martes, 12 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La vida en el Universo… ¡Esta por todas partes!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Si en Marte hay vida, será en el subsuelo, ahí no llega la radiación, la temperatura es más alta, el agua líquida discurrirá por los regajos que existen en los “tubos” formados en las rocas por la actividad de su pasado volcánico, y, si es así (que lo será), allí habrán surgido líquenes, hongos, bacterias…

Acercarse a la velocidad de la luz… trae consecuencias

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (33)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Todos sabemos de los fenómenos que se pueden producir en algunos aspectos de la relatividad especial de Einstein. Él no quiso llamarla de esa manera y, había pensado que “teoría de la invariabilidad” que reflejaba el carácter invariable de la velocidad de la luz, entre otras cosas, estaría bien. Sin embargo, finalmente se quedó como la Teoría de la Relatividad Especial. La obra de Eintein demostraba que conceptos tales como espacio y tiempo, que anteriormente parecían estar sepados y ser absolutos, en realidad están entrelazados y son relativos. Einstein demostró además que otras propiedades físicas del universo, sorprendentemente, también están interrelacionadas. La más famosa de sus fórmulas constituye uno de los ejemplos más importantes.

“En otras palabras, la masa en sí misma es una medida de una cantidad equivalente de energía. Dicho de otra manera, un cambio (recordemos que los cambio se expresan con la letra griega delta mayúscula, Δ) en la cantidad de energía, E, de un objeto es directamente proporcional a un cambio en su masa, m.”

 

En esta escueta fórmula Einstein afirma que la energía (E) de un objeto y su masa (m) son conceptos independientes; podemos determinar la energía a partir de la masa del objeto (multiplicando esta dos veces por la velocidad de la luz, o sea por c2) o podemos determinar la masa conociendo su energía (dividiendo esta última dos veces por la velocidad de la luz). En otras palabras, la energía y la masa son las caras de una misma moneda. Claro que, el tipo de cambio es grande (c2 es una cantidad considerable). Una masa pequeña llega a producir una cantidad considerable de energía.

 

Nube de hongo sobre Hiroshima después de haber soltado la bomba Little Boy.
La nube de hongo creada por la bomba Fat Man como resultado de la explosión nuclear sobre Nagasaki.
   Nube del hongo sobre Hirosima y
   Nube del hongo sobre Nagasaki
En Hirosima se utilizó como arma el devastador poder destructivo obtenido de la conversión en energía de menos del uno por ciento de 900 gramos de uranio; algún día,  en centrales energéticas de fusión podremos utilizar productivamente la fórmula de Eisntein para bien de la Humanidad y satisfacer la demanda de energía del mundo moderno aprovechando la materia prima inagotable que tenemnos en el agua de los mares y océanos de la Tierra.
Relatividad especial
Los conceptos que ponen de relieve la Teoría de la Relatividad Especial, ponen de relieve principios fundamentales y una de las cosas que nunca podremos hacer es ir más rápido que la velocidad de la luz. Algunos de ustedes se podrá preguntar ¿por qué no podemos coger un objeto, por ejemplo un muón, que un acelerador de partículas haya impulsado hasta conseguir que se mueva a 298 168 Km/s -el 99,5 por ciento de la velocidad de la luz- y “empujarlo un poco más”, consiguiendo que vaya al 99,9 por ciento de la velocidad de la luz, y entonces” empujarlo realmente un poco más” para tratar de que cruce la barrera de la velocidad de la luz.

 

COSMOS | Equivalencia entre masa y materia | Facebook

Equivalencia entre masa y materia

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

 

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

 

Resultado de imagen de http://www.fondospantallagratis.es/wp-content/uploads/2010/09/acelerador-de-particulas.jpgWebb confirma la galaxia más tenue, a 13.300 millones de años luz

 

Captamos imágenes de galaxias situadas a 12 millones de años luz, y, desde luego, la podemos ver como eran entonces, hace 12 millones de año que es el Tiempo que tardó la luz de la galaxia en llegar a nosotros

 

Estamos tratando de cruzar la barrera de la velocidad de la luz pero, Einstein, en su fórmula nos explica que tal cosa no es posible, y, el esfuerzo no tendría éxito precisamente por lo que antes hemos explicado para las dos maneras en que se transmite la energía y se puede incorporar a un cuerpo libre.
Respuestas (XC): ¿Por qué la masa aumenta con la velocidad? – Ciencia de  Sofá

 

¿Porqué la masa de un objeto aumenta a medida que incrementa su velocidad y de dónde sale esa masa que se suma.?

