de hoy, como el cohete operativo más poderoso que haya habido nunca, capaz de poner algo más de 120 toneladas en órbita baja alrededor de la Tierra y de enviar 50 toneladas a la Luna. Tuvo que ser específicamente diseñado y construido en su día para poder alcanzar la Luna, y no existe un lanzador de tanta capacidad en la actualidad. El cohete que se encargaría de la mayor parte de los lanzamientos en una futura misión a Marte se está desarrollando en la actualidad y se llama SLS (Space Launch System), el cual tendrá prestaciones parecidas o acaso un tanto mayores que el Saturno V.

Por otra parte, un tiempo de 174 días de ida en condición de ingravidez afecta profundamente a la fisiología humana, algo especialmente preocupante al llegar a un planeta donde no hay nadie para asistirte. Las naves que se pueden ver en las películas (incluida la película ‘Marte’), con un amplio y confortable habitáculo en forma de donut girando para simular la aceleración de la gravedad, no son realistas en la actualidad.

                     La Tierra vista desde Marte (izda.) y desde la Luna (dcha.). Fuente: NASA.

Dos años y medio es un tiempo muy largo también por razones psicológicas. La Tierra será vista por la tripulación como un punto de luz semejante a una estrella durante la mayor parte del viaje y será apenas imperceptible en la noche marciana cuando fuera visible. La tripulación tendrá que convivir en una condición de confinamiento permanente en un espacio reducido en una situación de gran estrés, y con la imposibilidad de mantener conversaciones fluidas con los seres queridos en la Tierra debido al tiempo de viaje de la señal.

Después de todo esto, y aunque no se han mencionado todas las dificultades técnicas, tecnológicas y operativas, creo que ahora puede apreciarse un poco mejor a lo que nos enfrentamos en una misión a Marte. A partir de aquí, y una vez expuesta esta perspectiva para contextualizar el problema y entrar en materia, en la siguiente entrada explicaré cómo se plantea en la actualidad una misión humana a Marte y cómo se relaciona con lo que se ve en la película ‘Marte’ (The Martian).

sigue en la II parte

¿Por qué es difícil viajar a Marte? II (Desde la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Fotograma de la película ‘Marte’ (‘The Martian’). EM

¿Por qué es difícil ir a Marte? (II)

 
Resultado de imagen de En el futuro nave camino de Marte

 

         Nave camino de Marte en el futuro

En la pasada entrada contextualizamos el problema de una misión humana a Marte para apreciar la dimensión del desafío que supone. Como vimos, la principal razón que la hace difícil es la enorme distancia que nos separa de ese planeta, lo que implica que la misión tendría una duración total de aproximadamente 2 años y medio. En esta entrada vamos a concretar cómo se plantea hoy en día esta misión, tomando como ejemplo la oportunidad para el año 2037.

Según está propuesto en la actualidad, para completar una misión humana a Marte serán necesarias 3 naves: dos de carga y una para la tripulación. Una de las naves de carga transportará a Marte el hábitat que albergará a la tripulación durante su estancia de 539 días en la superficie marciana. Este hábitat se denomina SHAB (Surface Habitat), y es ahí donde Mark Watney, el protagonista de ‘Marte’ The Martian, trata de sobrevivir en solitario.

 

 

 

 

La otra nave de carga es el denominado ‘vehículo de descenso y ascenso’, o DAV (Descent and Ascent Vehicle). El DAV es la nave a bordo de la que la tripulación, una vez acabada su estancia en Marte, abandonará este planeta, y es, por tanto, la nave que utiliza la tripulación al principio de la película para abortar su estancia en la superficie marciana en medio de una feroz tormenta de arena.

La nave con la tripulación es conocida como ‘vehículo de transferencia para Marte’, o MTV (Mars Transfer Vehicle), y es la que se encargará de transportar a la tripulación en sus dos trayectos interplanetarios: el de ida a Marte y el de regreso a la Tierra (las naves de carga solo tienen tiques de ida).

 

 

 

Concepto de vehículo de transferencia de tripulación para Marte. Fuente: NASA.

