miércoles, 29 de junio del 2022 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Tiempo pasa y todo cambia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

     Estallidos de formación de estrellas | Instituto de Astrofísica de Canarias  • IACLey de Hubble y expansión del Universo | ¿Qué significa la constante de  Hubble? - YouTube
                                ¿Cómo pusieron formarse las galaxias a pesar de la expansión de Hubble?
 Entradas anteriores: En realidad, las Galaxias no deberían existir
                Mecánica cuántica para principiantes (La Ciencia Para Todos) eBook :  Hacyan, Shahen: Amazon.es: Tienda KindleCientíficos prueban que el entrelazamiento cuántico es real
                                                    Función de onda entrelazamiento cuántico
Es Posible Atravesar Una Pared? | El EFECTO TÚNEL GIF | Gfycat
                                                                                                 Efecto túnel

Allí, en ese lugar infinitesimal cuántico, como en el País de las Martavillas, suceden cosas extrañas e increíbles.

 

 

 

Efecto túnel – Superconductividad (ICMM-CSIC)

 

El efecto túnel explica que se den en el espacio reacciones químicas que no se producen en condiciones normale.Un fotón energético que viaja a la velocidad de la luz, choca con un electrón orbital de un átomo. El electrón absorbe la energía del fotón y, de inmediato, desaparece del lugar que ocupaba en el átomo y, de manera simultánea, sin saber por donde ha cogido y sin recorrer el camino que le separa, aparece en otro orbital diferente. Ese es, un ejemplo del efecto túnel.

 

 

 

Esquema de una estrella tipo Sol. En su interior suceden cosas fantásticas y se transmutan elementos sencillos en otros más complejos que, al final de sus” vidas” formarán parte de Nebulosas planetarias y de mundos.

 

Qué novedades hay en la gravedad cuántica de lazos? | Las científicas  responden | Ciencia | EL PAÍSLa gravedad cuántica estaría escondida en los agujeros negros • Tendencias21

Algunos postulan que está escondida en los agujeros negros, y, otros, dicen que subyace en la teoría de cuerdas, y, precisamente por eso, cuando los físicos trabajan con las ecuaciones de campo de las cuerdas, sin que nadie las llame, como por arte de magia, allí aparecen las ecuaciones de campo de la Relatividad General. El viejo Einstein, allá donde pueda estar, estará riendo a carcajadas al verr4 que tenía razón,.

                                                       Laboratorio estelar, la cuna de los mundos.

me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese “éter” que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y de los que sólo podemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro cósmico se tratara, y, objetos de enormes masas y densidades “infinitas” que no dejan escapar ni la luz que es atrapada por la fuerza de gravedad que generan.

A String of 'Cosmic Pearls' Surrounds an Exploding Star

                                                  Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo

Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, pero ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos al desnud0, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos  obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho que todos los protones tienen carga eléctrica positiva y se repelen, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un número enorme de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera tan increíble que se degeneran (como consecuencia de que son fermiones y están afectados por el principio de exclusión de Pauli) y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

                                        El Libro Guinness reconoce al Grantecan como el telescopio óptico  individual más grande del mundo

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen pocos ejemplares. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

                                 

Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.

      Enana blanca - EcuRedTransporte de energía en enanas blancas. ¿Qué pasa con los campos  magnéticos? | Astrobites en español                                                                  Qué pasaría si cayeras en un agujero negro? Tu cuerpo sufriría un gran  cambio | Explora | Univision

Podemos decir que objetos tan fascinantes éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿ cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envíe luz y calor que la haga posible tal como la conocemos. Cuando agote su combustible nuclear de fusión, su vida se apagará y se convertirá en gigante roja primero y enana blanca después.

                                                 Estructura Del átomo De Helio E Hidrógeno Ilustraciones Svg, Vectoriales,  Clip Art Vectorizado Libre De Derechos. Image 15013058.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta mantener toda la vida en nuestro planeta).

Los rayos del Sol que envían al planeta Tierra su luz y su calor para hacer posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar en el escenario de este gran teatro que llamaos mundo.

Nadie diría que con consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

         Este podría ser nuestro Sol en el pasado sólo era una protoestrella que se estaba formando

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra , el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra ubicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

  Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá.