Como la velocidad de la luz es un límite que impone el Universo para moverse, resulta que un objeto que viaja y se acerca a la velocidad de la luz (c), se ve frenado por ese límite, y, la energía de la inercia… ¡Se convierte en masa! Eso es lo que se deduce de la fórmula  E=mc2

¿Cómo que la masa aumenta con la velocidad? ¿Ahora resultará que salir a correr engorda?

 

Puedo salir a correr con obesidad? ¿Es bueno o malo?Tippens fisica 7e_diapositivas_38a | PPT

 

En esta ecuación, el término pc representa el momento del objeto (o, lo que es lo mismo, el producto de su masa por la velocidad a la que se desplaza), …
Cuanto más rápido se mueve un objeto, más energía tiene y, a partir de la fórmula de Einstein, vemos que cuanta más energía tiene un objeto, más masa posee. Por ejemplo, los muones que se desplacen al 99,9 por ciento de la velocidad de la luz pesan más que los muónes inmóviles. De hecho, la verdad es que se vuelven 22 veces más pesados.
https://youtu.be/SS95YbzRL4I
Pero, cuanto más masa tiene un objeto, más difícil es incrementar su velocidad. Una cosa es empujar una ligera bicleta  y otra muy distinta, empujar a un pesado camión. Así, a medida que un muón se mueve más rápido, se hace cada vez más difícil aumentar aún más su velocidad. Cuando se desplaza a un 99,999 por ciento de la velocidad de la luz, la masa de un muón se multiplica por 224; a un 99,99999999 por ciento de la velocidad de la luz se multiplica por un factor que es más de 70 000. Como la masa del muón aumenta sin limite a medida que su velocidad se aproxima a la de la luz, sería necesario un impulso dado con una cantidad infinita de energía para alcanzar o superar la barrera de la velocidad de la luz. Por supuesto, esto es imposible de alcanzar y, en consecuencia, nignún objeto puede (en nuestro universo) moverse más rápido que la luz (llegaría a tener una masa infinita) que es el limite de velocidad que podemos alcanzar y también, el limite para poder transmitir información.
La velocidad de la luz es de 300.000 kilómetros por segundo. Podría rodear la Tierra casi 7 veces cada segundo. Es una barrera, un límite en el Universo. Nada puede viajar a más velocidad. Además de ser insuperable, la velocidad de la luz parece ser uno de los fundamentos sobre los que se ha construido nuestro Universo.

La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir: 3×1010 × 3×1010, ó 9×1020. Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2 × 1010 (22 millones) de kilocalorías.  Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

 

Resultado de imagen de Una bombilla de 100 vatios encendida

O dicho de otro modo: si fuese posible convertir en energía eléctrica la energía representada por un solo gramo de materia, bastaría para tener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años.

 

Resultado de imagen de La luz roja longitud de onda más larga

 

Claro que la luz, también es mucho más que todo eso y es una manifestación electromagnética como el resto de las radiaciones. A medida que la luz va desde una galaxia a otra más distante, esa luz se extiende como lo hace el espacio y eso hace que la luz, cuya longitud de onda es intrínsecamente corta, se convierta gradualmente en luz roja de longitud de onda más larga. Esa es la causa del desplazamiento hacia el rojo de los espectros de luz de las galaxias distantes.

 

 

¿Cómo se convierte el  “desplazamiento hacia el rojo” en una manera para medir distancias en el Universo? Todo se debe a un sorprendente descubrimiento realizado en 1926 en el observatorio del monte Wilson, cerca de Los Ángeles. Allí Edwin Hubble descubrió que el Universo se está expandiendo. Fue un hallazgo increíble, pues nadie se esperaba algo así. Al haber  “desplazamientos hacia el rojo” en todas direcciones, Hubble descubrió que todas las galaxias distantes del Universo se estaban separando entre sí, algo que hoy sabemos que está causado por la expansión del propio espacio.