 

Estas tres naves habrán de ensamblarse en una órbita baja alrededor de la Tierra antes de ser enviadas por separado a Marte, pero estos ensamblajes y envíos se harán en tiempos distintos. Las naves de carga (SHAB y DAV) serán las primeras en ser ensambladas, y serán lanzadas al planeta rojo dos años antes que el MTV con la tripulación. ¿Por qué dos años? Porque es aproximadamente cada dos años que se da la posición relativa precisa entre Marte y la Tierra que permite que entre ambos planetas se pueda volar una trayectoria por la que se minimiza la cantidad de combustible a utilizar. Esto es de gran importancia porque son muchas las toneladas de combustible que se necesitan para hacer posible una misión así, como veremos luego.

 

 

 

Concepto de nave de carga para Marte. Fuente: NASA.

 

Una vez ensamblada cualquiera de estas tres naves en órbita alrededor de la Tierra, cada una de ellas es lanzada desde ahí hacia Marte a través del encendido de sus motores durante un corto espacio de tiempo. La nave es así acelerada hasta adquirir la velocidad necesaria para abandonar la influencia gravitatoria terrestre y dirigirse hacia Marte a lo largo de una trayectoria interplanetaria que es, en realidad, una órbita elíptica alrededor del Sol y cuyo punto más lejano intersectará con el paso de Marte por ese punto en el momento preciso. Cuando la velocidad deseada ha sido alcanzada, los motores se apagan y permanecen así durante toda la travesía (se encenderán en algún momento para hacer alguna corrección en la trayectoria). A pesar de encender los motores durante un corto espacio de tiempo, del orden de pocos minutos o decenas de minutos, la cantidad de combustible que se utiliza es enorme (decenas de toneladas).

Este lanzamiento hacia Marte desde una órbita baja alrededor de la Tierra se denomina ‘inyección transmarciana’, y nos referimos a él como TMI (Trans-Mars Injection). Nótese que al regreso de la tripulación desde Marte, el mismo proceso ocurrirá desde allí en sentido inverso: desde una órbita alrededor de Marte, la nave encenderá sus motores por un corto espacio de tiempo en lo que se denomina ‘inyección transterrestre’, o TEI (Trans-Earth Injection).

 

 

Imagen relacionada

 

 

Una vez llegada una nave a las proximidades de Marte, esta debe frenarse para quedar capturada en una órbita alrededor de ese planeta desde donde acometer las siguientes operaciones. Esta maniobra de frenado se denomina ‘inserción en órbita marciana’, o MOI (Mars Orbit Insertion). El MOI puede hacerse de forma propulsada, encendiendo los motores otro corto espacio de tiempo, o de forma aeroasistida, utilizando la atmósfera marciana para frenar la nave en una maniobra llamada ‘aerocaptura’. Esta última opción se ha propuesto solo para las naves de carga de forma que sería mucho el combustible que se ahorraría en la misión. El problema es que nunca se ha volado una aerocaptura hasta la fecha, con lo que esta capacidad habría de ser demostrada antes. El SHAB (la nave portando el hábitat) permanecerá en órbita alrededor de Marte a la espera de la tripulación, pero el DAV (vehículo de descenso y ascenso) descenderá a la superficie marciana de forma autónoma.

 

Resultado de imagen de El DAV será la nave de ascenso que utilizará la tripulación en su día para despegar de la superficie al acabar su estancia en el planeta rojo

 

 

El DAV será la nave de ascenso que utilizará la tripulación en su día para despegar de la superficie al acabar su estancia en el planeta rojo. Con objeto de ahorrar el combustible necesario para ese lanzamiento, se propone que el DAV no porte el combustible con él, sino que lo produzca en Marte, in situ. Y es que sería prohibitiva la masa de una nave que descendiera a la superficie de Marte con el combustible para el lanzamiento posterior de 6 personas al finalizar su estancia allí. De hecho, se propone que el DAV no solo produzca in situ el combustible, siendo el metano/oxígeno la opción preferida, sino que también produzca el oxígeno, nitrógeno y el agua necesarios para la tripulación. Esta es otra área que precisa investigación y desarrollo tecnológico.

