jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Física relativista, la cuántica y… ¡El futuro!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

File:Spacetime curvature.png

  Esta es una analogía bidimensional de la distorsión del espacio-tiempo debido a un objeto de gran masa

            Hay que entender que el espacio-tiempo es la única descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que sucesos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.

          El tiempo puede ser medido, por tanto, de manera relativa, como los son las posiciones en el espacio tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

 Resultado de imagen de La presencia de grandes masas curva el espacio

                           Presencia de materia y curvatura

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. Las componentes de dicho tensor representan entre otras la densidad de energía y la densidad de momentum y dichas componentes están relacionadas localmente con las componentes del curvatura. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein:

 

 

 

 

Es una fuerza atractiva que en la comunidad científica actual es concebida como la pensó Einstein: como un efecto de la curvatura del espacio-tiempo en presencia de de objetos masivos y, cuanto más masa tenga el objeto más se curvará el espacio a su alrededor-

 

 

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

donde:

R_{\mu\nu}\,, es el tensor de curvatura de Ricci
R\, es el escalar de curvatura de Ricci
T_{\mu\nu}\,, es el tensor de energía-impulso

Ejemplos

 

Una representación del paraboloide de Flamm, cuya curvatura geométrica coincide con la del plano de la eclíptica de una estrella esféricamente simétrica. El campo gravitatorio solar viene dado de manera aproximada por la métrica de Schwarzschild, que a distancias muy grandes se aproxima a geometría plana del espacio de Minkowski. La figura de la derecha muestra aproximadamente el plano de la eclíptica del Sistema solar modelizado mediante la métrica de Schwarzschild, una órbita planetaria es una curva cuasi-elíptica alrededor del centro de dicha eclíptica.

          Así, la curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividadgeneral de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias…

        En realidad, es la presencia de la materia la que determina la geometría del espacio-tiempo

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es en esencia, lo que ocurre en relatividad general.

Lo cierto es que, desde que llegó Einstein con sus versiones de la teoría relativista, muchas fueron las cosas que cambiaron y, nuestros conceptos del mundo…, también. Fenómenos que se crean en la naturaleza y que son la consecuencia de la presencia de masas o de velocidades muy grandes.

¡Los efectos de c -la velocidad de la luz en el espacio vacío-! Recordad la paradoja de los gemelos: Uno de ellos, que es astronauta, hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa, cuando baja de la nave espacial, tiene 8,6 años más que cuando partió de la Tierra. Sin embargo, su hermano gemelo que le esperó en el planeta Tierra, era ya un anciano  jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. La velocidad ralentiza el transcurrir del tiempo.

El Universo es todo energía que se manifiesta de distintas maneras: bien como masa, o, bien como radiación

          Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E= mc2 que, nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. Todos sabemos lo que ocurre cuando se desintegra un átomo de materia y la enorme cantidad de energía que tiene concentrada.

          Hay otras implicaciones dentro de esta maravillosa teoría de la relatividad especial, ahí está presente también la contracción de Lorentz. Un objeto que se mueve a velocidad de cercana a c, se achata o contrae en el sentido de la marcha, y, además, a medida que se acerca a la velocidad de la luz (299.752,458 Km/s), su masa va aumentando y su velocidad disminuyendo.

          Así se ha demostrado con muones en los aceleradores de particulas que, lanzados a verlocidades relativista, han alcanzado una masa en 10 veces superior a la suya. Esto quiere decir que la fuerza de inercia que se le está transmitiendo a una nave (por ejemplo), cuando se acerca a la velocidad de la luz, se convierte en masa.

          Así queda demostrado que, masa y energía son dos aspectos de la misma cosa E=mc2. Pero no olvidemos que…

http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

    Todos hemos llegado a comprender que, todo lo grande está hecho de cosas pequeñas. Sin emnbargo hay cosas que aún no tenemos claras, y, un ejemplo de ello es, ¡El Hiperespacio!