 

Efecto  Doppler: La luz que se acerca es azul, la que se aleja es roja

Vista desde la Tierra una galaxia no parece alejarse, pero sabemos que sí ocurre porque su luz en espectro aparece más desplazada hacia la zona del rojo de lo habitual para los elementos químicos que nos llegan de la misma. Una galaxia que se aleje a poca velocidad adquirirá un ligero tono rojizo, pero una galaxia que se aleje más rápidamente adquirirá un rojo más intenso, un mayor “desplazamiento hacia el rojo”. Pero Hubble también descubrió que las galaxias que se mueven a mayor velocidad, también son las que están más alejadas. Eso significa que cuanto mayor sea el  “desplazamiento hacia el rojo”, más lejos estará la galaxia.

Averiguando la velocidad de expansión del espacio y realizando los cálculos inversos, los cosmólogos han podido estimar la edad del Universo en unos 13700 millones de años. Así que lo más lejos que podemos observar en cualquier dirección es 13700 millones de años luz. La luz no ha podido viajar más. Es el denominado “Universo observable”. Una esfera de poco menos de 13700 millones de años luz en todas direcciones que contiene todo lo que podemos ver. No hay razón para considerar que el “Universo observable” abarque todo el tamaño del Universo. Podría ser mayor, pero eso es lo que podríamos ver dado el tiempo que la luz ha viajado.
Un astrónomo situado en una galaxia del extremo del horizonte no puede ver ninguna de las galaxias situadas en el otro extremo de nuestro Universo. Pero puede ver galaxias situadas a unos 13.7000 millones de años luz en la otra dirección y así sucesivamente. Por lo que respecta a los astrónomos de la Tierra, el límite de la velocidad de la luz los tiene atrapados. Si nos preguntáramos que está ocurriendo más allá de nuestro “Universo observable” tendríamos que afrontar el hecho de que la velocidad de la luz es realmente una barrera.

 

 El GPS consta de una red de 24 satélites, que orbitan en la Tierra a una altura de 20000 km sobre la superficie. En cualquier momento, cualquier vehículo donde se halle instalado recibe la señal de al menos 4 satélites y compara la duración de las distancias a que se encuentran, a la velocidad de la luz, para calcular su ubicación exacta  en la superficie. Todo el sistema depende de relojes extraordinariamente precisos y cuando los ingenieros los diseñaron sabían que los satélites se moverían a casi 11300 km/h, una velocidad suficiente para ralentizar sus relojes una diminuta fracción de segundo. Los ingenieros incluyeron en el sistema todas las diferencias de tiempo relativistas y eso les ha conferido una precisión impresionante. Como los relojes de los satélites avanzan a unas velocidades diferentes que los relojes situados sobre la Tierra, sin estas correcciones relativistas la posición del vehículo sería errónea.

 

                                                             Sistema  GPS

La distorsión del tiempo es sólo una de las extrañas consecuencias de viajar con velocidades próximas a las de la luz. Imaginemos que  continuamos con la “bici” pedaleando a velocidades próximas a las de la luz, entonces el espacio comienza a hacer cosas extrañas para el ciclista y para la bicicleta. Un observador apreciaría que la longitud de la bicicleta disminuye en la dirección del movimiento, que se encoge en dicha dirección. Este efecto se conoce como  “contracción de la longitud” y junto con la  “dilatación del tiempo” son percibidos así por un observador inmóvil cuando ve algo que se mueve con velocidades próximas a la de la luz.

 

Se puede viajar más rápido que la luz, aunque sería necesaria la  construcción de una nave que pudiera soportar cientos de veces la masa de  Júpiter

Cuanto más rápido viajan, los relojes marcan el tiempo cada vez más lento. En teoría, entonces, para objetos que viajen a la velocidad de la luz… ¡El tiempo se volvería infinito y se detendría?

 

Parlamento Ciclista - El Hilo de Mikel Landa - El Salón (Ciclismo de  carretera masculino profesional)

 

 

Pero también el ciclista que se mueve a esta velocidad experimenta los efectos relativistas y su visión del mundo cambia radicalmente conforme su velocidad se aproxima a la de la luz. Las formas de las cosas comienzan a distorsionarse, todo se curva formándose una especie de túnel y los colores se van deformando también. Los cambios de color se explican por el fenómeno físico denominado  “efecto Doppler”, mientras que la distorsión de la forma ocurre por un fenómeno óptico denominado “aberración”.
La velocidad de la luz tiene otras peculiaridades en el lento movimiento de nuestro mundo. Peculiaridades que sí percibimos muy bien. La velocidad de la luz es constante, pero únicamente en el vacío del espacio. Cuando la luz atraviesa otros medios como el vidrio o algún fluido se ralentiza considerablemente. Si no lo hiciese así los telescopios o la visión humana, por ejemplo, no funcionarían.