Dos años después de haber enviado las dos naves de carga, y después de comprobar que los consumibles (combustible, aire, agua) hayan sido producidos en Marte y de que todo allí funcione correctamente, la tripulación será lanzada finalmente al planeta rojo desde la Tierra. Una vez en órbita alrededor de Marte, el MTV (la nave en la que viaja la tripulación) se encontrará con el SHAB, que lo espera en órbita alrededor de Marte. Los astronautas pasarán al SHAB y procederán a bordo de esta nave al descenso a la superficie, donde aterrizarán a una corta distancia del DAV.

 

 

                 Ejemplo de misión a Marte propuesta para la oportunidad de 2037. Fuente: NASA.

El descenso a Marte de naves de tanta masa es a día de hoy un problema no resuelto. Hasta la fecha se han enviado a Marte vehículos exploradores y aterrizadores de muy poca masa. El principal problema reside en que la atmósfera marciana es muy tenue y no consigue frenar una nave de reentrada lo suficiente sin necesidad de emplear retropropulsión supersónica o enormes superficies de frenado si la nave es lo suficientemente masiva. La tecnología a día de hoy permite como máximo aterrizar en Marte masas de alrededor de una tonelada, un valor muy lejano de las naves de varias decenas de toneladas que habrá que poder aterrizar en una misión humana, por lo que nuevas técnicas y tecnologías deberán también ser desarrolladas para este propósito, un área de investigación en el que personalmente trabajo parcialmente en la actualidad.

Después de los 539 días de estancia en Marte, la tripulación será lanzada en la etapa de ascenso del DAV al encuentro del MTV, que habrá permanecido en órbita alrededor de Marte todo ese tiempo. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de ingentes cantidades de combustible. Una vez transferidos al MTV, se procederá a la inyección transterrestre por la que los astronautas regresarán a casa unos 200 días después, para acabar haciendo una reentrada en la atmósfera de la Tierra a bordo de una cápsula Orion, la cual está siendo desarrollada en la actualidad.

Resultado de imagen de El viaje a Marte y la distancia a recorrer

Muchas personas me preguntan si sería posible reducir la estancia en Marte. Efectivamente, la estancia podría reducirse a tiempos de entre 30 y 90 días; pero, en ese caso, los tránsitos interplanetarios habrían de ser muy largos, de mas de 200 días de ida y de unos 400 días de vuelta; requiriendo, además, maniobras de asistencia gravitatoria en el camino; de otra manera, el coste sería prohibitivo. Se favorece la opción de viajes cortos y estancias largas para reducir la exposición de la tripulación a la radiación. Estando en Marte, el mismo planeta bloquea el 50% de la radiación a la que estarían expuestos los astronautas, ademas de que ciertas medidas de protección serian mas fáciles de implantar.

Como se ha dicho constantemente, las masas involucradas en una misión humana a Marte son enormes. Un elemento que contribuye significativamente a esto es el combustible, y es por esta razón que se ha propuesto la opción de utilizar propulsión nuclear-térmica en lugar de propulsión química, tal y como ha sido el caso en todas las misiones tripuladas hasta la fecha. Esta no es una decisión baladí ya que el ahorro en combustible entre una opción y otra es de unas 400 toneladas; esto es, aproximadamente la masa de una Estación Espacial Internacional (ISS). Para poner esto en perspectiva, apuntemos que se precisaron 10 años para ensamblar la ISS y algo más de una treintena de lanzamientos (aunque de menor capacidad que el Saturno V).

Según se estima en la actualidad, para llevar a cabo una única misión a Marte habrá que lanzar al espacio desde la Tierra un total de 850 toneladas en caso de que se utilice propulsión nuclear-térmica, o 1.250 toneladas en caso de utilizar propulsión química. Esto son 2 o 3 Estaciones Espaciales Internacionales. Asumiendo que un cohete lanzador de prestaciones similares al Saturno V de las misiones lunares puede emplazar 120 toneladas en una órbita baja alrededor de la Tierra, el número de lanzamientos requeridos en una sola misión humana a Marte sería aproximadamente de 7 u 11, dependiendo del tipo de combustible, y asumiendo que todos los elementos necesarios puedan ponerse en órbita con un lanzador así. El envió de la tripulación precisaría de un lanzamiento especifico a bordo de un cohete de menor capacidad, por ejemplo, y es posible que ciertas tareas de ensamblaje puedan requerir asistencia humana también.