    Esta idea interesante ha sido utilizada en diversas teorías físicas prometedoras que han recurrido formalmente a la introducción de nuevas dimensiones formales para dar cuenta de fenómenos físicos. Así Kaluza y Klein trataron de crear una teoría unificada (clásica) de la gravedad y del electromagnetismo, introduciendo, a las cuatro dimensiones de la teoría relativista, una quinta dimensión adicional. En esta teoría la carga podía relacionarse con la quinta componente de la “pentavelocidad” de la partícula, y otra serie de cuestiones interesantes. El enfoque de varias teorías de supercuerdas es aún más ambicioso y se han empleado esquemas inspirados remotamente en la ideas de Einstein, Kaluza y Klein que llegan a emplear hasta diez y once dimensiones, de las cuales seis o siete estarían compactificadas y no serían detectables más que indirectamente.

Nuestra inmensa imaginación nos ha llevado a buscar teorías que no podemos comprobar de manera experimental y, dentro de esas teorías, están, o, pudieran estar, las claves para viajar a otras regiones del espacio muy distantes de la nuestra por ese medio que intuimos, que pudiera ser accesible para nosotros y que hemos llamado Hiperespacio, que estaría situado en la quinta dimensión.

Resultado de imagen de Relatividadhttp://www.mpe.mpg.de/410729/orbits3d_small_gif.gifResultado de imagen de GenomaResultado de imagen de Agujeros negrosResultado de imagen de Constante cosmológicaResultado de imagen de Constante cosmológicaResultado de imagen de La constante de Planck

Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas y estamos a la búsqueda de otras que intuimos como la “materia oscura”, o, ¿por qué no? la quinta dimensión y el hiperespacio. No cejamos en el desarrollo de la “imposible” teoría de cuerdas y también, buscamos bosones dadores de masa en un espacio profundo, de cuyo contenido sabemos poco y que el LHC encontró por nosotros sin saber muy bien de dónde vino y que “mundo” es ese en el que vive y que llaman océanos de Higgs.

Con los conocimientos de la mecánica cuántica que tenemos, hemos conseguido teletransportar  las propiedades de la materia. Las películas de ciencia ficción -desde Star Trek hasta La Mosca- nos han mostrado un futuro donde las personas pueden teletransportarse sin problemas. Y aunque los científicos aún no logran transferir materia… Creo que, ¡todo se andará!

Resultado de imagen de La teleportación cuántica no consiste en transportar instantáneamente objetos

La teleportación cuántica no consiste en transportar instantáneamente objetos, sino de transferir el “estado” de una o varias partículas, los constituyentes íntimos de la materia, de un lugar a otro y sin necesidad de enviar físicamente la partícula a través del espacio.  Este sorprendente logro es posible gracias al “entrelazamiento cuántico”, una extraña y aún poco comprendida propiedad de las partículas subatómicas que permite que dos -o más-,  partículas unan sus destinos de tal forma que cualquier cambio de estado que se produzca en una de ellas se refleje de forma instantánea también en la otra, sin importar la distancia que las separe.No sabemos de qué manera, esas partículas permanecen “unidas” y la física clásica no puede darnos una explicación. Sin embargo, siendo conocedores de tal fenómeno, los científicos llevan veinte años intentando sacar rendimiento a esa realidad extraordinaria que nos envía la promesa de que, con ella, podemos traer una nueva revolución al campo de las comunicaciones por satélite, la informática y… ¿quién sabe qué más?

Sí, es cierto que, tanto la teletransportación de personas, como el viaje por el Hiperespacio es -todavía- cosa de la ciencia ficción pero… Acordaos de cuando Arthur Clarke nos hablaba de satélites que orbitaban la Tierra para recoger y enviarnos datos de alto interés en los diversos campos de la actividad humana. Aquello, parecía una fantasía y, sin embargo ahora, es lo cotidiano.

http://3.bp.blogspot.com/_eqb8qL2GKZc/SwWlUSrOYKI/AAAAAAAACTk/EZ68cuxIaAw/s1600/warsp.jpg