La luz viaja más lentamente a través del agua, por eso vemos que la luz se refracta, se curva y se ondula cuando estamos bajo el agua. La vida tal y como la conocemos sería muy diferente si la luz no se propagara a velocidades diferentes a través de materiales diferentes. No podríamos ver y nuestros ojos no funcionarían igual. En un universo donde la luz se moviese a igual velocidad a través de todos los materiales, sabríamos muy poco del mundo que nos rodeara, sólo veríamos vagas manchas de luz y oscuridad. Esto ocurriría porque nuestros ojos dependen de unas lentes biológicas, los cristalinos, para enfocar las imágenes en nuestras  retinas. Al igual que las lentes de cristal funcionan porque la luz se ralentiza cuando las atraviesan. Pero, ¿por qué ocurre eso?. Porque la luz es absorbida por los átomos de cristal que la vuelven a irradiar a continuación, de manera que existe un retardo. La luz golpea un átomo que vibra y entonces reenvía la luz, de ahí viene el retardo. Este retardo también hace que la luz se curve cuando encuentra un cristal en forma de lente. Si se curva de forma adecuada la luz puede ser enfocada, recogida y ampliada. Para los astrónomos nada puede ser más importante. Menos mal que la luz se ralentiza cuando pasa a través del cristal, porque esa es la razón de que poseamos telescopios. Los tenemos gracias a que la luz se curva cuando atraviesa el cristal, así podemos concentrar grandes cantidades de luz en un solo punto y eso nos permite contemplar las lejanas maravillas del Universo. La luz pasa a través de la lente del telescopio a 200000 km/s, 2/3 de su velocidad en el vacío.
Otro estudio demuestra que es posible superar la velocidad de la luz
Siempre hemos soñado con vijar más rápido que la luz, y, existe alguna teoría

Aún nos enfrentamos a la velocidad de la luz como un muro impenetrable. Una velocidad que según Einstein nunca podrá ser rebasada. Sin embargo la Historia está llena de imposibles que se hicieron realidad. Por ejemplo, ¿seremos capaces de alcanzar las estrellas en naves que viajen más rápidas que la velocidad de la luz? Y si es así, ¿cuándo?

 

Esta sería una manera de burlar la velocidad de la luz, no de vencerla

Esa es la idea básica del concepto de  “Agujero de gusano”, plegar el espacio sobre sí mismo y tomar un atajo a través del Universo. Hoy, naturalmente, esta idea pertenece aún al ámbito de la ciencia ficción. ¿Pero que aspecto tendría una máquina de agujeros de gusano? Probablemente sería enorme y su equipamiento podría estar situado sobre un gran número de asteroides, dispuestos sobre una esfera gigantesca. Una gran batería de rayos láser concentraría una enorme cantidad de energía sobre un solo punto. Habría que alcanzar una temperatura increíble con el fin de abrir un agujero, una burbuja o puerta que quizás nos llevase a otra parte del  Universo.
                            Nave interestelar de ficción
Otra estrategia diferente que nos permitiría viajar por el espacio a mayor velocidad que la luz es el  “Impulso por deformación” que en la literatura de ciencia ficción también se denomina “motor de curvatura”. ¿Qué puede frenar o poner límites a nuestra imaginación.
En realidad, yo estaba hablando de que la masa y la energía son dos aspectos de la misma cosa y de que, la velocidad de la luz produce extraños efectos para los objetos que tratan de sobrepasarlas, ?que digo? que tratan de acercarse a ella. Ya lo hemos visto más arriba con los muones que se transforman en otra cosa a medida que la velocidad de la luz está más cerca de la que ellos llevan.
Resuelven el gran problema de la velocidad de la luz que Einstein no supo  solucionar
                Hay cuestiones que aún no podemos explicar
También aquí, en nuestro Sol, está presente la famosa ecuación de Einstein, por medio de lo que ella explica, es posible que lñas estrellas brillen en el cielo, que la Tierra tenga la luz y el calor necesarios para la vida y que las plantas puedan realizar su necesaria fotosíntesis
Emilio Silvera Vázquez

Rodeados de secretos que tratamos de desvelar

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

 

Los protones se acercan al límite impuesto por la Naturaleza de la velocidad de la luz, se ven frenados, y, la energía de la inercia (por la predicción de E= mc2) se convierte en masa.