Las estrellas, todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a , estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformadad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar , aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

En realidad, la Entropía no debe resultarnos tan extraña como esa imagen de arriba, la Entropía está presente en nuestras vidas cotidianas y por todo el Universo, es algo que nació con el Tiempo al que acompaña y, cuando éste transcurre, aquella deja sentir sus efectos. Nos dice que nada es Eterno, que lo que nace muere, que todo cambia.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

      Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía quedar congelada e inservible. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no básica, y que denomina “segundo principio de la termodinámica.”

Según segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación el logaritmo es el siguiente: S es la entropía de un Sistema; W el de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión del micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.

Pero esa, es otra historia.

emilio silvera

Descubierto el A.N. más grande y brillante del Universo primitivo

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

       Descubren el cuásar más antiguo del universo

Un cuásar de 420 billones de veces más brillante que el Sol iluminó el cosmos en su infancia. 

TON 618: Este sería el objeto más grande en todo el universo conocido -  MeganoticiasRespuestas (LXXXV): ¿Es posible que nuestro universo esté dentro de un agujero  negro? – Ciencia de Sofá

Pero el agujero negro supermasivo más grande del universo es el TON 618 con 66 mil millones de masas solares, este es el monstruo de los monstruos, pero también existe otro monstruo de los monstruos, se trata de J2157 que tiene 34 000 millones de masas solares y sigue creciendo.

El agujero negro supermasivo TON 618, un gigante entre gigantes – La  Conexión Cósmica

                                          Un descomunal agujero negro rompe las reglas del Cosmos

24 FEB 2015 - El País

 

Reconstrucción de un cuásar / ESO

Hace unos 12.800 millones de años, cuando el universo aún era un niño que solo había vivido el 6% de su vida, existió un descomunal faro 420 billones de veces más luminoso que el Sol. Por aquella época el universo estaba saliendo de la edad oscura, un periodo que duró cientos de millones de años y en el que todo era tiniebla. Después aparecieron las primeras estrellas y galaxias y la luz comenzó a invadirlo todo. Poco antes de que esta etapa —conocida como reionización— acabase, se encendió ese faro cuyo origen era un descomunal agujero negro que acaba de ser descubierto y analizado por un equipo internacional de astrónomos. Los investigadores creen que este monstruo tenía unas 12.000 millones de veces más masa que el Sol, lo que le convierte en el objeto de este tipo más grande y luminoso del universo temprano.

Más información

 

Ilustración de un agujero negro. / nasa

 

 

Pero vayamos a la noticia.

El objeto descubierto es un cuásar, una masa de materia acelerada por un agujero negro supermasivo que hay en su centro. Parte de esa materia es engullida y otra escapa en un flujo de partículas que se mueven a casi la velocidad de la luz. Este proceso produce una potente luz que convierte a los cuásares en los objetos más luminosos del universo. Hasta ahora, apenas se conocían 40 con más de 12.700 millones de años.

“Este cuásar es único”, ha dicho Xue-Bing Wu, astrónomo de la Universidad de Pekín (China) y codescubridor de este objeto. “Como si fuera el faro más potente en el universo lejano, su luz nos ayudará a explorar mejor el universo temprano”, ha añadido en una nota de prensa difundida por el Gran Telescopio Binocular de Arizona, uno de los instrumentos usados para la detección.

Agujeros negros supermasivos, un túnel en el espacio
NASA/JPL-Caltech (Ilustración de Agujero Negro Supermasivo)

El cuásar tiene una masa 12.000 millones de veces mayor que el Sol

El hallazgo es importante para entender el origen de las galaxias, incluidas esas en las que se dan condiciones necesarias para la vida, como la Vía Láctea. Se piensa que todas tienen un gran agujero negro en su centro y también que en sus orígenes pudieron albergar un cuásar activo como el descubierto en el actual estudio, publicado hoy en la revista Nature.

Las dimensiones y potencia de este objeto están en los límites de lo posible. Normalmente la radiación que emiten los agujeros negros al engullir la materia que tienen alrededor limita su capacidad de seguir devorando y creciendo. Pero este cuásar parece haber estado engordando al máximo ritmo posible, alcanzando unas dimensiones sorprendentes menos de 1.000 millones de años después del Big Bang, todo un récord de velocidad en términos cosmológicos. “Que se forme un agujero negro tan grande en tan poco tiempo es difícil de explicar con la teorías actuales”, reconoce Fuyan Bian, otro de los codescubridores. Como comparación, el agujero negro supermasivo que hay en el centro de la Vía Láctea es unas 3.000 veces más pequeño.