¿Quién puede decir ahora qué mundo futuro nos espera? Conforme a los conocimientos que actualmente tenemos, podemos intuir el devenir tecnológico que los avances de la ciencia nos pueden proporcionar y, entre los muchos que están ahí, en ese horizonte futuro, están todos estos de los que hablamos y, seguramente, muchos más que ni podemos imaginar. Seguramente, como también ahora mismo está pasando, no todos los aspectos de la tecnología futura nos gustarán.

universos paralelos2.gif

La mejor manera de no equivocarse es tener la mente abierta a todo. Negar la existencia de universos paralelos, o, la certeza de la teoría de cuerdas…, ¿A dónde nos lleva? ¡A ninguna parte! Así pues, mantengamos la confianza en nosotros mismos, en lo que nuestras mentes llegan a intuir, y, dejémos, que nuestra “infinita” imaginación siga haciendo su trabajo y dibujando en nuestras mentes esos escenarios de mundos que podrían ser… ¡Una realidad futura!

emilio silvera

Cosas de la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡La Física! Esa maravilla que está presente en todo lo que podemos ver y en aquello donde la vista no llega. La infinitud de las partículas elementales que forman todo cuanto existe en la Naturaleza, no siempre se dejan ver ni hacen posible que podamos observar las maravillas que pueden llevar a cabo,

Las sustancias formadas por una sola clase de átomos se llaman elementos químicos, y, si está conformada por distintos átomos, son compuestos. La palabra “átomo” procede del griego ατομος, que significa “indivisible” y el uso de la palabra “elemento” sugiere que se ha llegado a los ladrillos básicos con los que está formada la materia. De hecho, esta es la imagen que se tenía a mediados del siglo XIX cuando se acuñaron estos términos. Sin embargo, hoy sabemos que todo esto es falso, que los átomos se pueden dividir y que, de esta manera, los elementos han dejado de ser verdaderamente elementales. Los físicos continúan con esta nomenclatura aunque sea formalmente incorrecta, ya que, la costumbre, como dicen los juristas, no pocas veces rigen la jerga de las leyes.

A todo esto y hablando de los átomos, por fuerza, nos tenemos que acordar del electrón que da al átomo su forma esférica. Son partículas cargadas eléctricamente que se mueven alegremente alrededor del núcleo. El electrón es muy ligero: su masa es solamente 1/1.8836 de la del núcleo más ligero (el hidrógeno). La carga eléctrica del electrón es de signo opuesto a la del núcleo, de manera que los electrones están fuertemente atraídos hacia el núcleo y se repelen mutuamente. Si la carga eléctrica total de los electrones en un átomo iguala a la del núcleo, para lo que generalmente se necesitan varios electrones, se dice que el átomo está en equilibrio o que es eléctricamente neutro.

Claro que, no debemos olvidarnos de que, ¡Todo lo grande está hecho de cosas pequeñas! Una inmensa galaxia se conforma de un conjunto inmenso de átomos inifinitesimales que juntos, hace ese gran todo.

http://webdelprofesor.ula.ve/ciencias/labdemfi/electrostatica/fotos/carga_globo_g.gif

La fuerza a la que obedecen los electrones, la denominada fuerza electrostática o de Coulomb, es matemáticamente bastante sencilla y, sin embargo, los electrones son los responsables de las importantes propiedades de los “enlaces químicos”. Esto se debe a que las leyes de movimiento de los electrones están regidas completamente por la “mecánica cuántica”, teoría que se completó a principios del siglo XX. Es una teoría paradójica y difícil de entender y explicar, pero al mismo tiempo es muy interesante, fantástica y revolucionaria. Cuando uno se introduce en las maravillas de la mecánica cuántica es como si hiciera un viaje a un universo que está situado fuera de este mundo nuestro, ya que, las cosas que allí se ven, desdicen todo lo que dicta nuestro sentido común de cómo tiene que ser el mundo que nos rodea.

http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

La perfecta sincronía Está en la Naturaleza

No solamente los electrones, sino también los núcleos atómicos y los átomos en su conjunto obedecen y se rigen por la mecánica cuántica. La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck, escribió un artículo de ocho páginas y allí propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos.

