Cuando dentro de algunos miles de millones de años, Andrómeda llegue a nosotros, y, se junte con la Vía Láctea… ¿Qué espectáculo se podrá contemplar? Para entonces, la Humanidad (si es que aún sigue por aquí, habrá emigrado a otros mundos, en el evento el Sistema solar puede ser despedido y estrellas y planetas saldrán de su órbita, disparados por fuerzas de marea de increíble potencia que cambiará muchas cosas.
Sí, para que eso ocurra faltan unos 4.000 millones de años, lo que no garantiza que estemos aún por aquí, y, hasta es posible que nuestra propia estupidez haya provocado nuestra propia destrucción.
La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esta sencilla ecuación es la demostración irrebatible de la grandeza de la mente humana que, con unos pocos signos nos puede decir tánto. De las ecuaciones de campo de Einstein, se pudieron deducir muchas cosas, tales como que el espacio se curva en presencia de grandes masas, como mundos, estrellas y galaxias para configurar la geometría del espacio.
Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el esapcio-tiempo. En estos lugares que, como océanos de gas y polvo iniozado por la radiación de las estrellas masivas más jóvenes, existen moléculas complejas que, en algún caso, son esenciales para la existencia de la vida.
La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski). Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.
La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.
En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.
En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).
Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un . (“¿Qué hay en un nombre? Lo que llamamos rosa, / con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) – La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.
También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.
Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.
Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.
La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividad general que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.
En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.
El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.
Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.
Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…
Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.
Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.
Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.
Esta pretende ser la imagen de un extraño objeto masivo, un quásar que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).
Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.
Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.
Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.
Supernova 1987 A
El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.
Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espacio-tiempo y dibujar la geometría del universo.
Los telescopios de la NASA han captado la imagen de un agujero negro en el centro de una galaxia golpeando otra vecina hasta el punto de desviarla y de …”robarle su masa” que, finalmente se irá engullendo poco a poco el monstruo estelar.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.
Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.
Imaginar cómo podría escapar una nave que cayera cerca del remolino central… ¡Produce escalofríos!
Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercer aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.
Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.
Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.
Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta la extenuación:
“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado” Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.“
El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.
Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debilidad resulta engañosa porque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.
¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!
En el Universo todo es fruto de dos fuerzas contrapuestas:
Por ejemplo, las estrellas son estables por el hecho de que, la energía de fusión tiende a expandir la estrella y, la fuerza de Gravedad generada por su ingente masa, la hace contraerse. De esa manera, las dos fuerzas se contrarrestan y consiguen estabilizar a la estrella que vive miles de años. Cuando se agota el combustible nuclear de fusión, la estrella queda a merced de la Gravedad y se contrae (implosiona) bajo el peso de su propia masa, la gravedad la aplasta más y más hasta convertirla en una estrella de neutrones y un agujero negro si es una estrlla masiva.
En el átomo, el equilibrio se alcanza como consecuencia de que, los protones (los nucleones que forman el núcleo), están cargados positivamente, y, los electrones que orbitan a su alrededor, están cargadas eléctricamente con cargas negativas equivalentes, con lo cual, el equilibrio queda servido y se alcanza la estabilidad.
Diagrama de Kruskal-Szekeres para un agujero negro. Las rectas azules son superficies de tiempo constante. Las curvas verdes son superficies de radio constante. -Las regiones I y II (sólo la parte blanca) son el exterior y el interior de un agujero negro. -La región III es una región exterior al agujero negro “paralela”. -La región IV (sólo la parte blanca) es un agujero blanco. Las zonas grises adyacentes a las regiones II y IV son las singularidades.
El agujero Blanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaria
El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte “futuro” (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte “pasado”, el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco.
Si la neurociencia fuera poesía, tendría a Emily Dickinson como su referente.
