Feb
16
De la vida y la muerte de las partículas y…
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (3)
![]() ![]() |
Por aquel tiempo pudimos leer en la prensa de todo el mundo: El premio Nobel de Física de 2008 ha correspondido a tres físicos teóricos de origen japonés: Yoichiro Nambu, Makoto Kobayashi y Toshihide Maskawa por sus “descubrimientos acerca de las simetrías rotas de la naturaleza”. Nadie duda de que el premio sea merecido, si bien ha surgido cierta polémica sobre algunas ausencias en la lista de premiados. En realidad, el análisis de los méritos de unos y otros ilustra el hecho de que muchas contribuciones esenciales en ciencia no están construidas sobre el vacío, sino basándose en trabajo previo de gran relevancia. Además la importancia de una contribución a menudo queda clara después de otros trabajos posteriores que explotan la idea. Establecer quién ha realizado la aportación más original e importante resulta por ello un asunto difícil y bastante subjetivo. Yoichiro Nambu y a los japoneses Makoto Kobayashi y Toshihide Maskawa por sus trabajos separados sobre la física de las partículas que mejoraron la comprensión de la materia, Demos un repaso hoy aquí a esos componentes de la materia, y, profundicemos en sus propiedades., en sus “vidas”.

Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.
También podríamos utilizar el concepto de “semi-vida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.
Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, ksi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales manera de desintegración, veríamos como difieren las unas de las otras.
Quarks | Antiquarks | ||||||||
---|---|---|---|---|---|---|---|---|---|
Nombre | Símbolo[1] | Generación | Carga eléctrica (e) |
Masa en reposo (MeV/c²) |
Nombre | Símbolo | Generación | Carga eléctrica (e) |
Masa en reposo (MeV/c²) |
Arriba | ![]() |
Primera | ![]() |
— | Antiarriba | ![]() |
Primera | ![]() |
— |
Abajo | ![]() |
Primera | ![]() |
— | Antiabajo | ![]() |
Primera | ![]() |
— |
Encanto | ![]() |
Segunda | ![]() |
— | Antiencanto | ![]() |
Segunda | ![]() |
— |
Extraño | ![]() |
Segunda | ![]() |
— | Antiextraño | ![]() |
Segunda | ![]() |
— |
Cima | ![]() |
Tercera | ![]() |
— | Anticima | ![]() |
Tercera | ![]() |
— |
Fondo | ![]() |
Tercera | ![]() |
— | Antifondo | ![]() |
Tercera | ![]() |
— |
- Las iniciales de los símbolos los toma del inglés: u: up, arriba; d: down, abajo; c: charmed, encantado; s: strange, extraño; t: top, alto, superior, cima; b: bottom bajo, fondo.
Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.
Todas las partículas elementales vistas hasta ahora en esta serie, incluido el neutrino. Claro que, aquí no está todavía el Bosón de Higgs que será confirmado en breve…al parecer. Esas son las últimas noticias, el Bosón de Higgs está “casi” localizado y sólo está a la espera de confirmar el hallazgo no una, sino miles de veces.
Un día en la prensa pudimos leer “Por fin, los físicos empiezan a recoger los frutos de una búsqueda que dura ya casi cincuenta años. Dos de los principales detectores del LHC, el gran acelerador europeo de partículas (el Atlas y el CMS) han encontrado señales que podrían delatar la presencia del esquivo bosón de Higgs, la última particula subatómica que queda por descubrir para completar el Modelo Estandar (decían de manera equivocada) de la Física y la que encierra, además, el secreto de por qué las demás partículas tienen masa.
Pero sigamos. ¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.
Una colisión entre un protón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.
Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.
Leptones cargados | Neutrinos | |||||||
---|---|---|---|---|---|---|---|---|
Nombre | Símbolo | Carga | Masa en reposo | Nombre | Símbolo | Carga | Masa en reposo | |
1ª generación | Electrón | ![]() |
−1 | 0,511 | ![]() |
0 | < 3·10−6 | |
Positrón | ![]() |
+1 | Neutrino electrónico |
![]() |
0 | |||
2ª generación | Muón | ![]() |
−1 | 105,658 | Neutrino muónico | ![]() |
0 | < 0,19 |
Antimuón | ![]() |
+1 | Antineutrino muónico | ![]() |
0 | |||
3ª generación | Tauón | ![]() |
−1 | 1776,99 | Neutrino tauónico | ![]() |
0 | < 18,2 |
Antitauón | ![]() |
+1 | Antineutrino tauónico | ![]() |
0 |
En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.
Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.
Los diferentes tipos de radiación y su poder de penetración.
Las principales radiaciones emitidas como consecuencia de la desintegración de los radioisótopos son: partículas alfa, partículas beta y rayos gamma.
Bariones
Partícula | Símbolo[1] | Quarks[2] | Spin | Masa en reposo (MeV/c²) |
S | C | B | Vida media (s) |
Desintegraciones más importantes |
---|---|---|---|---|---|---|---|---|---|
Protón | ![]() |
![]() |
![]() |
938,27 | 0 | 0 | 0 | Estable [3] | — |
Neutrón | ![]() |
![]() |
![]() |
939,56 | 0 | 0 | 0 | 885,7 [4] | ![]() |
Delta doble positiva | ![]() |
![]() |
![]() |
≈1 |
- [1] El símbolo de los antibariones es el mismo pero con una barra superpuesta.
- [2] Los antibariones están formados por los respectivos antiquarks.
- [3] Debe ser superior a 1030 años.
- [4] Vida media de los neutrones libres. En los núcleos atómicos son estables.
- Se ha conseguido observar por primera vez la desintegración radiactiva del neutrón. Dentro de los núcleos de los átomos hay neutrones y protones. En condiciones normales y mientras que están ahí los neutrones son estables. Sin embargo los neutrones libres son inestables, tienen una vida media de unos 10 minutos, y se desintegran produciendo un protón un electrón y un antineutrino. Pero los físicos nucleares teóricos predijeron que una de cada mil veces los neutrones decaerían en todas esas partículas y además en un fotón.
Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.
Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.
Bosones
Nombre | Símbolo | Carga eléctrica (e) |
Carga de color | Spin | Masa en reposo (GeV/c²) |
Existencia | Vida media | Desintegraciones más importantes |
---|---|---|---|---|---|---|---|---|
Fotón | ![]() |
Neutra | Neutra | 1 | Nula | Confirmada | Estable | — |
Bosón W | ![]() |
± 1 | Neutra | 1 | 80,425 | Confirmada | 3·10-25 | ![]() |
Bosón Z | ![]() |
Neutra | Neutra | 1 | 91,187 | Confirmada | 3·10-25 | — |
Gluón | ![]() |
Neutra | Color + Anticolor | 1 | Nula | Confirmada | Estable | — |
Gravitón | ![]() |
Neutra | Neutra | 2 | Nula | Hipotética | Estable | — |
Bosón de Higgs | ![]() |
Neutra | Neutra | 0 | > 114 | Hipotética | Inestable | ![]() |
Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”
Típicamente el neutrón decae en un protón, un antineutrino y un electrón. Muy raramente lo hace radiativamente emitiendo además un fotón. Diagrama: Zina Deretsky, National Science Foundation. Fue difícil observar los fotones porque el haz está contaminado con fotones que fondo que producen mucho “ruido” en las medidas, por lo que era como buscar una aguja en un pajar. El decaimiento radiativo del neutrón es importante porque conecta directamente con el modelo estándar de partículas.
Si la vida de una partícula es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.
Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.
Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

En el Universo existen muchas clases de resonancias…inesperadas
Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.
Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:
∆⁺⁺→р + π⁺; ∆⁰→р + πˉ; o п+π⁰
En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.
El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (materia), es aún limitado. Los cuadros que aparecen arriba, están referidos a las partículas más usuales como los Quarks y los Leptones (verdaderos componentes de la materia) que a su vez, son: Los Quarks los que forman a los Hadrones y los Leptones los que completan el núcleo atómico de la materia para conformar los átomos. He dejado a los mesones y a las supuestas partículas supersimétricas centrándome en las que me parecen principales en la conformación de la materia.
emilio silvera
Feb
10
Gravedad cuántica, fluctuaciones de vacío…
por Emilio Silvera ~
Clasificado en Física ~
Comments (2)
Las partículas recorren todos los caminos posibles para ir de un punto a otro. Así lo dice la hipótesis de múltiples historias. Dos partículas alejadas por miles de años luz pueden estar conectadas, otras se trasladan de un punto a otro del espacio sin recorrer las distancias que separan esos dos puntos (Efecto túnel) y, así, podríamos contar historias cuánticas alucinantes. Los sucesos de ese mundo extraño de los objetos infinitesimales, no son los mismos que podemos contemplar en nuestro mundo cotidiano, el macro mundo de los objetos grandes. El “universo” de las partículas es… ¡otro “universo”!