Estaban bien aceptados entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para las longitudes mayores como para las longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de la onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

Resultado de imagen de La constante de planck

Donde E es la energía del paquete, v la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Resultado de imagen de Los cuantos de energía

       Los cuantos de energía están presentes en todos los objetos de materia que los emiten o absorben

Poco tiempo después, en 1905, Einstein formuló esta teoría de una forma mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos de los paquetes de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

estructura del atomo de carbono

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Erwin Schrödinger descubrió como escribir la teoría ondulatoria de Debroglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños estaban exactamente determinados por la recién descubiertas “ecuaciones de onda cuánticas”.

Pocas dudas nos pueden caber a estas alturas de que la mecánica cuántica (de Planck) y, la Relatividad –tanto especial como general- (de Einstein), además de ser las dos teorías más importantes de la Física de nuestro tiempo, funcionan de tal forma que uno, cuando profundiza en sus predicciones y las compara con lo que ocurre en el Universo, no puede por menos que, asombrarse, al comprobar como unas mentes humanas han sido capaces de llegar a estos profundos pensamientos que nos acerca a la realidad de la Naturaleza.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Todo, en nuestro Universo, está determinado por unas fuerzas y unas constantes de cuyos números depende todo lo que aquí sucede, sin excluir el comportamiento y evolución de nuestras mentes que, al igual que el propio universo, no deja de expandirse y crecer para que, algún día, muy lejos en el futuro, se pueda fundir con la materia expresada en su más alto grado: ¡La Luz! Todo en el Universo es energía y, nosotros, también.

Resultado de imagen de El movimiento dentro de Los átomos

Todo en nuestro Universo se comporta como determinan dos fuerzas contrapuestas, en el átomo están presentes la carga eléctrica positiva del núcleo que está equilibrada por la negativa de los electrones que lo orbitan. Las estrellas de la secuencia principal, llevan a cabo la fusión nuclear que hace que la estrella se expanda, y, sólo puede ser retenida por esa otra fuerza, la de Gravedad que, hace que la masa de la estrella tienda a contraerse sobre sí misma, bajo el peso de su propia masa, así queda equilibrada. Miles de ejemplos más se podrían poner.

Nada en nuestro Universo está disfrutando de una verdadera libertad y todo está supeditado a algo. Tampoco nosotros, aunque tengamos esa sensación, somos libre de hacer lo que nos venga en ganas y, estamos limitados como todas las demás cosas.

Resultado de imagen de Los seres vivos estamos supeditados a las leyes del Universo

Estamos determinados, como el resto del Universo, por las leyes naturales y las constantes universales que son los parámetros que hacen del Universo lo que de él podemos observar.

Resultado de imagen de La libertad es una ficción cerebral

La libertad es una ficción cerebral, según confirman las últimas investigaciones sobre neurociencias. Estas investigaciones han determinado que la actividad cerebral previa a un movimiento, realizado por el sujeto en un tiempo por él elegido, es muy anterior ( 10 segundos) a la impresión subjetiva del propio sujeto de que va a realizar ese movimiento. Y aunque la falta de libertad es algo contraintuitivo, los experimentos indican que estamos determinados por las leyes de la Naturaleza. Por eso en Alemania algunos especialistas están reclamando la revisión del código penal para adecuarlo a los resultados de la neurociencia. Y aunque sigamos encarcelando a los que violen las leyes, ¿cambiará la imagen que tenemos tanto de esos criminales como de nosotros mismos?

 

       No siempre podemos dominar los impulsos de la mente

No pocas veces, nuestras mentes se ven abocadas a tener que retener, ese primer impulso, esa iniciativa de libertad, o, de libre albedrío. La complejidad en la que estamos inmersos nos prohibe, en la mayor parte de las ocasiones, poder desarrollar y poner en práctica ese “ de libertad” que ¿nos fue dado? pero que, en realidad, podría ser una ficción de la mente. Decidir lo que se dice decidir…, como todo en el universo, es algo limitado.

