Feb
17
¡Cosas de Física!
por Emilio Silvera ~
Clasificado en Física ~
Comments (1)

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

¿Quién puede ir a la longitud de Planck para verlas?
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?

Vivimos en un mundo tridimensional y no vemos ninguna dimensión extra ¡Si existe!
El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que mencioné en páginas anteriores. La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.

¡Necesitamos algo más avanzado!
![]()
Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.
Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.
Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W–, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

No dejamos de experimentar para saber cómo es nuestro mundo, la Naturaleza, el Universo que nos acoge. Cada día podemos sentir la alegría de un nuevo descubrimiento al desvelar algún secreto escondido que la Naturaleza tenía guardado como un Tesoro para cuando nosotros, pudiéramos comprender sobre el mismo, y, parece que cada día estamos más cerca de saber, por ejemplo… ¿Qué secretos esconde la Luz?
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa -los W+, W–, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Pero, encierra tantos misterios la materia que, a veces me hace pensar en que la podríamos denominar de cualuquier manera menos de inerte ¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54) x 10-31 Kg la primera y, 1,602 177 33 (49) x 10-19 culombios, la segunda, y también su radio clásico: r0 = e2/mc2 = 2’82 x 10-13 m. No se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
¡No por pequeño, se es insignificante!

Recordémoslo, todo lo grande está hecho de cosas pequeñas.
En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*.
Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.
El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

Ya hemos construidos ingenios para medir las ondas gravitacionales provenientes de agujeros negros
Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es o, su carga es o, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Dos agujeros negros binarios que producen ondas gravitatorias que no dejamos de buscar para saber

Asimismo, la rotación de estrellas de neutrones con “protuberancias” en su estructura constituye un eficaz emisor de radiación en esta banda de frecuencias. Estos sistemas nos permiten acceder al estudio de las propiedades de la materia en unas condiciones de presión y densidad que nunca podríamos alcanzar en la Tierra. Por último, al igual que existe un fondo de radiación de microondas asociado a la expansión del universo en el modelo de Big Bang, también existe un fondo de radiación gravitatoria fósil que codifica información cosmológica clave para comprender la formación de estructuras a gran escala en el universo. Como fuentes de baja frecuencia podemos señalar los sistemas binarios de enanas blancas en caída espiral. Algunos de estos sistemas, denominados binarias de verificación, proporcionan fuentes de ondas gravitatorias con contrapartidas electromagnéticas conocidas a priori, lo cual es muy importante para la calibración y comprobación de los detectores.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón. La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

Si profundizamos mucho en las entrañas de la materia… ¿Qué veríamos? Algunos buenos teo´ricos nos hablaban de espuma cuántica, un estado desconocido de la materia que, por estar tan alejado de nosotros, nunca hemos podido llegar hasta él ni con los grandes aceleradores, es posible, que la tal espuma cuántica esté más allá de los Quarks.
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler,
es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.


El Gran Vacío de Böotes” muchos le consideran el lugar más aterrador del universo. Es una inmensa región del universo, con forma esférica, de un diámetro de aproximadamente unos 250.000.000 de años luz. Se cree que se formó a partir de la unión de varios vacíos y unas 2500 galaxias del tamaño de la nuestra entrarían allí.
Consideramos vacío cosas que están llenas a rebosar
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultraalto.
No puedo dejar de referirme al vaciotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs).

En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados. Esto significa que el vacío theta es análogo a una fundón de Bloch* en un cristal. Se puede derivar tanto como un resultado general o bien usando técnicas de instantón. Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránidos.
![]()
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

Nos queda mucho porder oír las vibraciones de esas “cuerdas” que la física trata de encontrar, y, mientras tanto, oiremos vibrar esas otras que nos ofrece el violín en las manos expertos del músico con experiencia. Mientras tanto, esas otras cuerdas cuya existencia intuimos y soñamos, si es cierto que están ahí, seguirán silenciosas vibrando y creando materia a partir de esa ínfima sustancia que no hemos podido observar… ¡por el momento!
La teoría de cuerdas rompe con esta idea. Presupone que las partes más pequeñas son filamentos de energía. Una especie de cuerdas que vibran. Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad.