Por otra parte, existen hipótesis de todo tipo sobre lo que pudo pasar en aquellos primeros momentos.
“La hipótesis de la dimensión transicional que explica la gravitación y la materia oscura no conceptúa la hipótesis del Big-Bang en el sentido que el universo se crea a través de la explosión de un super-átomo, que crea la materia y el tiempo a partir de un punto único en el Universo. Y que ésta materia y tiempo se expanden en el espacio a partir de éste punto, en todas direcciones.
Esta hipótesis sólo puede conceptuar el Big-Bang como un evento simultáneo de creación de materia y tiempo en todo el Universo. Es decir, que no hubo ninguna explosión focal y dispersión de materia y energía en todas direcciones, sino que la materia y energía se creó instantáneamente en infinitos puntos del Universo. ( Un Big-Bang Multiple y simultaneo.).
Casi inmediatamente, por la acción de las fuerzas de la gravedad y el tiempo, se crearon los elementos y la materia como tal, así como la formación de Galaxias, Soles, Planetas y otros cuerpos celestes.
Todos los fenómenos que se dieron en ese momento y que aún se dan, obedecen a las Leyes de la Física Clásica, incluyendo la Expansión o Contracción de sectores del Universo, y no están directamente relacionados con el Big-Bang.”
Hay aspectos de la física que me dejan totalmente sin habla y quedan fuera de nuestra realidad inmersa en lo cotidiano de un mundo macroscópico que nos aleja de ese otro mundo misterioso e invisible donde residen los cuantos que, con su comportamiento, me obligan a pensar y me transportan de
En el mundo cuántico se pueden contemplar cosas más extrañas
Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.
Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habreis oido hablar de la energía de punto cero que permanerce en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene
Efecto Casimir
Me llama poderosamente la atención lo que conocemos
Algunos han postulado que el Universo pudo surgir de una fluctuación del vacío que rasgó el espacio tiempo de otro universo.
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se vacío theta (vacío θ), que es el gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un vacío theta es análogo a una función de Bloch* en un cristal. Cuando hay un fermión sin masa, el efecto túnel fermiónicos con masa pequeña, el efecto túnel es mucho menor que gauge puros, pero no está completamente suprimido. El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica.
En astronomía, el vacío está referido a regiones del espacio con
El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de Sabemos referirnos al producto o cociente de las unidades físicas básicas, elevadas a las potencias adecuadas, en una cantidad física derivada. Las cantidades físicas básicas de un sistema mecánico son habitualmente la masa (m), la longitud (l) y el tiempo (t). Utilizando estas dimensiones, la velocidad, que es una unidad física derivada, tendrá dimensiones l/t, y la aceleración tendrá dimensiones l/t2. SI, la corriente, I, Pero volvamos de
Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.
Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.
La degeneración de los electrones impide que la gravedad continúe comprimiendo a una estrella electrones se degeneran y, “protestan” porque no quieren estar tan juntos (son fermiones), y, es la fuerza de esa degeneración la única que frena la implosión de la estrella y queda convertida en una enana blanca que, en el centro de la nueva Nebulosa radia con fuerza
De manera similar ocurre cuando la estrella es más masiva que nuestro Sol. Entonces, llegado el final de su vida y quedando a merced de la fuerza de Gravedad, ésta trata de comprimir la masa estelar al máximo. protones y electrones se fusionan neutrones que, al verse tan comprimidos “protestan” y se degeneran para neutrones estable. Si la estrella es demasiado masivo, ni el Principio de exclusión de Pauli para los fermiones, puede frenar la inmensa gravedad que genera y, el final del proceso es un Agujero Negro.