En el universo todo es cambiante. Hasta “la nada” es cambiante. La energía que lo integra, que es parte de la misma materia, también es cambiante. Se transforma de una a otra. No se destruye. Cambia y evoluciona. El cuerpo humano es una gran máquina transformadora de energía porque es energía pura. El universo, en más del setenta por ciento, es energía. Vivimos y formamos parte de un universo repleto de energía. Y en ese universo variable y lleno de energía existen multitudes de formas de comunicación, entre otras, la del intercambio de energía entre los objetos que pueblan el espacio “infinito”.

Nos comunicamos con el Sol que nos manda su energía para hacer posible nuestra presencia aquí, en el planeta Tierra. La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros). Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

 

El objeto que se mueve más rápido tendrá más masa que el que se mueve despacio

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

Crean fotones de colores capaces de generar hasta 9.000 dimensionesPor qué la velocidad de la luz es constante? La relatividad de Einstein y  la naturaleza increíble de los fotones

               El misterio sobre la velocidad de la luz

Las leyes de la naturaleza se rigen por la luz, que viaja a una velocidad fija de 299 792,458 km/s, confirmada por la ciencia en miles de experimentos y es la constante fundamental que rige las leyes de la física y del cosmos.

Los fotones son partículas sin masa, que se encargan de transportar energía en forma de ondas electromagnéticas. La luz visible (como la del sol) está formada por fotones. La energía de un fotón depende de su longitud de onda.

La luz, formada por cuantos llamados fotones, es tan rápida que nada en el Universo, la puede alcanzar. Sin embargo sí hay algo que la puede retener mediante la fuerza de Gravedad: Los agujeros negros tienen y emiten tal fuera de gravedad que hasta la luz, se ve confinada en ellos y no puede salir una vez atrapada por la singularidad.

Resultado de imagen de Si aumentamos la velocidad del objeto su masa se incrementa

Si aumentamos aún más la velocidad y el objeto se acerca  a los 299.792’458 Km/s., que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en el objeto en movimiento en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. Hipotéticamente, en el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa.

 

Esto es lo que le sucedería a tu cuerpo si te movieras a la velocidad de la  luz

 

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

 

 

Si pudiéramos coger con los dedos, un muón que es lanzado por el Acelerador de partículas a velocidad cercana a la de la luz, veríamos como su masa a podido aumentar más de diez veces, toda vez que, la energía que se le ha inyectado no puede seguir convirtiéndose en velocidad más allá de la de la luz, y, el excedente, se convierte en masa. Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

 

La velocidad de la Luz, ¿Será siempre un muro infranqueable? : Blog de  Emilio Silvera V.

En el CERN se guardan las pruebas de que una partícula lanzada a velocidades cercanas a c, aumenta su masa. La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intentara sobrepasarla adquiriría una masa infinita.

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

 

Resultado de imagen de Ninguna nave espacial podrá alcanzar nunca la velocidad de la luz

Si no se encuentra otras maneras… La velocidad de la luz es el límite

Ninguna nave espacial, por los métodos convencionales, podrá alcanzar nunca la velocidad de la luz. Seguramente, los hombres inventarán otros procedimientos para que esas naves puedan burlar ese muro ahora infranqueable y, discurrirán otros caminos que nos posibiliten llegar hasta las estrellas.

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian  los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales.  Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

 

Resultado de imagen de La velocidad a la que viajan los haces de partículas en los grandes aceleradores

 

Los muones, descubiertos en 1936 en observaciones de radiación cósmica, son partículas elementales muy similares a los electrones, pero con una masa 207 veces mayor y un tiempo de vida que apenas alcanza un mero lapso de 2,2 millonésimas de segundo. Pese a que se los conoce desde hace 85 años, en los últimos meses se han vuelto el centro de las atenciones para los físicos de partículas debido a que aparentemente se han detectado anomalías en dos grandes experimentos internacionales de distinta naturaleza. En uno de los estudios, que se llevó a cabo en el Gran Colisionador de Hadrones (LHC), el mayor acelerador de partículas del planeta, situado en la Organización Europea para la Investigación Nuclear (Cern), los muones se formaron a una tasa diferente a la de los electrones como resultado de la desintegración de partículas más pesadas. Según una teoría que tiene amplia aceptación entre los físicos, ambas partículas deberían producirse en proporciones iguales. En el otro estudio, realizado en el acelerador del Fermilab, en Chicago, Estados Unidos, los muones presentaban un alto nivel de magnetismo, mayor que el previsto.