emilio silvera
Feb
16
Una reacción nuclear “desafiante”
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Una nueva clase de reacción de fisión nuclear observada en el CERN ha mostrado importantes puntos débiles en nuestro entendimiento actual del núcleo atómico. La fisión del mercurio-180 se suponía una reacción “simétrica” que daría lugar a dos fragmentos iguales, pero en lugar de ello ha producido dos núcleos con masas bastante diferentes, una reacción “asimétrica” que plantea un serio desafío a los teóricos.
![]()
La Ciencia no duerme. En todo el mundo (ahora también fuera de él -en el espacio), son muchos los Científicos que trabajan de manera tenaz para buscar nuevas formas de alcanzar lo ahora inalcanzable y, para ello, se emplean las más sofisticadas estructuras técnicas de avanzados sistemas tecnológicos que hacen posible llegar allí donde nunca nadie había llegado.
Nuevas teorías, nuevos caminos, nuevas investigaciones y, una buena dosis de imaginación que nos llevará hacia mundos imposibles, hacia descubrimientos impensables, hacia la posibilidad de descorrer el velo que esconde muchos de los secretos de la Naturaleza.

Cuanto más secretos podamos desvelar, más cerca estaremos de hacer frente a problemas hoy insolubles y que, el día de mañana, mirando hacia atrás con una sonrisa, podremos recordar como algo del pasado que, una vez superado, nos dio la posibilidad de alcanzar otros niveles más altos, la posibilidad de plantear nuevas preguntas y, la posibilidad de resolver nuevos problemas.
En el artículo que arriba hemos dejado, tenemos un ejemplo de lo poco que sabemos. Muchos creen saber lo que la Materia es, hablan de Gluones y Quarks, de protones y neutrones, de electrones y neutrinos de la Interacción fuerte, electromagnética, débil o de la Gravedad, y, con ello, se sienten muy satisfechos de poseer unos conocimientos profundos que estaban escondidos en las entrañas de la materia misma. Sin embargo, cada día que pasa, cada nueva investigación que realizamos, cada nivel que podemos subir en las energías que empleamos en la Investigación, podemos encontrarnos con asimetrías inesperadas que, de manera violenta nos saquen del error de creer que estamos en posesión de alguna verdad.

Existió en realidad el Big Bang… ¡A ciencia cierta, no lo sabemos!
En la Ciencia, lo que denominamos “verdad” es efímero, y, lo que hoy puede considerarse como verdad, mañana pasará a ser la mayor de las mentiras. Acordaos de que la Tierra no es el centro de nada, y, que, en verdad, está situada en los suburbios de una Galaxia corriente, alumbrada por un Sol corriente y, seguramente, ocupada por unos seres “corrientes” que (no pondría la mano en el fuego por lo contrario) proliferan por todo el Universo y a los que, más tarde o más temprano, debemos encontrar.
¡La Ciencia! Esa parcela del saber Humano que, al igual que la Lengua y la Escritura, nos diferencia de otros animales que no tuvieron tanta suerte en el reparto.
emilio silvera
Feb
15
Esos diminutos objetos que conforman la materia
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)

El electrón es poseedor de una carga eléctrica negativa; y, al girar el electrón sobre su propio eje genera un campo magnético que denominamos espín. El espín proporciona una medida del momento angular intrínseco de toda partícula. Añadiendo el espín como un cuarto número cuántico, se logró dar una explicación más completa de las características de los espectros de átomos que poseen un solo electrón. Actualmente, la existencia del espín del electrón está confirmada por muchos resultados experimentales. Pronto, el concepto de espín se amplió a todas las partículas subatómicas, incluidos los protones, los neutrones y las antipartículas.
Así, las interacciones magnéticas y la dupliidad de muchas líneas espectrales (estructura fina), son los efectos atribuidos a la existencia de ese momento magnético (el momento del espín), que surge debido al movimiento de rotación del electrón alrededor de su eje. El momento angular de rotación no puede cambiar de ninguna manera, que que forma parte intrínseca de la particula como una propiedad más, como lo son la masa o su carga eléctrica. El momento cuántico del espín (s) del electrón tiene valores de ±½.