                                                          Que tamaño tiene un agujero negro? – Blog de Divulgación Científica y  Tecnológica

Antxón Alberdi, físico experto en agujeros negros del Instituto de Astrofísica de Andalucía, destaca otra implicación del descubrimiento. La masa del agujero negro encontrada es tan alta que sugiere que los agujeros negros supermasivos en el universo temprano crecieron mucho más rápido que la galaxia anfitriona que los alberga, poniendo en entredicho los modelos de coevolución actuales”, resalta.

Bram Venemans, astrónomo del Instituto Max Planck de Alemania, resalta la utilidad de este descubrimiento. De alguna forma, los cuásares sirven para analizar la composición del universo. Cuanto más brillante es su luz, más interactúa con los elementos que hay en el espacio interestelar, incluidos los metales que se formaron en las primeras etapas del universo y que pueden desvelar nuevos detalles de cómo aparecieron las primeras estrellas tras el Big Bang, resalta el experto en otro artículo publicado en Nature. En el futuro próximo, sostiene, se podrían descubrir más objetos como este, posiblemente incluso más antiguos. “Estos gigantes”, afirma, “mostrarán nuevos detalles de cómo era el universo unos pocos cientos de millones de años después del Big Bang”.

NOTICIA DE PRENSA

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Astrónomos han descubierto dos grandes y misteriosos objetos saliendo del agujero negro más brillante del universo conocido.

Interpretación artística de una galaxia gigante con un chorro de alta energía. Crédito: ALMA (ESO/NAOJ/NRAO).
                                                   Cuásar 3c273 con HST | Detalles del cuásar 3C 273 observado … | Flickr

Detectado en un estudio de 1959 de fuentes de ondas de radio cósmicas, el agujero negro supermasivo 3C 273 es un cuásar (abreviatura de ‘objeto cuasi-estelar’), porque la luz emitida por estos gigantes es lo suficientemente brillante como para confundirse con la luz de una estrella.

                                                                              Universo - El cuásar "3C 273" reside en una galaxia elíptica gigante en  dirección de la constelación de Virgo. Su luz ha tardado unos 2.500  millones de años en llegar hasta nosotros,

Si bien los agujeros negros en sí mismos no emiten luz, los más grandes están rodeados por gigantescos remolinos de gas llamados discos de acreción; a medida que el gas cae en el agujero negro a una velocidad cercana a la de la luz, la fricción calienta el disco y hace que brille con radiación, que generalmente se detecta como ondas de radio.

                                                       Misteriosas estructuras de radio son descubiertas alrededor del cuásar más  brillante jamás encontrado

           Misteriosas estructuras de radio han sido descubiertas alrededor del cuásar más brillante

Quasar 3C 273 es el primer cuásar jamás identificado. También es el más brillante, brillando más de 4 billones de veces más que el Sol de la Tierra mientras se encuentra a una distancia de más de 2.400 millones de años luz.

Durante décadas, los científicos han estudiado extensamente el núcleo ardiente del agujero negro; empero, debido a que el cuásar es tan brillante, revelar algo sobre la galaxia que lo alberga ha sido casi imposible. Ese notable brillo, irónicamente, ha dejado a los científicos en gran parte en la oscuridad acerca de cómo los cuásares impactan en sus galaxias anfitrionas.

Salvo mejor parecer.

Las Galaxias:pequeños universos creadores de mundos y de…vida.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (21)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

NUESTRA GALAXIA: Sólo parcialmente la podemos contemplar y, cuando la veamos desde fuera será señal de que, nuestros avances han sido considerables y hemos podido salir (ahora sí) al Espacio Exterior, ya que, lo que ahora podemos hacer es andar por las afuera de nuestro barrio. Visitar los mundos vecinos (que ya es una proeza) no será suficiente para las necesidades que en el futuro, tendrá planteada la Humanidad que, en unas pocas decenas de años verá cuadruplicada su población y, para cuando eso llegue…¿Qué podremos hacer? La Tierra, tiene sus límites.

La Vía Láctea está llena de ondas (y es más grande de lo que creíamos)

La Galaxia espiral que acoge a nuestro Sol y a las estrellas visibles durante la noche, además de otros muchos objetos que, por su inmensa lejanía, requieren sofisticados telescopios para poner sus imágenes ante nosotros. Es escrita con G mayúscula para distinguirla de las inmensas pléyades de  galaxias que reunidas en cúmulos y supercúmulos adornan el Universo en su conjunto. Su disco, el de nuestra Vía Láctea,  es visible a simple vista como una débil banda alrededor del cielo.