 

Un indicio de desacuerdo con el modelo estándar en un tipo de  desintegración del bosón de

 

Ambos registros parecen contrariar los supuestos de lo que se denomina modelo estándar, la teoría dominante en la física de partículas que, desde hace medio siglo, explica las interacciones entre las fuerzas conocidas, con excepción de la gravedad, y las partículas que constituyen la materia. Cuando existe una posibilidad sólida de que este tipo de discrepancia sea un fenómeno real y no un error de medición o una fluctuación estadística, los físicos se plantean si están ante un hallazgo que hace necesaria una revisión del modelo para incluir algo que no estaba previsto, como una nueva fuerza o una partícula que hasta ahora era desconocida, quizá surgida de algún fenómeno cuántico ignorado. No es la primera vez que el modelo es puesto a prueba. Los neutrinos, unas partículas sin carga eléctrica y extremadamente abundantes en el Universo, no deberían tener masa, según lo que postula el modelo. Pero ahora se sabe que tienen cierta masa, aunque la misma sea ínfima. Otras cuestiones que la teoría no explica son la existencia de la materia oscura y de la energía oscura, los dos componentes más abundantes del Cosmos, y la aparente predominancia de la materia sobre la antimateria.

 

 

Los muones pasaron a ser objeto de debates recientes entre los físicos cuando en el mes de marzo, el experimento LHCb –uno de los cuatro grandes proyectos en marcha en el Cern, que está ubicado en los alrededores de Ginebra, en la frontera entre Suiza y Francia– dio a conocer nuevos resultados. En un artículo disponible como preprint, aún no revisados por pares ni aceptado para su publicación en una revista científica, los miembros de la colaboración científica informan que el decaimiento de las partículas emergentes de las colisiones de protones en el interior del acelerador condujo a la formación de un 15 % menos de muones que de electrones.

 

Qué nos pasaría si viajáramos a la velocidad de la luz?

 

Hemos tenido que construir máquinas inmensas para poder comprobar los efectos que se producen en un cuerpo cuando éste quiere ir más rápido que la luz. Lo predijo la teoría de la relatividad especial de Einstein y se ha comprobado después en los aceleradores de partículas: Nada va más rápido que la luz en nuestro Universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

La única respuesta que podemos dar hoy es que así es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

Resultado de imagen de Grandes velocidades producen aumento de masa y la contracción de Lorentz

Antes se dejo la ecuación del aumento de masa y, en esta se escenifica la de la contracción de Lorentz

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.

Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

 

Resultado de imagen de Fotones viajeros

            Fotones viajeros ¿Quién o qué los podría seguir?

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada de 299.792.458 metros por segundo. Esa es también, el límite de la velcoidad en que podemos transmitir información en nuestro Universo. Y, si eso es así (que lo es), tenemos un problema de comunicación con nuestros hipotéticos vecinos galácticos situados a miles de millones de años-luz de nosotros que, si les enviamos un mensaje, nunca sabremos si lo recibirán, o, si para cuando el mensaje llegue, su mundo existe todavía.

Einstein en su teoría de la relatividad especial de 1.905, nos decía que en nuestro universo nada puede ir más rápido que la luz. También nos dejó dicho que masa y energía son dos aspectos de una misma cosa. Que la materia se puede convertir en energía  (muchos son los ejemplos que tenemos de ello, y, no todos son buenos)  pero,  ¿es posible hacer lo contrario y convertir energía en materia?

 

Resultado de imagen de Convertir energía en materiaResultado de imagen de Convertir energía en materia

En la serie Star Trek vemos como los viajeros hablan a una máquina y de allí sale la comida calentita. No sólo convierten la energía en materia sino que eligen a la carta en qué manjar convertir la materia. Lo que no nos explican es de dónde obtienen esa fuente inagotable de materia.

 

 

Sí sería posible convertir energía en materia, pero hacerlo en grandes cantidades resulta poco práctico. Veamos por qué: Según la teoría de Einstein, tenemos que E = mc2, donde e representa la energía, medida en ergios, m representa la masa, medida en gramos, y c es la velocidad de la luz en centímetros por segundo.

