viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las estrellas! Algo más que puntitos brillantes en el cielo

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

 

Nuestra especie es muy homogénea en sus características: somos muy similares a pesar de lo que pudiera parecer a causa de las diferencias del color en la piel o en los rasgos faciales de las diferentes poblaciones.  Tanto los datos de la genética homo los de la paleantropología muestran que los seres humanos, como especie, procedemos de un grupo pequeño de antepasados que vivían en África hace unos cuatrocientos mil años.

 

 WISE: Nebulosas Corazón y Alma en Infrarrojo

 

 

¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.

Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)

Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se estan formando. IC 1805 (la nebulosa Corazon) es a menudo llamada tambien como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.

 

 

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Sus nombres de izquierda a derecha son Alnitak, Alnilam y Mintaka

 

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

 

 

Resultado de imagen de La estrella Siria A y Sirio BImagen relacionada

 

 

Imagen de Sirio A (estrella grande blanca) y Sirio B (estrella pequeña azul) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

 

Resultado de imagen de En el centro de la Nebulosa del Corazón ¿Qué poderes

 

Seguimos en la Nebulosa del Corazón (otra región)

 

Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.

La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

 

 

Imagen relacionada

 

* La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol

 

 

 

Aquí se esconde la estrella supermasiva Eta Carinae  (NGC 3372) tiene 400 veces el diámetro del Sol inmersa en esa Nebulosa que la esconde dentro del gas y el polvo

 

 

 

Betelgeuse tiene 1.000 veces el diámetro de nuestro Sol

Pero la estrella más grande conocida es:

 

 

 

 

VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.

 

 

El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacio” estelar.

 

 

Imagen relacionada

 

 

Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.

 

 

 

 

Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol un puntito casi imperceptible a su lado, y, sin embargo, el Sol fusiona cada segundo 4.654.600 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Las 4.600 toneladas que ya no aparecen en la segunda fase son enviadas al Espacio en forma de luz y calor de lo que a la Tierra llega una pequeña fracción que es suficiente para la Vida en el planeta.

El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.

 

 

Resultado de imagen de Clasificación de las estrellas

 

 

  • Color azul, como la estrella I Cephei
  • Color blanco-azul, como la estrella Spica
  • Color blanco, como la estrella Vega
  • Color blanco-amarillo, como la estrella Proción
  • Color amarillo, como el Sol
  • Color naranja, como Arcturus
  • Color rojo, como la estrella Betelgeuse.

Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.

Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.

 

 

Resultado de imagen de La luz proveniente de la superficie caliente del Sol

 

 

La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanometros (nm).

 

 

El Sol

 

 

Els Sol

 

                                      De qué está hecho el Sol

 

La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.

 

 

 

Resultado de imagen de De que está hecho el Sol

 

 

La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.

En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más joven es la estrella.

 

 

http://animalderuta.files.wordpress.com/2010/10/188091main_d-protoplanetary-082907-5161.jpg

 

 

Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.

 

 

La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

 

 

 

El Hubble observa la extraña imagen de una estrella de Carbono

 

La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.

 

 

Resultado de imagen de Fuerzas fundamentales de la Naturaleza

 

 

Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.

Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.

 

 

 

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.

 

Las fuerzas fundamentales y sus cometidos

 


Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La


Las constantes fundamentales sus sí,nolos y valores


Constante

Símbolo

Valor en unidades del SI

Aceleración en caída libre

g

9,80665 m s-2

Carga del electrón

e

1,60217733(49) × 10-19 C

Constante de Avogadro

NA

6,0221367 (36) × 1023 mol-1

Constante de Boltzmann

K=R/NA

1,380658 (12) × 10-23 J K-1

Constante de Faraday

F

9,6485309 (29) × 10C mol-1

Constante de los gases

R

8,314510 (70) × J K-1 mol-1

Constante de Loschmidt

NL

2,686763 (23) × 1025 mol-3

Constante de Planck

h

6,6260755 (40) × 10-34 J s

Constante de Stefan-Boltzmann

σ

5,67051 (19) × 10-8 Wm-2 K-4

Constante eléctrica

ε0

8,854187817 × 10-12 F m-1

Constante gravitacional

G

6,67259 (85) × 10-11 m3 Kg-1 s-2

Constante magnética

μ0

4π × 10-7 Hm-1

Masa en reposo del electrón

me

9,1093897 (54) × 10-31 Kg

Masa en reposo del neutrón

mn

1,6749286 (10) × 10-27 Kg

Masa en reposo del protón

mp

1,6726231 (10) × 10-27 Kg

Velocidad de la luz

c

2,99792458× 10m s-1

Constante de estructura fina

α

2 π e2/h c

Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces. La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de ec y h (el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si eh y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.

 

Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas, mundos por doquier y, en muchos de ellos podríamos (con asombro), contemplar nuevas formas de vida.

Resultado de imagen de Otros mundos otras formas de vida

Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

 http://4.bp.blogspot.com/_vN2CzO8lJI8/TCgyBTdgFLI/AAAAAAAAAC0/3G3ep8WFRGA/s1600/resplandor.jpg

Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.

Resultado de imagen de El espacio se curva en presencia de grandes masas

No hace mucho estuvimos en el Año Internacional de Luz, y, no debemos perder de vista que la luz tiene tanta importancia para vida como el agua. Sin luz tendríamos un planeta oscuro con un asola nochr eterno, frío de tenebroso, sin esos bellos rincones que se pueden conformar cuando la luz, encide en una montaña, en el bosque, en el horizonte del Océano, o, simplemente sew refleja en la blanca nieve, en las olas del Mar o en una atronadora catarata.

Resultado de imagen de El año Internacional de la Luz

              El 16 de mayo de aquel año se proclamó el Año Internacional de la Luz

La luz Natural es un don que nos dio la Naturaleza y hace posible que esa luz y ese calor que el Sol nos envía, haga posible la vida en el planeta, se produzca la tan necesario fotosíntesis, hace que los ecosistemas evolucionen y muchos más beneficios y  fenómemos que, no siempre sabemos valorar en su justa medida.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo cierto es que, sin excepción, todo es una gran aventura que comienza cuando nacemos. Sin embargo, no sabemos como puede terminar pero, eso sí, todas ellas son emocionantes y conllevan los misterios de fascinantes incertidumbres, nunca sabremos lo que pasará “mañana” toda vez que no hemos llegado a comprender, en toda su plenitud, a ninguna de estas historias e incluso, de algunas, desconocemos hasta su comienzo y, por ello, nos vemos en la necesidad de inventarlo. Claro que, lo que sucede primero no es necesariamente el principio.

Imagen relacionada

        Con ésta atmósfera ígnea, la Tierra todavía se estaba enfriando, ya existían las primeras bacterias

Esta es la Imagen de la Tierra, nuestro planeta que desde hace cuatro mil millones de años da cobijo a la Vida. Su clima y su topografía varían continuamente, como las especies que viven en él. Y lo que es más espectacular,  hemos descubierto que todo el universo de estrellas y galaxias está en un estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan los unos de los otros hacia un futuro que será muy diferente del presente. Ahora sabemos que, vivimos en un tiempo prestado.

Resultado de imagen de Los cúmulos de galaxias se alejan los unos de los otros y el universo se expande

                El Universo se expande y las galaxias se alejan a velocidades considerables

Pero, a pesar del cambio incesante y la dinámica del universo visible, existen aspectos de la fábrica del Universo misteriosos en su inquebrantable constancia. Son esas misteriosas cosas invariables las que hace de nuestro Universo el que es y lo distinguen de otros mundos que pudiéramos imaginar. Cuando se conocen estas misteriosas constantes, podemos percibir que es como si hubiera un hilo dorado que teje una continuidad a través del espacio-tiempo que, inexorable, transcurre en la Naturaleza. Y, tales constancias, nos llevan a pensar que todas las cosas son iguales a lo largo del vasto Universo. Que fueron y serán las mismas en otros tiempos además de hoy.