La vía láctea nasa convierte los datos en música y lo muestra en video

Nuestra galaxia tiene tres componentes principales. Uno es el disco de rotación de unas 6×1010 masas solares consistentes en estrellas relativamente jóvenes (población II), cúmulos cubiertos de gas y polvo, estando estrellas jóvenes y material interestelar concentrados en brazos espirales. El disco es muy delgado, de unos 1.000 a. l., comparado con su diámetro de más de 100.000 años luz. Aún continúa una activa formación de estrellas en el disco, particularmente en las nubes moleculares gigantes.

El segundo componente principal es un halo débil y aproximadamente esférico con quizás el 15 – 30% de la masa del disco. El halo está constituido por estrellas viejas (población II), estando concentradas parte de ellas en cúmulos globulares, además de pequeñas cantidades de gas caliente, y se une a un notable bulbo central de estrellas, también de la población II.

El cúmulo globular M55 desde CFHT

                                                                          Cúmulo Globular M55

El tercer componente principal es un halo no detectado (que algunos dicen ser de materia oscura) con una masa total de al menos 4×1011 masas solares. En total, hay probablemente alrededor de 2×1011 estrellas en la Galaxia (unos 200 mil millones), la mayoría con masas menores que el Sol.

Leer más

La simetría biológica del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                            Qué es la Supersimetría? - YouTube

En cualquier sitio que miremos nos dirán que la supersimetría en la física de partículas es:

“La supersimetría es una simetría hipotética propuesta que relacionaría las propiedades de los bosones y los fermiones. Aunque todavía no se ha verificado experimentalmente que la supersimetría sea una simetría de la naturaleza, es parte fundamental de muchos modelos teóricos, incluyendo la teoría de supercuerdas.  La supersimetría también es conocida por el acrónimo inglés SUSY.”

 

Campo de Yang-Mills - Wikipedia, la enciclopedia libre

 

Un campo de Yang-Mills es un tipo de campo físico usado sobre todo en teoría cuántica de campos cuyo lagrangiano tiene la propiedad de ser invariante bajo una transformación de gauge local. Además, es el centro de la unificación entre la fuerza electromagnética, la fuerza débil y la fuerza fuerte.

                                     Simetrías de las fuerzas y la materia | Instituto de Física Corpuscular

“Lo que dice la supersimetría es que a cada bosón le corresponde un fermión, y a cada fermión, un bosón, y para que las cosas sean simétricas se necesitaría un balance, un equilibrio, ambas partículas que se correspondan deberían tener la misma masa. Como los físicos teóricos suelen tener una gran imaginación (¡matemáticos, seamos más imaginativos, tomemos ejemplo!) a cada compañera super-simétrica se le da un nombre espacial, de manera que, por ejemplo, el electrón, que es un bosón, tendría una compañera que se llama el selectrón; y las compañeras de los quarks serían squark. Para que la cosa no sea igual (¡asimetría al fin!) a las compañeras de los fermiones las llamamos de diferente manera, y así la del fotón es el fotino, y la del gravitón, el gravitino.”

“En resumen, la supersimetría (SUSY para los amigos) nos dice que tenemos que doblar el número de partículas, pero los dobles no han aparecido. Para, por ejemplo el electrón, no encontramos la compañera con la misma masa (recordemos que con la equivalencia masa=energía propugnada por Albert Einstein) que debería aparecer en las colisiones. Nuevo golpe de la imaginación: si no aparecen, será porque su masa es mucho mayor, y es justo a esa asimetría a lo que se refieren los físicos cuando hablan de la rotura de simetría. Y claro, para encontrar esas super-partículas necesitamos incrementar la energía de los aceleradores, se supone que estas masas de las super-compañeras se podrán observar en la región entre 100 GeV hasta 1 TeV en el LHC,”

La Supersimetría tiene unas matemáticas muy bellas y por esa razón los artículos sobre el tema están llenos de ellas. Como ha sucedido antes, por ejemplo, cuando se propuso la teoría de Yang – Mills, tenemos un esquema matemático brillante que aún no sabemos como encajar en el conjunto de las leyes naturales. No tiene ningún sentido, todavía, pero esperamos que lo tenga en un tiempo futuro.