En concreto, cuando se realiza una medición del espín en diferentes direcciones, sólo se obtienen una serie de valores posibles. que son sus posibles proyecciones sobre esa dirección. Por ejemplo, la proyección del momento angular de espín de un electrón, si se mide en una dirección particular dada por un campo magnético externo, puede resultar únicamente en los valores
o bien
.
El valor de espín está cuantizado, lo que significa que no pueden encontrarse partículas con cualquier valor del espín, sino que el espín de una partícula siempre es un múltiplo entero de
(donde
es igual a h la constante de Planckdividida entre
.
![]() |
![]() |
![]() |
|
Ralph Kronig, físico alemán (1904-1996)
|
Samuel Goudsmit, físico holandés (1902-1978)
|
George Uhlenbeck, físico holandés (1900-1988)
|
Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.
Los bosones tienen un momento angular nh/2π, donde n es cero o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

El principio de exclusión de Pauli y el cuarto número cuántico, el spin
Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).
Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:
¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.
Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

Los investigadores, de la organización europea de investigación nuclear (CERN), lograron atrapar 38 átomos de hidrógeno de antimateria en una fracción de segundo, un tiempo que permite comenzar a estudiar su estructura. Esto supone un hito histórico ya que, según explica el especialista en Ciencia de la BBC, Jason Palmer, pese a que antes se había logrado producir antihidrógeno, en las ocasiones anteriores se destruyó inmediatamente al entrar en contacto con la materia.
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.
Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.
No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.

En la prensa pudimos leer la noticia:
“Un grupo de investigadores de la Universidad de Syracusa acaba de anunciar una serie de importantes hallazgos sobre una extraña partícula subatómica, el mesón Bs, que podrían explicar por qué el Universo contiene mucha más materia que antimateria.
La cuestión de la “antimateria perdida” ha intrigado a los Físicos durante décadas. Según predicen los modelos vigentes, durante el Big Bang tuvo por fuerza que producirse una cantidad igual de materia que de antimateria. Pero en la actualidad todo lo que vemos a nuestro alrededor está hecho de materia. ¿Dónde está, pues, la antimateria que falta?“
Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.
Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”. Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?

El saludo los destruiría a los dos
Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).


Al fin se pudo conseguir imágenes de los electrones en distintas modalidades y, cada día, este pequeño objeto va teniendo menos secrtetos
Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.
Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
¡No por pequeño se el insignificante!
Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.

Emitiendo fotones de luz
Existen razones teóricas para suponer que cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.
emilio silvera
Feb
13
Algo más sobre Física
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
¿Cómo sería viajar a Marte hoy? ¿Será Marte el futuro?

Si como dice un estudio, dentro de 1.700 millones de años, Marte entrará en la Zona habitable… ¡Podia ser así!

Todo cambia. Nada permanece inmóvil, todo está en constante vibración y la Entropía hace su trabajo para que nada permanez de la misma manera a medida que el Tiempo transcurre. También, el Universo, si lo consideramos como un Sistema cerrado, se va deteriorando y cada vez es mayor la Entropía presente. A nosotros, los seres vivos, nos pasa otro tanto de lo mismo, vamos soportando mal el paso del tiempo y, llegado un momento, el final es irremediable.