La velocidad de la luz en el vacío, c, es una de esas misteriosas constancias que perduran a través del tiempo y del espacio, nunca varía. De hecho, quizá sin un substrato semejante de realidades  invariables no podrían existir corrientes superficiales de cambio ni ninguna complejidad de mente y materia. La velocidad de la luz, c, es una constante universal que marca el límite de velocidad del universo en el que nada, ninguna información, puede transmitirse más rápida que la velocidad de la luz. Einstein nos demostró que la velocidad de la luz en el vacío debería actuar como ese límite último de velocidad.

Resultado de imagen de La velocidad de la luz en el vacío

Con razón nos decía Planck:

La ciencia no puede resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros mismos somos parte del misterio que estamos tratando de resolver.” 

Y, quizás por eso precisamente, será necesario que contactemos con otros seres inteligentes, con otras Civilizaciones de fuera de la Tierra para que, nos podamos conocer mejor, ya que, al compararnos con otras especies del Universo, podremos ver con diáfana claridad, quiénes somos que, precisamente, tiene mucho que ver con las constantes del universo, ya que, de ser distintas, no estaríamos aquí.

Imagen relacionada

El mundo que nos rodea es así porque está conformado por esas constantes de la Naturaleza que hacen que las cosas sean como las podemos observar. Le dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Resultado de imagen de 137 el número puro adimensional

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la naturaleza. ¿Recordáis el 137? Ese número puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un secreto profundamente escondido.

¡Nos queda mucho por descubrir! Pero, es cierto, que algo hemos avanzado y sabemos algunas cosas como, por ejemplo que…

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electróncrea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro,llamado el radio clásico del electrón, dado por r= e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

Imagen relacionada

“La creciente distancia entre la imaginación del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” El mundo que nosotros percibimos es “nuestro mundo”, el verdero es diferente y como nos dice Planck en la oración entrecomillada, cada vez estamos más cerca de la realidad, a la que, aunque no nos pueden llevar nuestros sentidos, si no llevarán la intuición, la imaginación y el intelecto.

Resultado de imagen de 137 el número puro adimensional

Está claro que la existencia de unas constantes de la Naturaleza nos dice que sí, que existe una realidad física completamente diferente a las realidades que la Mente humana pueda imaginar. La existencia de esas constantes inmutables dejan en mal lugar a los filósofos positivistas que nos presentan la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo será reemplazada por otra mejor, más precisa. Claro que, tales pensamientosm quedan fuera de lugar cuando sabemos por haberlo descubierto que, las constantes de la naturaleza han surgido sin que nosotros las hallamos invitado y, ellas se muestran como entidades naturales que no han sido escogidas por conveniencia humana.

Las distintas constantes del Universo han sido puestas a prueba para comprobar si han cambiado a lo largo del tiempo

Los cuásares están entre los objetos más distantes en el universo. La palabra cuásar o “quasar” es una contracción de las palabras “quasi” y “stellar”, por ello son llamados así por su apariencia estelar. El cuásar más lejano hasta ahora es SDSS 1030 +0524 y se halla a unos 13000 millones de años-luz de distancia apenas unos 700 millones después de nacer el universo. La medición de la distancia de estos objetos se toma de la velocidad de alejamiento que presentan, dato que nos lo da el desplazamiento al rojo (z). Se cree que un cuásar nace cuando se fusionan dos galaxias y sus agujeros negros centrales quedan convertidos en este potente y energético objeto.