Hace tiempo que sabemos (Einstein y así se desprende de L/V2 que podríamos expresar como m = E/c2. Si despejamos la energía, adquiere una Decir lo que pueda haber en ese “espacio vacío, no será nada fácil, sin embargo, parece que no sería un disparate pensar en la existencia allí de alguna clase de materia que, desde luego, al igual que la bariónica que sí podemos ver, genera energía y ondas gravitacionales que, de alguna manera que aún se nos oculta, escapa a nuestra vista y sólo podemos constatar sus efectos al medir las velocidades a las que se alejan las galaxias unas de otras: velocidad de expansión del universo, que no se corresponde en absoluto con la masa y la energía que podemos ver.
Hay que seguir atando cabos sueltos, uniendo piezas y buscando algunas que están perdidas de tal manera que,
¡Quién sabe! Quizá sea el LHC el que, con sus resultados, nos pueda dar una respuesta de lo que realmente existe en ese mal llamado vacío y que, según parece, está lleno a rebosar. Sí, pero ¿de qué está lleno? Ya veremos. De Higgs, ese Bosón que le da la masa a las partículas y que fue presentado a bombo y platillo a todos los medios en 2012. Ahora, el LHC con más potencia energética, tratará de descubrir las partículas supersimétricas que supuestamente son las componentes de la “materia oscura” y también, intentará otras cosas que los físicos intuyen están ahí.
Estamos en un momento crucial de la física, las matemáticas y la cosmología, y debemos, para poder materia oscura o a una teoría cuántica de la gravedad, que también está implícita en la teoría M. Estamos anclados; necesitamos nuevas y audaces ideas que puedan romper las cadenas virtuales que atan nuestras mentes a ideas del pasado. En su momento, esas ideas eran perfectas y cumplieron su misión. Sin embargo, ahora no nos dejan continuar y debemos preparar nuestras mentes
emilio silvera
Feb
10
La maravilla de… ¡Los cuantos!
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…
La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas producidas por las vibraciones de las partículas cargadas que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.
Ley de Planck para cuerpos a diferentes temperaturas.
Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.
Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.
Acero al “rojo vivo”, el objeto está radiando en la zona de la luz visible.
Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:
E = hv
Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.
Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.
El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.
Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.
No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.
fotogramas de la película del movimiento de un par de electrones en el átomo …
Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?
Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.
Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.
Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.
No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.
¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?
Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.
Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.
Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.
Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.
Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.
Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.
Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos, incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!
La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecanocuánticos.
Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.
Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.
¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?
Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.
emilio silvera
Ene
20
Monopolos magneticos
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (10)
Cuando el LHC se ponía en marcha, algunos hablaron de que se podían crear monopolos magnéticos.
“Desde el punto de vista teórico, uno se siente inclinado a creer que los monopolos han de existir, debido a la belleza matemática de su concepción. Aunque se han hecho varias tentativas de hallarlos, ninguna ha tenido éxito. Debiera deducirse de ello que la belleza matemática en sí no es razón suficiente para que la naturaleza aplique una teoría. Nos queda aún mucho que aprender en la investigación de los principios básicos de la naturaleza.”
P. A. M. DIRAC, 1981
En los años treinta del pasado siglo Paul Dirac realizó unos cálculos teóricos que indicaban que si existieran los monopolos magnéticos, entonces se podría cuantizar fácilmente la carga del electrón. Bastaría que existiera un sólo monopolo magnético en el Universo para que los electrones tuvieran la carga que tienen y no otra.
La imagen de arriba vino acompañada de la noticia siguiente: “Afirman haber podido detectar por primera vez monopolos magnéticos como un estado de la materia que se daría a partir de una disposición especial de los momentos magnéticos dentro de un cristal a baja temperatura.”
En realidad, cohabitamos una naturaleza llena de fenómenos enigmáticos. Uno de estos fenómenos es la asimetría insólita que se observaba entre el magnetismo y la electricidad: no hay cargas magnéticas comparables a las cargas eléctricas. Nuestro mundo está lleno de partículas cargadas eléctricamente, como los electrones o los protones, pero nadie ha detectado jamás una carga magnética aislada. El objeto hipotético que la poseería se denomina monopolo magnético.
Montaje experimental. Foto: HZB, D.J.P. Morris y A. Tennant.
El grupo de investigadores dispuso un montaje experimental especial para poder detectar estas cuerdas de Dirac. Hicieron que un chorro de neutrones impactara sobre una muestra a la que aplicaban un campo magnético. En el interior de la muestra se formaban cuerdas de Dirac que dispersaban los neutrones con un patrón específico que delataba su presencia.