En 1.849, el físico francés Armand-Hippolyte-Louis Fizeau ideó un artificio mediante el cual se proyectaba la luz sobre un espejo situado a 8 km de distancia, que devolvía el reflejo al observador. El tiempo empleado por la luz en su viaje de ida y vuelta no rebasó apenas la 1/20.000 de segundo, pero Fizeau logró medirlo colocando una rueda dentada giratoria en la trayectoria del rayo luminoso. Cuando dicha rueda giraba a cierta velocidad, regulada, la luz pasaba entre los dientes y se proyectaba contra el siguiente, al ser devuelta por el espejo; así, Fizeau, colocado tras la rueda, no pudo verla. Entonces se dio más velocidad a la rueda, y el reflejo pasó por la siguiente muesca entre los dientes, sin intercepción alguna. De esa forma, regulando y midiendo la velocidad de la rueda giratoria, Fizeau pudo calcular el tiempo transcurrido y, por consiguiente, la velocidad a que se movía el rayo de luz.
1.- Movimiento del plano pendular (en el sentido de las agujas del reloj)
2.- Desplazamiento del plano de oscilación debido a la rotación de la Tierra
3-. Movimiento de rotación de la Tierra (en el sentido contrario a las agujas del reloj)
Jean-Bernard-Léon Foucault suspendió una bola de 62 libras (unos 28 kilogramos) de hierro desde la cúpula del Panteón y lo puso en movimiento, balanceándolo. Para marcar su progreso el enganchó una aguja a la bola y colocó un anillo de tierra mojada en el suelo bajo él. La audiencia observó con pavor como el péndulo inexplicablemente parecía rotar, dejando un trazo ligeramente distinto en cada balanceo. En realidad era el suelo del Panteón el que estaba ligeramente en movimiento, y Foucault había demostrado, de una forma más convincente que nunca, que la tierra gira sobre su eje. En la latitud de París, el trazo del péndulo completaría una rotación completa en el sentido horario cada 30 horas; en el hemisferio sur rotaría en sentido antihorario, y en el ecuador no rotaría nada. En el Polo Sur, como han confirmado los científicos de la era moderna, el periodo de rotación es de 24 horas.

El periodo de oscilación es menor en los polos, en donde giraría una vuelta completa cada 24 horas, mientras que en el ecuador el plano de oscilación no experimentaría ningún sentido de rotación.

Un año más tarde, Jean Foucault (quien realizaría poco después su experimento -arriba- con los péndulos) precisó más estas medidas empleando un espejo giratorio en ve de una rueda dentada. Entonces se midió el tiempo transcurrido desviando ligeramente el ángulo de reflexión mediante el veloz espejo giratorio. Foucault obtuvo un valor de la velocidad de la luz de 300.883 km/s. También, el físico francés utilizó su método para determinar la velocidad de la luz a través de varios líquidos. Averiguó que era notablemente inferior a la alcanzada en el aire. Esto concordaba también con la teoría ondulatoria de Huyghens.

La naturaleza de la luz. Profesor escrupuloso, aunque poco entusiasta, Newton se dedicó a estudios de óptica que le llevaron, a través de una serie de experimentos, al famoso descubrimiento de la descomposición de la luz blanca, que fue explicada por él mediante una teoría corpuscular de la luz destinada a dar jaque a la teoría ondulatoria de C. Huygens y a dominar durante todo el siglo XVIII. Experimentos, descubrimientos e hipótesis sobre la luz fueron hechos públicos en una memoria a la Royal Society. Pero las tempestuosas disputas suscitadas por esta memoria le disgustaron hasta el punto de que se abstuvo de publicar sus Lecciones de óptica (desarrolladas en la cátedra lucasiana entre 1668 y 1671), las cuales sólo vieron la luz en 1729. No obstante, en 1675 presentó a la Royal Society una importante memoria, que constituirá después la base de su Óptica, en la que, partiendo de los experimentos sobre la coloración de laminillas metálicas, expone los principios de su teoría sobre la luz. En la imagen, El descubrimiento de la refracción de la luz de Newton (1827), óleo del pintor italiano Pelagio Palagi.
Einstein and Robert A. Millikan en 1931
Michelson, Einstein y Millikan
Michelson fue más preciso aún en sus medidas. Este autor, durante cuarenta años largos, a partir de 1.879, fue aplicando el sistema Fizeau-Foucault cada vez con mayor refinamiento, para medir la velocidad de la luz. Cuando se creyó lo suficientemente informado, proyectó la luz a través de vacío, en vez de hacerlo a través del aire, pues este frena ligeramente su velocidad, y, empleó para ello tuberías de acero cuya longitud era superior a 1’5 km. Según sus medidas, la velocidad de la luz en el vacío era de 299.730 km/seg. (Sólo un 0’006% más bajo). Demostraría también que todas las longitudes de ondas luminosas viajan a la misma velocidad en el vacío.
En 1972, un equipo de investigadores bajo la dirección de Kenneth M. Eveson efectuó unas mediciones aún más exactas y vio que la velocidad de la luz era de 299.727’74 km/seg. Una vez se conoció la velocidad de la luz con semejante precisión, se hizo posible usar la luz, o por lo menos formas de ella, para medir distancias.