 Resultado de imagen de Quásar

El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad actual, hace casi once mil millones de años, llevando información codificada sobre el valor de la constante de estructura fina en ese momento. Con la precisdión de las medidas alcanzables entonces, se encontró que la constante de estructura fina era la misma entonces que ahora dentro de un margen muy pequeño que se puede deber a la imprecisión de la medida:

α (z = 1,95/α(z = 0) = 0,97 ± 0,05

La Constante de la Estructura Fina - www.pedroamoros.com

       La Constante de la Estructura Fina

Poco después , en 1967, Bahcall y Schmidt observaron un par de líneas de emisión de oxígeno que aparecen en el espectro de cinco galaxias que emiten radioondas, localizadas con un desplazamiento hacia el rojo promedio de 0,2 (emitiendo así su luz hace unos dos mil millones de años: Aproximadamente la época en que el reactor de Oklo estaba activo en la Tierra y obtuvieron un resultado consistente con ausencia de cambio en la constante de estructura fina que era aún diez veces más fuerte:

α (z = 0,2)/α(z = 0) = 1,001 ± 0,002

Estas observaciones excluían rápidamente la propuesto por Gamow de que la constante de estructura fina estaba aumentando linealmente con la edad del universo. Si hubiese sido así, la razón α(z = 0,2)/α(z = 0) debería haberse encontrado con un valor próximo a 0,8.

[nebulosa20111%255B3%255D.jpg]

Una de las cuestiones más controvertidas en la cosmología es porque las constantes fundamentales de la naturaleza parecen finamente ajustadas para la vida. Una de estas constantes fundamentales es la constante de estructura fina o alfa, que es la constante de acoplamiento de la fuerza electromagnética (usualmente denotada g, es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.

La ilustración muestra cómo los rayos X de un cuasar distante, son filtrados al pasar por una nube de gas intergaláctico. Midiendo la cantidad de la disminución de la luz debido al oxígeno y otros elementos presentes en la nube los astrónomos pudieron estimar la temperatura, densidad y la masa de la nube de gas  (el cuasar PKS 2155-304).

Actualmente, el más potente método utilizado en estos experimentos dirige todo su potencial en la búsqueda de pequeños cambios  en la absorción por los átomos de luz procedentes de cuásares lejanos.  En lugar de considerar pares de lineas espectrales  en dobletes del mismo elemento, como el silicio,  considera la separación entre líneas causada por la absorción de la luz del cuásar por diferentes elementos químicos en nubes de gas situadas entre el cuásar y nosotros. Y, a todo esto, las cuatro fuerzas fundamentales siguen estando presentes.

Resultado de imagen de El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad

No debemos descartar la posibilidad de que, seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el Universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que se cree la escala logarítmica de tamaño desde el átomo a las galaxias.  Todas las estructuras del Universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras, la  atracción (Expansión) y la repulsión (contracción).  Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla, así, el resultado es la estabilidad de la estrella.  En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos.  Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, ћ, c, G y mprotón.

α = 2πeћc ≈ 1/137
αG = (Gmp2)ћc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.  Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el Universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales.  Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios.  Los átomos pueden tener propiedades diferentes.  La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas, no se puede llegar a saber porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Es un gran mérito por nuestra parte que, nuestras mentes, puedan haber accedido a ese mundo mágico de la Naturaleza para saber ver primero y desentrañar después, esos números puros y adimensionales que nos hablan de las constantes fundamentales que hacen que nuestro Universo sea como lo podemos observar.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137.  Ese número encierra más de lo que estamos preparados para comprender, me hace pensar y mi imaginación se desboca en múltiples ideas y teorías.  Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”.  El gran físico creía que no podríamos llegar a las verdades de la naturaleza solo por la observación y la experimentación.  Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben.  En el cartel solo pondría esto: 137.  Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba.  La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón,  por el producto de la velocidad de la luz y la constante de Planck.

Lo más notable de éste número es su adimensionalidad.  La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo, la constante de Planck racionalizada, ћ, es ћ/2 = 1,054589 ×10 julios/segundo, la altura de mi hijo Emilio, el peso de mi amigo Kike (hay que cuidarse), etc., todo viene con sus dimensiones.  Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está sólo: se exhibe desnudo a donde va.  Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la Galaxia Andrómeda, aunque utilicen quién sabe qué unidades para la carga del electrón y la velocidad de la luz y que versión utilicen para la constante de Plancl,  también les saldrá el 137.  Es un número puro.  No lo inventaron los hombres.  Está en la naturaleza, es una de sus constantes naturales, sin dimensiones.