Contornos de machos y hembras de overlaping en condiciones de servidumbre por la llama de la vela  Foto de archivo - 7483891

Claro que pretender que la llama de una vela ilumine nuestra ignorancia…, no será posible y necesitaremos algo más. La evolución de nuestra especie (llevamos cientos de miles de años evolucionando), es lenta y  alcanzar el estadio de “visión” perfecta del mundo, nos queda un largo camino por recorrer.

Resultado de imagen de Los componentes básicos de la materia

El Modelo Estándar de las partículas elementales y algunas de las fuerzas de la naturaleza, nos dice de qué está hecha la materia. Infinitesimales partículas elementales conforman otras más complejas que se juntan para conformar núcleos que son rodeados por electrones y forman los átomos que unidos, hacen moléculas y éstas cuerpos de más entidad.

Resultado de imagen de La sustancia cósmica (Ylem) que permea todo el Espacio

Creo que existe  una especie de “Sustancia Cósmica” que permea todo el Universo y es, la semilla de la materia

Sabemos (casi) de que está hecha la materia que podemos ver y detectar, suponemos y sospechamos que otra materia (más abundante) pulula por todo el Universo sin que podamos encontrarla, sospechamos de otras dimensiones, de otros universos y,  luego, de otra Física. Sí, es verdad, todas son sospechas y, las sospechas en Física…tienen que ser demostradas, ya que, en caso contrario, se quedan en nada, en pensamientos vacíos.

Resultado de imagen de LIbre albedrío

No siempre hemos podido elegir el camino a seguir

Sospecho que, nuestros conocimientos de la mente…son muy limitados y que, todo esto, nos viene grande. Mientras sigamos preguntando: ¿Quiénes somos? ¿De dónde venimos? ¿ dónde vamos? ¿Estamos sólos en el Universo? Estamos dejando al descubierto nuestra gran ignorancia pero, el simple hecho de preguntar y de querer saber…nos pone en el camino correcto.

emilio silvera

Suceso Inquietante

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Antártida:

 

 

Resultado de imagen de Antártica

 

La NASA descubre un inmenso hueco que crece a un ritmo explosivo en el Glacia Thwaites

 

 

https://static.iris.net.co/sostenibilidad/upload/images/2019/2/1/42826_1.jpg

 

La enorme cavidad de 350 metros de altura se detectó en el glaciar Thwaites, en el oeste del continente helado. El tamaño del hueco puede tener un papel crucial en la aceleración del aumento del nivel del mar.

El glaciar Thwaites, en el oeste de la Antártica, es considerado uno de los más inestables del continente helado. Foto: NASA vía BBC.

Imagen relacionada

Los científicos de la agencia estadounidense hallaron una cavidad gigantesca que crece a “un ritmo explosivo” en el fondo del glaciar Thwaites, en el oeste de la Antártica.

El hueco tiene 350 metros de altura, 4 km de ancho y 10 km de longitud, y se estima que contuvo en su interior 14 mil millones de toneladas de hielo.

La enorme fisura es un indicio de que la masa del glaciar se está desintegrando y podría causar un aumento en el nivel del mar más rápido de lo que se esperaba.

Resultado de imagen de El hielo de la Antártida se derrite más rápido que nunca

Le puede interesar: El hielo de la Antártida se derrite más rápido que nunca

“El tamaño de la cavidad bajo un glaciar juega un papel importante en su derretimiento”, explicó Pietro Millilo, investigador del Laboratorio de Propulsión a Chorro de la NASA (JPL por sus siglas en inglés).

Cuanto más agua y calor penetren bajo el glaciar, más rápido se derretirá“, agregó Millilo, autor principal del estudio publicado en la revista Science Advances.

Aumento del nivel del mar

 

Resultado de imagen de El glaciar Thwaites tiene un tamaño similar al estado de Florida

 

 

El glaciar Thwaites tiene un tamaño similar al estado de Florida (cerca de 170.000 km cuadrados) y es responsable actualmente de cerca del 4% del aumento en el nivel del mar a nivel global.

Si todo el glaciar se derritiera, el nivel del agua aumentaría unos 65 centímetros.

Pero su colapso afectaría a su vez a otros glaciares que, al derretirse por completo, incrementarían el nivel del océano otros 2,4 metros.