Así que, en un gramo de materia podemos encontrar una gran cantidad de energía y para convertir la energía en materia, se necesitarían inmensas cantidades de energía, una fuente ilimitada que hoy no podemos tener y que, en el futuro, seguramente encontraremos para utilizarla en cuantas cosas podamos necesitar y, seguramente, una de ellas será esa: Convertir energía en materia.

 

Refracción de la luz: conoce y experimenta - Fundación Aquae760.700+ Reflejada En El Espejo Vídeos de stock y películas libres de  derechos - iStock | Mirarse al espejo, Reflejo en espejo, Exito

La luz se propaga en cualquier medio

El agua es un medio transparente que conduce la luz (o las ondas de energía). Al igual que cuando enfocamos la luz contra un espejo observamos que el rayo de luz se desvía cambiando de dirección, de la misma manera sucede en el agua.

La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:

3×1010 × 3×1010, ó 9×1020.

Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s. (Sistema Cegesimal de Unidades ) y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías.  Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

 

 

La masa y la energía son dos aspectos de la misma cosa

En el contexto del universo, hay energías que se convierten en masa. Esa difícil transformación, no resulta nada fácil de conseguir en un laboratorio manipulado por el hombre, Hay cosas que aún, se escapan a nuestras posibilides y a las de nuestros ingenios tecnológicos.

O digámoslo de otro modo: si fuese posible convertir en energía eléctrica la energía representada por un solo gramo de materia, bastaría para tener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años. O bien: la energía que representa un solo gramo de materia equivale a la que se obtendría de quemar unos 32 millones de litros de gasolina.

 

Estos son los efectos que produciría una bomba nuclear: del calor y la  presión máxima hasta la radiación letal

 

Nada tiene de extraño, por tanto, que las bombas nucleares, donde se convierten en energías cantidades apreciables de materia, desaten tanta destrucción. La conversión opera en ambos sentidos. La materia se puede convertir en energía y la energía en materia. Esto último puede hacerse en cualquier momento en el laboratorio, donde continuamente convierten partículas energéticas (como fotones de rayos gamma) en 1 electrón y 1 positrón sin ninguna dificultad. Con ello se invierte el proceso, convirtiéndose la energía en materia. Claro que, sólo lo hacemos en esas infinitesimales proporciones. Bueno, para empezar no está mal.

 

 

Estos personajes del futuro, tenían la posibilidad de obtener alimentos de una máquina que transformaba la energía en viandas. ¿Cuando será realidad tal logro? Sería una buena solución para muchas regiones de la Tierra. Sin embargo, lejos queda esa posibilidad futura.

Pero, lo que nosotros podemos lograr en ese plano,  sería hablar de una transformación de ínfimas cantidades de masa casi despreciable. ¿Pero podremos utilizar el mismo principio para conseguir cantidades mayores de materia a partir de energía?

 

Convertir energía en materia? : Blog de Emilio Silvera V.

Bueno, si un gramo de materia puede convertirse en una cantidad de energía igual a la que produce la combustión de 32 millones de litros de gasolina, entonces hará falta toda esa energía para fabricar un solo gramo de materia, lo que nos lleva al convencimiento de que no sería muy rentable invertir el proceso.

 

STAR TREK:HISTORIA DE LAS NAVES ENTERPRISE | LAS CRÓNICAS DE STAR TREK (THE  CHRONICLES OF STAR TREK)

 

Ya arriba dejo la imagen de aquellos viajeros espaciales de la Nave Enterprise, cuando tenían hambre, le piden a una dispensadora de alimentos lo que desean comer o beber, y la máquina, a partir de la energía, le facilita todo aquello que necesiten. La serie Star Trek, unas de las mejores que han sido realizadas, reflejan algunas licencias que como esta de la máquina dispensadora, no explican de dónde precede la fuente de energía que utilizan y, que según lo que se ve, tendría que ser inagotable.

 

 

Antes de que llegara Einstein, los físicos del siglo XIX creían que la materia y la energía eran dos cosas completamente diferentes. Materia es todo aquello que ocupaba un espacio y que poseía masa. Y al tener masa también tenía inercia y respondía al campo gravitatorio. La energía en cambio, no ocupaba espacio ni tenía masa, pero podía efectuar trabajo. Además, se pensaba que la materia consistía en partículas (átomos), mientras que la energía, se componía de ondas.