La física se ha devanado los sesos con el 137 durante décadas.  Werner Heisember (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que, todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.

¿Por qué alfa es igual a 1 partido por 137? El 137 es un número primo. Su inversa, 1/137, es un valor muy cercano al de la constante alfa, que (según la electrodinámica cuántica) caracteriza la interacción entre fotones y electrones. El nombre técnico de alfa es “constante de estructura fina“, y es una de las constantes físicas cuya predicción teórica mejor coincide con los datos experimentales.

Los físicos han demostrado que el valor de alfa es el que tiene que ser para que exista un Universo como el nuestro. De hecho, si alfa variara apenas un poco (menos del 5%), el carbono no se produciría en los hornos estelares y, la vida, tal como la concemos, estaría ausente.

Nosotros, los humanos del planeta Tierra, sabemos de todas esas cuestiones y la última lección que aprendemos de la manera en que números puros como α definen el mundo es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e identificamos con α, es una combinación de la carga del electrón, e, la velocidad de la luz, c, y la constante de Planck, h. Inicialmente podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si c, h y c cambian de modo que sus valores que tienen unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas pero el valor de alfa (α) permaneciera igual, este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza. Si se duplica el valor de todas las masas, no se puede llegar a saber porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

¡Qué cosas! Tiene la Naturaleza que todo lo hace de manera que nosotros estemos aquí. Bueno, al menos así lo parece.

emilio silvera

El Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La imagen muestra la posición y dirección de las 20 estrellas de hipervelocidad detectadas por los astrónomos. Las flechas rojas corresponden a estrellas expulsadas de nuestra galaxia. Las naranjas indican estrellas que se dirigen hacia su interior

La imagen muestra la posición y dirección de las 20 estrellas de hipervelocidad detectadas por los astrónomos. Las flechas rojas corresponden a estrellas expulsadas de nuestra galaxia. Las naranjas indican estrellas que se dirigen hacia su interior – NASA/ESA/Marchetti es al.

Descubren estrellas volando hacia nuestra galaxia a toda velocidad

 

Los astrónomos buscaban estrellas expulsadas de la Vía Láctea por el agujero negro supermasivo que hay en su centro y se encontraron lo contrario

Noticia de prensa:

ABC-Ciencia
Resultado de imagen de último set de datos de la misión europea Gaia

 

 

No cabe duda de que la Astronomía está llena de sorpresas. Y la última fue la que se llevó un equipo de astrónomos de la universidad holandesa de Leiden mientras buscaba, en el último set de datos de la misión europea Gaia, estrellas de alta velocidad “expulsadas” de nuestra galaxia por el agujero negro supermasivo del centro de la Vía Láctea. Pero en lugar de eso se encontraron con estrellas que se precipitaban hacia el interior (y no hacia el exterior) galáctico. Estrellas que, casi con toda seguridad, proceden de otras galaxias. El estudio acaba de publicarse en Monthly Notices of the Royal Astronomical Society.

Resultado de imagen de último set de datos de la misión europea Gaia

Las estrellas giran alrededor del centro galáctico a cientos de kilómetros por segundo, y sus movimientos contienen una gran cantidad de información sobre la historia pasada de la Vía Láctea. Pero hay algunas que se mueven mucho más deprisa. Las más veloces de todas reciben el nombre de estrellas de hipervelocidad, y se cree que comienzan su vida cerca del centro de la galaxia, para más tarde ser lanzadas hacia sus bordes exteriores por las interacciones gravitatorias con Sagitario A*, el enorme agujero negro de más de cuatro millones de masas solares que reina en el corazón de la Vía Láctea.

Hasta ahora, solo se había logrado descubrir un pequeño número de estrellas de hipervelocidad, pero el segundo set de datos recientemente publicado por la misión Gaia ofrecía una oportunidad única para encontrar más.