Spacex plan figure16
Posible evolución de la base marciana. Imagen: SpaceX.

Existen muchas variaciones en las arquitecturas propuestas para misiones tripuladas a Marte pero lo expuesto aquí refleja lo que viene a ser la arquitectura de referencia que se considera hoy en día. En cualquier caso, la envergadura de una misión humana a Marte es sobrecogedora. Espero que estas dos ultimas entradas hayan ayudado a entender un poco mejor la magnitud de una empresa tan ambiciosa y compleja. Las dificultades técnicas, operativas y tecnológicas que encierra no son para nada triviales, y resulta imposible siquiera mencionarlas todas en una entrada de un blog. Se requiere aún el desarrollo de tecnologías inexistentes en la actualidad para llevar a cabo una misión así, y muchas de las cuestiones planteadas no están aún resueltas. Aún estamos lejos de poder enviar seres humanos a Marte, pero también hace un siglo se estuvo muy lejos de alcanzar el espacio y la Luna. Estoy seguro de que el ser humano llegará a Marte algún día si así lo desea, pero creo, y esta es una opinión estrictamente personal, que ese día está más lejos de lo que muchos puedan pensar.

Fuente: NASA

Con el paso del Tiempo, todo cambia, nada permanece

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al pasado    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Madrid hace 300 millones de años

Este mapa te enseña qué había donde ahora está tu ciudad desde hace 750 millones de años

“La herramienta «Ancient Earth» se basa en registros de hace 1.100 millones de años para crear imágenes interactivas de todo el planeta.”

 

 

Desde unas manchas irreconocibles hasta el supercontinente Pangea y, finalmente, los continentes actuales. La Tierra se ha transformado de forma impresionante en los últimos 750 millones de años y las montañas que ves desde la ventana de tu habitación no han estado siempre ahí. Entonces, ¿qué había antes?

Imagen relacionada

Es la pregunta que quiere responder Ian Webster, creador de una herramienta web que te permite buscar tu ciudad como lo harías con una dirección de Google y posicionarla en diferentes mapas interactivos que abarcan desde la actualidad a los 750 millones de antigüedad -aunque tiene limitaciones y todas las ciudades no están registradas en las líneas temporales, hay algunas que sí, como Nueva York-. En ellos, Webster (que también es el creador de la mayor base mundial de datos online sobre dinosaurios) muestra a todo el mundo (y de forma gratuita) la deriva de los continentes durante todo ese tiempo. De la misma forma, es posible comprobar dónde estaría cada uno de los estados contemporáneos por la superposición de los límites políticos actuales a los geológicos de cada época mostrada.

Resultado de imagen de el proyecto PaleomapResultado de imagen de el proyecto PaleomapResultado de imagen de el proyecto PaleomapResultado de imagen de el proyecto PaleomapResultado de imagen de el proyecto Paleomap

La aplicación, llamada Ancient Earth, está basada en los datos del proyecto Paleomap, encabezado por el paleogeógrafo Christopher Scotese, y cuyo objetivo es rastrear la evolución de la distribución de la tierra y el mar en los últimos 1.100 millones de años. Por ello, además de buscar por fecha, se puede viajar con un simple menú desplegable a episodios cruciales de nuestro planeta como la aparición de la vida vegetal, la llegada de los homínidos o la extinción de los dinosaurios. Y todo rotando y alejando nuestra anciana Tierra, para poder observar más de cerca qué es lo que había hace millones de años antes de la colina que vemos por la ventana.

Acompáñenos en esta aventura por los hitos más importantes de nuestro país a lo largo de todas estas eras gracias a esta aplicación.

En la imagen se puede apreciar España en la parte inferior del globo

  1. Cuando eramos un supercontinente

  2. En la imagen se puede apreciar España en la parte inferior del globo – Ancient Earth

    Por ejemplo, hace 600 millones de años, cuando la vida estaba evolucionando en el mar y se daban los primeros organismos pluricelulares, la zona que hoy ocupa España era parte del supercontinente llamado Pannotia, en el que compartía espacio pegada a las costas africanas.