Desde Galileo con sus lámparas, cada vez se han utilizado aparatos más sofisticados para medir la velocidad de la luz, y, finalmente, se consiguió medirla de manera muy exacta en 299.792.458 metros por segundo que, es el límite que algo puede alcanzar corriendo por el espacio vacío y que sólo ha conseguido la luz. Es un límite que nos mareca el Universo para viajar y enviar información, nada puede correr más que la luz en el vacío y, como nos dice la relatividad especial, cuando un objeto se va acercando a ese límite, su masa aumenta, toda vez que la energía de inercia se convierte en masa al estar acercándose al límite prohibido.
Aunque para algunos resulte alto tedioso el tema anterior, no he podido resistirme a la tentación de exponerlo, así podrá saber algo más sobre la luz y, habrán conocido a personajes que hicieron posible el que ahora nosotros, la conozcamos mejor.
Podría continuar, hasta el final de este trabajo, hablando de la luz y sus distintas formas o aplicaciones: ondas de luz a través del espacio, de cómo se transmite la luz en el “vacío”, nos llega a través del espacio desde Galaxias situadas a miles de millones de años luz; las líneas de fuerzas electromagnéticas de Faraday y Maxwell de campos eléctricos y magnéticos cambiantes (todo ello explicado en un simple conjunto de cuatro ecuaciones, que describían casi todos los fenómenos referentes a esta materia electromagnética), o de los enigmas aún por descubrir (aunque predichos).
Muchos han ido a la caza de los monopolos magnéticos que, deben ser raros en el Universo, si finalmente existen. Parece que, algunos físicos han conseguido alguna cosa…no se bien qué sobre su existencia.
En 1.931, Dirac, acometiendo el asiento de una forma matemática, llegó a la conclusión de que sí los monopolos magnéticos existían, sería necesario que todas las cargas eléctricas fuesen múltiplos exactos de una carga más pequeña, como en efecto así es. Y dado que todas las cargas eléctricas son múltiplos exactos de alguna carga más pequeña, ¿no deberían en realidad existir los monopolos magnéticos?
En 1.974, un físico joven y prometedor (más tarde ganó el Nobel), Gerard’t Hooft, y un físico soviético, Alexander Poliakov, mostraron, independientemente, que podía razonarse, a partir de las grandes teorías unificadas, que los monopolos magnéticos debían así mismo existir, y que debían poseer una masa enorme. Aunque un monopolo magnético sería incluso más pequeño que un protón, debería tener una masa que sería de 10 trillones a 10 cuatrillones mayor que la del protón. Eso equivaldría a la masa de una bacteria comprimida en una diminuta partícula subatómica.
![[monopolos+m.gif]](http://4.bp.blogspot.com/_nbADpD65WD4/SqENDeBLtLI/AAAAAAAAJ0s/XB4iORp8-eQ/s1600/monopolos%2Bm.gif)

Sería la confirmación de una teoría de 1931. Si seres de otros mundos han podido verlos, habrían visto otro tipo de magnetismo los llamados “monopolos magnéticos”.
Semejantes partículas sólo podían haberse formado en el momento de la gran explosión (otra vez volvemos al origen). Desde entonces, no ha existido la suficientemente alta concentración de energía necesaria para formarla. Esas grandes partículas deberían avanzar a unos 225 km por seg., más o menos, y la combinación de una enorme masa y un pequeño tamaño le permitiría deslizarse a través de la materia sin dejar el menor rastro de presencia. Esta propiedad, de hecho, está relacionada directamente con el fracaso obtenido en su búsqueda.
Los físicos están tratando de idear un mecanismo capaz de poder detectar, con claridad, el paso de monopolos magnéticos.
Podríamos decir que, un monopolo magnético es una entidad magnética hipotética consistente en un polo Norte o Sur elemental aislado. Ha sido postulado como una fuente de campo magnético en analogía a la forma en que las partículas eléctricamente cargadas producen un campo eléctrico.