Resultado de imagen de "De los siete millones de estrellas de Gaia con mediciones de velocidad 3D completas, encontramos veinte que podrían viajar lo suficientemente rápido como para escapar de la Vía Láctea"

“De los siete millones de estrellas de Gaia con mediciones de velocidad 3D completas, encontramos veinte que podrían viajar lo suficientemente rápido como para escapar de la Vía Láctea”, explica Elena Maria Rossi, una de las autoras del nuevo estudio.

Resultado de imagen de Gaia descubre estrellas errantes

Sin embargo, los resultados obtenidos estaban muy lejos de lo esperado: “En lugar de volar alejándose del centro galáctico -afirma Tommaso Marchetti, coautor de la investigación- la mayoría de las estrellas de alta velocidad que observamos parecían correr hacia él. Y esas podrían ser estrellas de otra galaxia, zumbando través de la Vía Láctea”. De las veinte estrellas de hipervelocidad detectadas, en efecto, solo siete se alejaban del centro de la Vía Láctea. Las otras trece se dirigían hacia él a toda velocidad.

Señales de agujeros negros

 

 

Resultado de imagen de En opinión de los investigadores, es posible que estos "intrusos galácticos" procedan de la Gran Nube de Magallanes, una galaxia relativamente pequeña que orbita la Vía Láctea, o incluso que vengan de una galaxia aún más lejana.

 

 

En opinión de los investigadores, es posible que estos “intrusos galácticos” procedan de la Gran Nube de Magallanes, una galaxia relativamente pequeña que orbita la Vía Láctea, o incluso que vengan de una galaxia aún más lejana. Si ese fuera el caso, esas estrellas errantes llevan marcada la huella de su lugar de origen, y estudiarlas aquí, mucho más cerca de lo que estarían si aún estuvieran en su galaxia matriz, proporcionaría una información sin precedentes sobre la naturaleza de las estrellas de otras galaxias. Sería algo parecido a lo que hacen los científicos cuando estudian el material marciano que llega hasta la Tierra en forma de meteoritos.

Resultado de imagen de Gaia descubre estrellas errantes al actuar con agujeros negros

“Las estrellas pueden acelerarse a altas velocidades cuando interactúan con un agujero negro súper masivo -explica Rossi-. Entonces, la presencia de estas estrellas podría ser un signo de tales agujeros negros en galaxias cercanas. Pero las estrellas también podrían haber formado parte de un sistema binario, y ser lanzadas hacia la Vía Láctea cuando sus estrellas compañeras explotaron en forma de supernova. De cualquier manera, estudiarlas podría decirnos más acerca de este tipo de procesos en galaxias cercanas”.

Sin embargo, como suele suceder en ciencia, existe también una posible explicación alternativa: las estrellas hiperveloces detectadas por los investigadores podrían proceder del halo de nuestra propia galaxia, y haber sido empujadas hacia el interior por la interacción con alguna de las galaxias enanas engullidas por la Vía Láctea a lo largo de su dilatada existencia. La única forma de saberlo sería obtener información adicional sobre la edad y la composición de esas estrellas.

Resultado de imagen de Gaia descubre estrellas errantes al actuar con agujeros negros

Por eso, el equipo se propone ahora utilizar varios telescopios terrestres para recabar más datos que ayuden a determinar con más certeza la naturaleza y la procedencia de las trece estrellas hiperveloces que van “en dirección contraria”. Además, durante la década de 2020 está prevista la publicación de dos nuevos sets de tatos de Gaia, algo que proporcionará información nueva y más precisa sobre un número todavía mayor de estrellas.

“Eventualmente -explica Anthony Brown, otro de los autores del estudio y presidente del Consorcio de Procesamiento y Análisis de Datos de Gaia-, esperamos mediciones de velocidad en 3D completas de hasta 150 millones de estrellas. Y eso ayudará a encontrar cientos, o miles de estrellas de hipervelocidad, a comprender su origen con mucho más detalle y a utilizarlas para investigar el entorno del centro galáctico, así como la historia de nuestra galaxia”.