Entre los años 1900 y 2016, el nivel del mar ha subido entre 16 y 21 cm.

Como dedos por debajo del glaciar

Thwaites es uno de los glaciares más vulnerables de la Antártica y los científicos buscan comprender los mecanismos que explican sus cambios.

Mapa del glaciar Thwaites

 

 

 

 

La zona en rojo en el centro de la imagen muestra el sitio de la cavidad en el fondo del glaciar. Imagen: P. MILLILO ET AL vía  BBC. 

Un factor clave es determinar la frontera o línea en la que el glaciar deja de estar sobre roca firme y pasa a flotar sobre el océano.

De la misma forma en que un buque encallado puede volver a flotar cuando se retira su carga, un glaciar que pierde hielo puede flotar sobre la roca a la que estaba antes sujeta, explicó la NASA en un comunicado.

 

 

Resultado de imagen de Ola de frío ártico y nieve en Estados UnidosResultado de imagen de Ola de frío ártico y nieve en Estados UnidosResultado de imagen de Ola de frío ártico y nieve en Estados UnidosResultado de imagen de Ola de frío ártico y nieve en Estados Unidos

Le sugerimos: Ola de frío ártico y nieve en Estados Unidos: los científicos responden a Trump y sus dudas sobre el cambio climático

Entonces la frontera retrocede, exponiendo parte del fondo del glaciar al agua.

“En la parte este del glaciar, esa frontera está compuesta por canales de un km de ancho, que actúan como dedos que se van extendiendo por debajo del glaciar para derretirlo desde el fondo“, señaló Millilo.

Sensores en focas

 

 

Resultado de imagen de Sensores en focas

 

 

“Sospechábamos desde hace años que el glaciar Thwaites no estaba sujeto firmemente a la roca subyacente”, afirmó Eric Rignot, investigador de la NASA y otro de los autores del estudio.

“Y gracias a una nueva generación de satélites, podemos finalmente ver lo que está ocurriendo en detalle”.

La cavidad fue revelada mediante radares que penetran el hielo con sus señales y son parte de la operación IceBridge (“Puente de Hielo”) de la NASA, que estudia las conexiones entre las regiones polares y el clima global.

Glaciar Thwaites

 

 

 

 

La cavidad en el glaciar Thwaites tiene 350 metros de altura, 4 km de ancho y 10 km de longitud. Foto: NASA vía BBC. 

 

 

 

 

La NASA señaló que el glaciar Thwaites es uno de los lugares más difíciles de alcanzar en la Tierra, el cual desde este año está siendo investigado por científicos de Estados Unidos y Reino Unido.

La iniciativa, denominada Colaboración Internacional del Glaciar Thwaites, durará cinco años y es la mayor misión conjunta entre ambos países en la Antártica en más de 70 años.

Puede leer: Obesidad, desnutrición, clima: tres males y una misma amenaza

Los científicos usarán vehículos autónomos sumergibles y fijarán sensores en focas para estudiar las condiciones oceánicas cerca del glaciar.

Aceleramiento

 

Resultado de imagen de La Antártica en su conjunto está perdiendo hielo a un ritmo seis veces más rápido que hace cuatro décadasResultado de imagen de La Antártica en su conjunto está perdiendo hielo a un ritmo seis veces más rápido que hace cuatro décadas

 

Inmensos bloques de hielo se desprenden del macizo y terminan diluyéndose en agua

 

La Antártica en su conjunto está perdiendo hielo a un ritmo seis veces más rápido que hace cuatro décadas, según un estudio publicado por la NASA en la revista de la Academia de Ciencias de Estados Unidos, Proceedings of the National Academy of Sciencies.

El continente helado perdió cerca de 40 mil millones de toneladas de hielo cada año entre 1979 y 1989.

Pero esa cifra subió a cerca de 252 mil millones de toneladas de hielo anuales a partir de 2009, según el estudio.

Nota: Estos sucesos son de una importancia capital y, de seguir por ese camino sin que busquemos algún remedio… ¡Las cosas se podrían poner algo feas!