                                                      

Hay otro escenario mucho más atractivo para nuestra imaginación. Hemos podido ver que los átomos están formados  por pequeños constituyentes, los fotonesneutrones y electrones. Luego descubrimos que esos constituyentes, a su vez, tienen una subestructura: están formados de quarks y gluones. ¿Por qué, como probablemente hayas  pensado tú antes, el proceso no continúa así? Quizá esos Quarks y Gluones, e igualmente los electrones y todas las demás partículas aún llamadas “elementales” en el Modelo Estándar, estén también construidas de unos granos de materia aún menores y, finalmente, toda esa materia, si seguimos profundizando, nos daría la sorpresa de que toda ella es pura luz, es decir, la esencia de la materia.

Yo he tenido esa idea muy frecuentemente, nadie me quita de la cabeza que la materia, en lo más profundo de su “ser”, es la luz congelada en trozos de materia que, cuando llegan los sucesos, las transiciones de fase, se deja ver y sale a la “luz” del mundo para que la podamos contemplar.

                                  http://www.palimpalem.com/8/CENTROSANERGIAALICANTE/userfiles/CARACOLA-VITAL-HUMANA.jpg

Simetría es nuestra presencia aquí como observadores, la concha de un caracol, una galaxia, una flor y también las estrellas y los mundos, todo forma un conjunto armónico que hace ese todo en el que nosotros, inmersos en tanta grandeza, no acabamos de asimilar lo mucho que la Naturaleza nos quiere transmitir y, al formar parte de ella, nos cuesta más mirarla desde “fuera” para entenderla, sin ser conscientes que, en realidad, la debemos mirar desde dentro, ahí es donde estamos. ¡Dentro de ella! Siempre hay algo más allá:

The Scale of the Universe 2 – HTwins.net

¿Quieres darte una vueltecita por el universo, en un tiempo razonable y entre las escalas de lo más inimaginablemente grande y lo infinitesimalmente pequeño? Prueba The Scale of the Universe 2, segunda parte de un interactivo similar que hace tiempo estuvo circulando por la Red, y a disfrutar. Basta mover la barra de desplazamiento o usar la rueda del ratón, y también se puede hacer clic sobre los objetos para aprender algo sobre ellos.

 Todos sabemos de las grandes estructuras (inertes o vivas) que, en su inmensidad, transportan dentro de ellas o en la misma superficie, otras estructuras más pequeñas que, no por ello, dejan de ser también complejas. Grandes pulgas transportan pequeñas pulgas en su piel y, al igual que nosotros, llevan en ellas mismas a otros animáculos más pequeños, o, infinitesimales que, también, como nosotros, animales más grandes, tienen una misión encomendada sin la cual, seguramente nosotros, ni podríamos ser. Así que, tenemos que prestar mucha atención a lo que creemos “ínfimo” y que, en la mayoría de las veces, resulta ser más importante de lo que podemos llegar a imaginar.

                    Micro Mundo - Home | FacebookIlustración Vectorial De Fondo Biológica. Micro Mundo Concepto Editable.  Dibujado A Mano Garabatos Esbozó Blanca Sobre Una Pizarra Negro Con  Textura. Patrón Bio Scentific. Ilustraciones Svg, Vectoriales, Clip Art  Vectorizado Libre De

Si miramos a los Quarks de un protón, por ejemplo, la mecánica cuántica (esa teoría maravillosa que controla todo el micro-mundo con increíble precisión), exige que el producto de la masa por la velocidad, el llamado “momento”, debe ser inversamente proporcional al tamaño de la “caja” en la cual ponemos nuestro sistema. El protón puede ser considerado como una de tales cajas y es tan pequeño que los quarks en su interior tendrían que moverse con una velocidad cercana a la de la luz. Debido a esto, la masa efectiva de los quarks más pequeños, u y d, es aproximadamente de 300 MeV, que es mucho mayor que el valor que vemos en las Tablas de Partículas; eso también explica porque la masa del Protón es de 900 MeV, mucho mayor que la suma de las masas en reposo de los quarks /y Gluones).