La muestra era un cristal de titanato de disprosio. La estructura cristalina de este compuesto tiene una geometría notable, de tal modo que los momentos magnéticos de su interior se organizan en lo que se llama un “espagueti de espines”. El nombre viene de la ordenación de los dipolos, que forman una red de tubos contorsionados (cuerdas) por los que se transporta flujo magnético.
Estos tubos pueden “hacerse visibles” cuando los neutrones interaccionan con ellos; pues los neutrones, aunque no tienen carga eléctrica, sí tienen momento magnético. El patrón de dispersión de los neutrones obtenido es una representación recíproca de las cuerdas de Dirac contenidas en la muestra. Con el campo magnético aplicado los investigadores podían controlar la simetría y orientación de las cuerdas. A temperaturas de entre 0,6 a 2 grados Kelvin los investigadores pudieron ver pruebas de la existencia de monopolos magnéticos (la temperatura suele ser la peor enemiga del magnetismo, pues tiene a desordenarlo todo) en forma de este tipo de cuerdas según se acaba de describir.
Además pudieron ver la firma que en la capacidad calorífica dejada el gas de monopolos, viendo que estas cuerdas interaccionan de manera similar a como lo hacen las cargas eléctricas, lo que era de prever para el caso de monopolos magnéticos. En este resultado los monopolos no son partículas, sino que emergen como un estado de la materia, en concreto a partir de un arreglo especial de los dipolos que forman parte del material.
Para hacernos una idea de cómo sería un monopolo magnético si existiera, imaginemos una barra imantada que, como sabemos, posee en cada extremos un «un polo magnético» por el cual se atraen o se repelen. Estos polos son de dos tipos, llamados «norte» y «sur», y se comportan como las cargas eléctricas, positiva y negativa. Esa configuración del campo es un ejemplo de «campo bipolar», y sus líneas de campo no paran: giran y giran interminablemente. Si partimos por la mitad la barra imantada, no tenemos dos polos, el norte y el sur, separados, sino dos imanes. Un polo norte o sur aislado (un objeto con líneas de campo magnético que sólo salgan o que sólo entren) sería un monopolo magnético. De hecho, es imposible aislar una de estas cargas magnéticas. Nunca se ha detectado monópolos magnéticos, es decir partículas que poseyeran una sola carga magnética aislada. Puede que ello se deba a razones no aclaradas, o bien la naturaleza no creó monopolos magnéticos o creó poquísimos.
Todos sabemos que hay cargas eléctricas de distinto signo, tanto positivas como negativas. De este modo podemos reunir unas cuantas cargas de un signo dado en un recinto espacial y ver cómo todas las líneas de campo entran o salen del mismo a través de su superficie. Esto viene dado por la ley de Gauss del campo electrostático, que es una de las leyes de Maxwell. En su forma diferencial se escribe de la siguiente forma:
![]() |
Donde E es el campo eléctrico. Mientras que en su forma integral viene dada por:
![]() |
O lo que es lo mismo: si sumamos las líneas de campo E que salen y entran en una superficie cerrada nos dará la distribución de carga total encerrada dentro de esa superficie. Para situaciones con geometría esférica este problema es trivial, pues el campo será equivalente al generado por una carga puntual, pero no lo es tanto si es de otro modo. También nos dice que el campo dentro de una esfera hueca cargada es nulo, puesto que cualquier superficie cerrada interior no contiene ninguna carga.
En cambio, los monopolos eléctricos (partículas que llevan carga eléctrica) son muy abundantes. Cada chispa de materia contiene un número increíble de electrones y protones que son auténticos monopolos eléctricos. Podríamos imaginar las líneas de fuerza del campo eléctrico surgiendo de una partícula cargada eléctricamente o convergiendo en ella y empezando o acabando allí. Además, la experiencia ha confirmado la ley de conservación de la carga eléctrica: la carga monopólica eléctrica total de un sistema cerrado no puede crearse ni puede destruirse. Pero en el mundo del magnetismo, no existe nada similar a los monopolos eléctricos, aunque un monopolo magnético sea fácilmente concebible.
Ene
18
Intrincada búsqueda: ¡La Gravedad cuántica!
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (2)

Nunca han importado muchos los peligros que tengamos que correr para buscar las respuestas de lo profundamente escondido en la Naturaleza, ni tampoco ha importado hasta donde ha tenido que viajar la imaginación para configurar modelos y teorías que, más tarde, queremos verificar.