  3. Además, la mayor parte del continente masivo estaba situado en el Hemisferio Sur (sobre todo en el Polo Sur), incluida nuestra «porción» de Tierra que se convertiría en nuestro país.

Noticia de Prensa

El Tiempo sigue su camino y, seguimos aprendiendo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El cúmulo de galaxias Abell 1314 en la constelación de la Osa Mayor está a una distancia de aproximadamente 460 millones de años luz

 

El cúmulo de galaxias Abell 1314 en la constelación de la Osa Mayor está a una distancia de aproximadamente 460 millones de años luz – Amanda Wilber / LOFAR Surveys Team

¡Hallan cientos de miles de nuevas galaxias en un pequeño “trozo” del cielo!

 

Astrónomos hallan 300.000 galaxias ocultas en solo una pequeña porción de cielo

 

Las sorpresas que el Universo nos tiene reservadas son inimaginables, sólo conocemos una pequeña porción de todo lo que contiene.

La investigación en marcha involucra a un equipo de 200 astrónomos de 18 países

 

 

 

 

Hallan el quásar más brillante del universo temprano

 

Usando el Telescopio Espacial Hubble, un equipo de investigadores descubrieron el quásar más brillante, el brillante núcleo de una galaxia activa, del universo primitivo, una hazaña que llevó aproximadamente 20 años de búsqueda. Los investigadores utilizaron una lente gravitatoria para detectar el objeto lejano, que emitía la luz observada cuando el universo tenía menos de mil millones de años.

Resultado de imagen de La punta del Iceberg

La pequeña porción que sale de la superficie del agua es lo que vemos del Universo, lo que está debajo del nivel del océano… ¡lo que nos queda por descubrir!

Un nuevo e impresionante estudio del cielo llevado a cabo por un equipo internacional de más de 200 astrónomos de 18 países (entre ellos España, Universidad de La Laguna) ha descubierto cientos de miles de galaxias no detectadas previamente. Los nuevos resultados, dados a conocer en 26 trabajos publicados en un número especial de la revista científica «Astronomy & Astrophysics», fueron posibles gracias a la sensibilidad sin precedentes del radiotelescopio Low Frequency Array (LOFAR). Según sus autores, arrojan nueva luz sobre muchas áreas de investigación, incluida la física de los agujeros negros y cómo evolucionan los cúmulos de galaxias. Y apenas son la punta del iceberg, ya que el rastreo del firmamento apenas ha llegado al 2%.

“LOFAR (acrónimo del inglés, Low Frequency ARray, en español, ‘Matriz de Baja Frecuencia’) es una red distribuida de sensores multipropósito, utilizado principalmente como radiotelescopio para la astronomía pero también en otras áreas como geofísica y agronomía. El radiotelescopio puede funcionar como un array interferométrico distribuido a lo largo de los Países Bajos, donde se encuentra el núcleo central, y otros países europeos, con un área efectiva total de hasta 1 kilómetro cuadrado. Cada estación contiene un conjunto de antenas de baja frecuencia (LBA – Low Band Antennae; radiofrecuencia de 10 a 90 MHz), otro conjunto de antenas de alta frecuencia (HBA – High Band Antennae; de 110 a 250 MHz) y, opcionalmente, otro tipo de sensores.12​ Actualmente (2011) se encuentra en la fase de puesta en marcha (commisioning).”

LOFAR observó una cuarta parte del hemisferio norte en bajas frecuencias de radio, unos datos de los que ahora podemos conocer el 10%. El radiotelescopio mapeó 300.000 fuentes, casi todas galaxias en el universo distante. Sus señales de radio han viajado miles de millones de años luz antes de llegar a la Tierra.

El radiotelescopio también puede ayudar a responder de dónde vienen los agujeros negros. «Lo que sí sabemos es que son comedores bastante desordenados. Cuando el gas cae sobre ellos, emiten chorros de material que se pueden ver en las longitudes de onda de radio», explica Huub Röttgering, de la Universidad de Leiden en los Países Bajos. Los investigadores han podido comprobar que esos chorros «están presentes en todas las galaxias más masivas, lo que significa que sus agujeros negros nunca dejan de comer», agrega Philip Best, de la Universidad de Edimburgo (Reino Unido).