                                     

 Sí, dentro de los protones y neutrones, seguramente pueda haber mucho más de lo que ahora podemos vislumbrar. Nuestros aceleradores de partículas han podido llegar hasta ciertos límites que nos hablan de Quarks y ahora se buscan partículas super-simétricas o bosones traficantes de masa (como diría Ton Wood), y, nosotros, no sabemos si esos objetos existen o si podremos llegar a encontrarlos pero, por intentarlo… No dudamos en gastar ingentes cantidades y en utilizar cuantos recursos humanos sean precisos. El conocimiento de la Naturaleza es esencial para que, el futuro de la Física, sea la salvación de la Humanidad o, en su caso, de la raza que vendrá detrás de nosotros.

http://starviewer.files.wordpress.com/2010/03/cuerdastheory.jpg

Algunas Teorías, como todos conocemos, han intentado unificar teorías de color con las de supersimetría. Quizá los nuevos Aceleradores de  Hadrones  (LHC) y otros similares que estarán acabamos poco después de estas primeras décadas del siglo XXI, nos puedan dar alguna pista y desvelar algunos de los nuevos fenómenos asociados a los nuevos esquemas que se dibujan en las nuevas teorías.

Los astrofísicos están muy interesados en estas ideas que predicen una gran cantidad de nuevas partículas superpesadas y, también varios tipos de partículas  que interaccionan ultra-débilmente. Estas podrían ser las “famosas” WIMPs que pueblan los huecos entre galaxias para cumplir los sueños de los que, al no saber explicar algunas cuestiones, acudieron a la “materia oscura” que, como sabéis, les proporcionó el marco perfecto para ocultar su inmensa ignorancia. “¡La masa perdida!” ¿Qué masa es esa? Y, sin embargo, los Astrofísicos, incansables, se aferran a ella y la siguen buscando…¡Ilusos!

            ¡El Universo! ¡Son tantas cosas! Desde nosotros los observadores, hasta la más ínfima partícula de materia, una estrella, un mundo o una galaxia. Todo tiene una importancia capital para conformar las estructuras a las que, finalmente, están destinadas.

Yo, en mi inmensa ignorancia,  no puedo explicar lo que ahí pueda existir. Sin embargo, sospecho que, deberíamos ahondar algo más en esa fuerza que llamamos Gravedad y que, me da la sensación de que nos esconde secretos que aún no hemos sabido desvelar. Y, por otra parte, tengo la sospecha de que la Luz, es más de lo que podemos suponer.

                                                      

Todo lo que nos rodea es materia, incluso lo que no vemos está formado por gases que también son materia y que forman parte de nuestra atmósfera. La materia está constituida por átomos y moléculas que determinan el tipo de compuesto que forman, así pueden formar parte de materia orgánica o inorgánica, o pueden ser parte de materia viva o inerte. La materia existe organizada en una gran diversidad de formas y a diferentes niveles,  la materia y la energía son dos cosas diferentes pero se encuentran unidas, la una no puede existir sin la otra.
La vida, al igual que otros acontecimientos que ocurren en el universo, posee una historia, es un producto de la evolución de la Tierra en su conjunto, la vida es el resultado de una serie de procesos, a través de dichos procesos la materia se fue organizando de acuerdo con las posibilidades que las condiciones ambientales y las características que los propios materiales participantes brindaban; así se originaron estructuras cada vez más complejas, como resultado de esta evolución gradual debieron aparecer las primeras células, presentándose de esta forma nuevas posibilidades de desarrollo en el  mundo biológico.
Sí, no sólo el Mundo, nuestro mundo. También el Universo entero es Biológico y en el, rigen esas fuerzas y constantes que conocemos y que no hemos llegado a comprender en todo su esplendor. Pero, conocemos lo suficiente para saber que, “no sabemos” pero que “debemos saber”.
Claro que, lo que nos dicen algunas teorías y que aún, no hemos sido capaces de descubrir, no quiere decir que esas teorías anden por el mal camino, hay que perseverar y llegar hasta el final para estar seguros de que, lo que auguran es cierto o, por el contrario, debemos desecharlo y tomar otros caminos.
Paul Dirac (¿Recordáis?), se sintió muy incómodo cuando en 1931, a partir de su magistral ecuación para el electrón, vaticinó que debería existir una partícula contraria, es decir, una antipartícula del electrón que tendría carga eléctrica opuesta. Aquella partícula no había sido descubierta y no quería perturbar a la comunidad científica con una proposición tan revolucionaria. “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡mi ecuación es más inteligente que su inventor!”.
¡Quién sabe lo que estará por descubrir!

emilio silvera