Se han diseñado numerosos experimentos ingeniosos para detectar monopolos, pero hasta ahora, ninguno ha producido un resultado definitivo. Los monopolos magnéticos son predichos en ciertas teorías gauge con bosones de Higgs. En particular, algunas teorías de gran unificación predicen monopolos muy pesados (con masas del orden de 1016 geV). Se habló de su aparición en los primeros experimentos del LHC, algunos denunciaron eso junto con la aparición de agujeros negros microscópicos pero…, de momento…nada
Los monopolos magnéticos también son predichos en las teorías de Kaluza-Klein (5 dimensiones) y en teoría de supercuerdas (10 y 26 dimensione). Es decir, que se predice pero no se puede verificar, y, siendo así, quedamos anclados en el campo de la teoría.

Recuerdo que estaba hablando de los distintos aspectos de la luz, lo que no recuerdo es como he llegado a éste berenjenal de los monopolos magnéticos. Me ocurre siempre, estoy tratando un tema y termino hablando (escribiendo) de otro. No parece más que, el bolígrafo, tenga vida propia. Sin embargo, lo que ocurre en verdad es que, todo es uno, compuesto de distintas partes. Siempre estamos hablando de lo mismo, solo cambian las partes que, en cada momento, estemos estudiando de ese todo en el que estamos inmersos.

La misteriosa materia que compondría el 23 % (se especula) de toda la materia del universo es tan esquiva que jamás ha sido observada por nadie. Así que sólo podíamos sospechar que quizá existía. La materia oscura emite, absorbe e interactúa con radiación electromagnética de manera tan débil que no puede ser observada por medios técnicos ordinarios, no refleja la luz para ser observada.
Sin embargo, un equipo internacional de astrónomos de Japón, Gran Bretaña y Taiwan acaba de conseguir, por primera vez, imágenes que reflejan la distribución de materia oscura alrededor de 20 grandes cúmulos de galaxias. Los resultados se publicarán en la revista mensual de la Royal Astronomical Society. Las pruebas aún no son concluyentes, pero sí muy esperanzadoras. Es decir, un poco más de lo mismo pero, sin aclarar absolutamente nada.
Ni en el infrarrojo, ni en los rayos X ni en el ultravioleta la materia oscura había revelado aún su auténtica naturaleza. Pero utilizando lentes gravitacionales los científicos han sido capaces de mostrar las primeras imágenes en las que se “aprecia” la misteriosa materia oscura.
Masa-Materia-Luz: Todo la misma cosa ¡Energía! que es el motor que hace andar al ¡El Universo!
emilio silvera
Feb
10
¿Podría ser que electromagnetismo no sea sino gravedad con una…
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (1)

Cuando Einstein oyó hablar de esta idea de Kaluza se entusiasmó con ella, pero pronto comprendió que con esa teoría no se podía predecir nada y la abandonó. La característica esencial de este diagrama de abajo es que la materia, junto con las ecuaciones de Yang-Mills y de Einstein, está ahora incluida en el mismo campo de supergravedad de 11 dimensiones. Veámoslo así:

La materia con todas las fuerzas fundamentales de la naturaleza. Los bosones intermediarios o partículas portadoras de las fuerzas como el fotón para el electromagnetismo, los gluones para la fuerza nuclear fuerte, las partículas W y Z para la nuclear débil y, en la partícula portadora de la gravedad, el gravitón, ponemos el signo de interrogación, ya que se sabe que esta ahí en algún sitio pero hasta la fecha no ha sido detectado.
Los expertos en supergravedad redescubrieron esta idea de Kaluza y Klein.Una vez que hemos empezado a considerar muchas dimensiones extra, entramos en una especie de Valhalla de las matemáticas donde podemos enrollar las cosas de muchas maneras diferentes. Las componentes de los campos de fuerza gravitatorias en las direcciones enrolladas actúan como diferentes campos gauge. Obtenemos así, prácticamente por nada, no sólo electromagnetismo sino también otras fuerzas gauge. El número mágico de dimensiones es 11, tres de las cuales forman el espacio ordinario, una el tiempo y las siete restantes están enrolladas. Haciendo ciertos trucos con los números, este sistema resulta tener una simetría mayor que nuestro viejo sistema espacio-temporal de cuatro dimensiones. Los campos y las partículas observadas ahora pueden ser fácilmente acomodados, ya que una simetría mayor significa que los indeseados infinitos se cancelan unos a otros con mayor perfección que antes.

Ciertamente esta idea, esta idea parece ser la contraria a la noción de que el espacio y el tiempo sean nada más que puntos aislados, ya que entonces la noción de “dimensión” deja de tener sentido. Pero los matemáticos no se sienten amenazados por tales contracciones aparentes. De acuerdo con ellos, hay todo tipo de relaciones entre los espacios enrollados y la matemática de los números enteros, “sueltos” (uno podría indicar los puntos aislados del espaciotiempo con enteros). ¿Podría ser que exitieran diferentes formas de describir nuestro espacio y el tiempo que todas fueran matemáticamente equivalentes? Simplemente no lo sabemos.
Lo que sospecho es que la Supergravedad de dimensión once puede que sólo sea, en el mejor de los casos, la punta de un amravilloso Iceberg, p que sea simplemente errónea.
Se intenta y se utilizan energías inmensas pero, no siempre podemos ver todo lo que hay
No deberíamos olvidar en este momento que estamos tratando de suposiciones y que los argumentos teóricos que la sustentan son aún, extremadamente débiles. ¿Por qué supersimetría? ¿Por qué Once Dimensiones? ¿Por qué en este mundo todo debería ser maravillosamente simétrico? Y, sobre todo, ¿por qué un continuo, si ya sabemos que el espacio y el tiempo han perdido su significado habitual a distancias ultracortas? Además está la dificultad persistente en esta clase de teorías de que las interacciones entre partículas son siempre tratadas como perturbaciones que afectan a sus trayectorias las cuales, de otra manera, serían perfectamente rectilineas.
Pero entonces habrá nuevas (y diferentes) perturbaciones sobre esas trayectorias perturbadas, y perturbaciones sobre ellas, y así sucesivamente. esta serie de perturbaciones no acaba nunca y este es un problema que se impone en cualquier proceso de formulación exacta.
Es cierto que este problema también afecta al viejo “modelo estándar”, pero al menos allí se podría argüir que, donde realmente importaba, las fuerzas podrían mantenerse pequeñas y que la serie de perturbaciones convergía rápidamente. Esto no se puede mantener así en nuestra teoría de la (super) Gravedad, ya que a distancias pequeñas las interacciones se hacen fuertes.
![]()
Los Quarks permacen confinados dentro del núcleo formando protones y neutrones y, cuando tratan de separase, la fuerza nuclear fuerte aumenta, en cambio, cuando los Quarks están juntos, se mueven con facilidad y la fuerza disminuye: Libertad asintótica de los Quarkas.
Es cierto que fue un alivio descubrir aquellas primeras dificultades serias en esta teoría, u resultó que no era posible tener infinitos que se cancelasen en diagramas con más de siete lazos cerrados. La teoría, o mejor dicho, la especulación de que esto fuese una “teoría de todo” se abandonó (como otras veces ocurrió) porque algo mñás interesante apareció en el horizonte de la Física. ¡Las Supercuerdas!
Aunque hemos hablado mucho de ellas, creo que debemos profundizar algo más en esta prometedora teoría y, aunque de momento es sólo una especulación avanzada…¿quién sabe? lo que nos podría traer. Hablaremos de ella en próximos trabajos.
emilio silvera
















Totales: 83.765.688
Conectados: 30
