Por otra parte, esos mismos físicos del XIX creían que ni la materia ni la energía, cada una por su parte, podía ser creada ni destruida. La cantidad de materia del universo era constante, igual que la cantidad total de energía.  Había pues una ley de conservación de la energía y de conservación de la materia.

 

La ecuación E=mc² de Albert Einstein le dio forma a todo el siglo XX":  Christophe Galfard, discípulo de Stephen Hawking - BBC News Mundo

Albert Einstein, en 1.905, les demostró que la masa es una forma muy concentrada de energía. La masa podía convertirse en energía y viceversa.  Lo único que había que tener en cuenta era la ley de conservación de la energía. En ella iba incluida la materia.

Hacia los años veinte se vio además que no se podía hablar de partículas y ondas como si fuesen dos cosas diferentes. Lo que se consideraban partículas actuaban en ciertos aspectos como si de ondas se tratara, y lo que normalmente se consideraban ondas actuaban en ciertos aspectos como partículas.

 

El viaje de la luz: ¿se comporta igual tanto en el tiempo como en el  espacio? - InfobaeTres experimentos «imposibles» de física cuántica que han demostrado  funcionar, y que resultan muyThomas Young hizo el experimento más bello de la historia de la física -  Libertad DigitalExperimentos de doble rendija y camara oscura

Son muchos los experimentos que han demostrado la doble naturaleza de la luz. Sin embargo… ¿Sabemos realmente lo que es la luz? Nos dicen: “Un fotón no tiene energía de reposo, es decir, ninguna masa propia. Sin embargo, un fotón puede aportar energía e impulso a un sistema de objetos. De ahí que la presencia de uno o más fotones en un sistema pueda aumentar la masa de ese sistema”. Luego el fotón que vive en forma de energía, en realidad también es masa cuando interacciona con otros objetos.

 

La función de onda, su ecuación y su interpretación. Postulados. – Física  cuántica en la redLa Materia ¿Está viva? : Blog de Emilio Silvera V.

symmetryinchaos blender3d #dispersion #wave #op #art #organic GIFDIPOLE.gif

La primera imagen nos muestra la función del onda del hidrógeno, la segunda la imagen ondulatoria del electrón, la tercera nos dice que en lo más profundo de la materia, el movimiento es inevitable, y, la cuarta es la imagen de propagación de una onda electromagnética por medio de una antena dipolo.

Así podemos hablar de ondas del electrón, por ejemplo; y también de partículas de luz, o fotones. Pero existe una diferencia entre la una y el otro, mientras que la partícula que denominamos electrón, posee una “masa en reposo” mayor a cero, los fotones por el contrario, no tienen masa alguna, por ese motivo, estas partículas se mueven siempre a una velocidad de 299.792’458 metros por segundo a través del vacío, no debemos olvidar que un fotón es una partícula de luz.

 

Resultado de imagen de El Universo dinamíco lleno de energíaPor qué las estrellas titilan de diferentes colores?

Las estrella parpadean en la noche como si quisieran decirnos alguna cosa,. El cielo nocturno es un espectáculo vibrante y dinámico que ha fascinado a la humanidad durante milenios. Uno de los fenómenos más intrigantes es el titilar de las estrellas. ¿Alguna vez te has preguntado por qué las estrellas titilan y cambian de color? Bueno, las estrella no tililan ni parpadean, en realidad es la atmósfera de la Tierra la que se interpone entre ellas y nosotros y se produce ese fenómeno.

Estamos inmersos en un Universo palpitante, en el que todo es movimiento y energía, nada está estático y, hasta las más ínfimas partículas de materia, se mueven a velocidades alucinantes. Es una dinámica que está marcada, o, regida, por las leyes fundamentales, las fuerzas rigen el Cosmos infinito. Nosotros, siempre curiosos y deseosos de saber, buscamos en lo más profundo del SER del UNIVERSO, para desentrañar lo que es y lo que somos. ¿Lo conseguiremos algún día?

Eso, me lo podéis preguntar dentro de unos pocos millones de años, y, seguramente, aún no os sabría contestar.

Emilio Silvera Vázquez

Fuentes: diversas obras de ciencia con una brizna de mi propio archivo mental.