También una teoría cuántica de la gravedad debería ampliar nuestro conocimiento de efectos cuánticos predichos por enfoques tentativos de otras teorías cuánticas, como la existencia de radiación de Hawking.”
¡Y mucho más sobre este mismo tema!
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.
“El concepto de una “teoría del todo” está arraigado en el principio de causalidad y su descubrimiento es la empresa de acercarnos a ver a través de los ojos del demonio de Laplace. Aunque dicha posibilidad puede considerarse como determinista, en una “simple fórmula” puede todavía sobrevivir la física fundamentalmente probabilista, como proponen algunas posturas actuales de la mecánica cuántica. Esto se debe a que aun si los mecanismos que gobiernan las partículas son intrínsecamente azarosos, podemos conocer las reglas que gobiernan dicho azar y calcular las probabilidades de ocurrencia para cada evento posible. Sin embargo, otras interpretaciones de la ecuación de Schrödinger conceden poca importancia al azar: este solo se tendría importancia dentro del átomo y se diluiría en el mundo macroscópico. Otras no obstante la niegan completamente y la consideran una interpretación equivocada de las leyes cuánticas. En consecuencia, la mayor dificultad de descubrir una teoría unificada ha sido armonizar correctamente leyes que gobiernan solo un reducido ámbito de la naturaleza y transformarlas en una única teoría que la explique en su totalidad, tanto en su mundo micro como macroscópico y explique la existencia de todas las interacciones fundamentales: las fuerzas gravitatoria, electromagnética, nuclear fuerte y nuclear débil.”
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!
¿Quién puede ir a la longitud de Planck para poder contemplar esas cuerdas vibrantes si es que están allí?
Ni vemos la longitud de Planck ni las dimensiones extra y, nos dicen que para poder profundizar hasta esa distancia, necesitamos disponer de la Energía de Planck, es decir 1019 GeV, una energía que ni en las próximas generaciones estará a nuestro alcance. Pero mientras tanto, hablamos de que, en 2.015, el LHC buscará las partículas de la “materia oscura”. ¡Qué gente!
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?
Nuestro universo ¿es tridimensional y no podemos esas dimensiones extra de las que tanto hablan en las teorías más avanzadas pero, no verificadas?
El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que con sus 14 TeV no llegaría ni siquiera a vislumbrar esas cuerdas vibrantes de las que antes os hablaba.
La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Ya sabéis lo que pasa cuando queremos juntar la relatividad con la cuántica: ¡Aparecen los infinitos que no son renormalizables!
Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye sólo tres de las interacicones fundamentales -las fuerzas nucleares débil y fuerte y el electromagnetismo-, ha dado un buen resultado y a permitido a los físicos trabajar ampliamente en el conocimiento del mundo, de la Naturaleza, del Universo. Sin embargo, deja muchas preguntas sin contestar y, lo cierto es que, se necesitan nuevas maneras, nuevas formas, nuevas teorías que nos lleven más allá.
¡Necesitamos algo más avanzado!
Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que conocemos y están incluidas en el Modelo estándar, se nos ha dicho que ha sido encontrada y el hallazgo ha merecido el Nobel de Física. Sin embargo… nada se ha dicho de cómo ésta partícula transmite la masa a las demás. Faltan algunas explicaciones.
El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.
¿Es el efecto frenado que sufren las partículas que corren por el océano de Higgs, el que les da la masa?
Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.
Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.
Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más
apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.
Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.
La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs(de ahí la expectación creada por el acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W–, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?
No dejamos de experimentar para saber cómo es nuestro mundo, la Naturaleza, el Universo que nos acoge
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W–, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébilse fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Hay otra descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.
Desde Kaluza-Klein, la primera teoría de más dimensiones, estamos tratando de buscar como representar un espacio con dimensiones extra, y, a pesar de los muchos intentos, lo cierto es que, nuestro mundo sólo tiene tres de espacio y una de tiempo… ¿Dónde estarán esas otras hasta llegar a 11?
Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.
¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.
La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.
La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición.
De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.
En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.
Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el anómalo movimiento de las galaxias o la expansión del espacio que corre sin freno hacia… ¿Otro universo que tira del nuestro, como ocurren con las galaxias que terminan por fusionarse?
emilio silvera