Resultado de imagen de Descubren 300.000 nuevas galaxias

Los cúmulos de galaxias son conjuntos de cientos a miles de galaxias. Desde hace décadas se sabe que cuando dos cúmulos se fusionan, pueden producir emisiones de radio que abarcan millones de años luz. Se cree que esta emisión proviene de partículas que se aceleran durante el proceso de fusión. «Lo que estamos empezando a ver con LOFAR es que, en algunos casos, los grupos de galaxias que no se están fusionando también pueden mostrar esta emisión, aunque a un nivel muy bajo que anteriormente era indetectable», señala Annalisa Bonafede, de la Universidad de Bolonia e INAF. «Este descubrimiento nos dice que, además de los eventos de fusión, existen otros fenómenos que pueden desencadenar la aceleración de partículas en escalas enormes», añade.

El trabajo también permitió mostrar la existencia de enormes campos magnéticos entre galaxias, lo que indica que ese espacio podría ser completamente magnético.

Diez millones de DVD

 

Resultado de imagen de Descubren 300.000 nuevas galaxiasResultado de imagen de Maravillas del UniversoResultado de imagen de Descubren 300.000 nuevas galaxiasResultado de imagen de Descubren 300.000 nuevas galaxiasResultado de imagen de Descubren 300.000 nuevas galaxiasResultado de imagen de Maravillas del Universo

 

 

La creación de mapas del cielo requiere también mucho tiempo de cómputo y grandes equipos para analizar los datos. «LOFAR produce enormes cantidades de datos: tenemos que procesar el equivalente a diez millones de DVD», dice Cyril Tasse, del Observatorio de París- Estación de Radioastronomía en Nançay (Francia). Esas imágenes de alta calidad ahora son públicas y permitirán a los astrónomos estudiar al evolución de las galaxias con un detalle sin precedentes.

Resultado de imagen de Descubren 300.000 nuevas galaxias

Siempre hay más de lo que se ve a simple vista, el estudio pormenorizado de las imágenes es esencial para comprender el alcance de lo que ahí está presente. En este caso de arriba, un agujero negro lanza un chorro de plasma que sale eyectado con gran violencia.

El procesamiento de los enormes conjuntos de datos es un gran desafío para los científicos. Lo que normalmente habría llevado siglos en una computadora normal se procesó en menos de un año utilizando el cluster de cómputo de alto rendimiento.

Resultado de imagen de Fuentes de radio del Universo

Los 26 trabajos de investigación en el número especial de Astronomy & Astrophysics se realizaron solo con un pequeño porcentaje del estudio del cielo, así que es aún queda mucho por llegar. El equipo pretende obtener imágenes sensibles de alta resolución de todo el cielo del norte, que revelarán 15 millones de fuentes de radio en total. Los investigadores esperan realizar entonces muchos más descubrimientos. «Y entre estos, estarán los primeros agujeros negros masivos que se formaron cuando el universo era solo un ‘bebé’», agrega Röttgering.

Noticias de prensa.

¿La vida fuera de la Tierra? ¡Antes de que finalice el siglo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La vida microscópica está por todas partes…¡En otros mundos (creo) que también.

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

 

Así se expresaba Fred Hoyle.

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

                                         Los familiares paisajes de Marte

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

Resultado de imagen de La luna Titán

          Titán se parece a la Tierra hace algunos millones de años

                                                          Encelado

Resultado de imagen de La luna EuropaResultado de imagen de La luna EuropaResultado de imagen de La luna EuropaResultado de imagen de La luna Europa

También se sueña con llegar a Europa y llegar a su océano interior, para ver si la vida está allí

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado

Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

Los 'Grandes Lagos' de una luna de Júpiter

                                                                                         Europa

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.

File:Cassini Saturn Orbit Insertion.jpg

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

File:Titan in natural color Cassini.jpg

                                                                                                Titán

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

Paisajes de la Tierra Prehistórica, lluvia de metano, ¿cuántas sorpresas más?

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

Imagen relacionada

Ningún otro cuerpo del sistema solar se parece más a la Tierra que Titán, la luna de Saturno. Cuenta con lagos y mares de metano, y los científicos creen ahora que, hasta un océano subterráneo

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.

¡Ya veremos!

emilio silvera