La célebre poeta de Massachusetts no solo forma parte de ese panteón de figuras clave de la poesía estadounidense, como lo fue a Edgar Allan Poe, Ralph Waldo Emerson y Walt Whitman. Ella es la personalidad favorita de muchos premios Nobel que han estudiado los misterios del cerebro humano.
https://www.youtube.com/watch?v=Wxkw-0ZETN0Emily DickinsonBiólogos, como Gerald Edelman, o neurocientíficos cognitivos, como Stanislas Dehaene, usaron uno de sus poemas como introducción para sus publicaciones. Dickinson escribió en 1862 que el cerebro es más ancho que el cielo, más profundo que el mar y que es solo el peso de Dios. Lo que hizo en realidad fue describir ese producto del cerebro que es la mente y su poder a la hora de vivenciar y crear la realidad.
¡Confirmado! Taylor Swift y Emily Dickinson están emparentadas
En cuanto a la retórica particular dickinsoniana, los poemas de Dickinson tienen una vocación aforística y apotegmática que nos recuerda la mejor tradición epigramática clásica. Con frecuencia, una estrofa no tiene nada que ver con la siguiente y se puede leer como unidad independiente.
Su poema representa para los neurocientíficos una experiencia de lo sublime y de la capacidad cerebral para construir las percepciones. El cerebro es parte de la naturaleza humana, pero lo trasciende gracias a sus pensamientos e https://lamenteesmaravillosa.com/la-imaginacion-activa-el-interesante-metodo-de-jung/”}}”>imaginación, pudiendo ir más allá del cielo, ser más profundo que el propio océano…
“El cerebro es más ancho que el cielo; ponlos juntos y uno contendrá al otro con facilidad, y a ti, además.
El cerebro es más profundo que el mar; al contenerlos, azul con azul, y el uno al otro absorberá, como una esponja.
El cerebro es el solo peso de Dios; levántalos, libra por libra, y diferirán, si lo hacen, como la sílaba difiere del sonido.
-Emily Dickinson, El cerebro (1862)-
Herbario de Emily Dickinson | Emily Dickinson’s herbarium (Houghton Library, Harvard University) ca. 1839-
Cuando solo tenía 14 años, la poeta estadounidense Emily Dickinson comenzó a explorar bosques y prados cercanos para recolectar flores que después prensaba, llegando a crear un herbario donde reunió y clasificó más de 400 especímenes. De este modo, accedió a la ciencia de forma sinuosa, como tenían que hacerlo las mujeres de la época, poniendo el arte al servicio de la botánica para salvar los obstáculos de la moral victoriana.
Se habla de sus temas recurrentes, como la naturaleza, el amor, la muerte, la inmortalidad, la conciencia, el cielo y las estrellas…Sentir las palabras para despertar la conciencia
La literatura enriquece a las personas de una manera innegable. Nos aporta conocimientos, despierta en nosotros nuevas perspectivas y a menudo se configura como un ejercicio catártico para el cambio y el https://lamenteesmaravillosa.com/variables-influyen-bienestar-laboral/”}}”>bienestar. Sin embargo, si la neurociencia fuera poesía, entendería que su poder va más allá de la narrativa y despierta en nosotros en mayor grado la autoconciencia emocional.
Los versos, las metáforas y todo recurso poético hace de la palabra un detonante psicológico. Nos permite sentir, ver y comprender el mundo de una manera más rica y compleja. El uso de simbolismos incrementa la https://lamenteesmaravillosa.com/un-viaje-hacia-la-introspeccion/”}}”>introspección, el sentido crítico y la mentalidad reflexiva. Además, favorece que conectemos con nosotros mismos y lo que nos envuelve a otro nivel.
Estimula la imaginación, porque jugar con las palabras nos invita también a jugar con la realidad y reinventarla, a verla desde múltiples prismas. La neurociencia sabe que la poesía no solo embellece el lenguaje, sino que activa un resorte atávico en el cerebro para volverlo más rico y aumentar sus conexiones sinápticas. Así que no lo dudemos, naveguemos en esos mares de letras para sentirnos, si cabe, mucho más vivos.
“Para fugarnos de la tierra un libro es el mejor bajel; y se viaja mejor en el poema que en el más brioso y rápido corcel
Aun el más pobre puede hacerlo, nada por ello ha de pagar: el alma en el transporte de su sueño se nutre solo de silencio y paz”.
Cómo no sentir miedo en aquellos tiempos cuando se producía un eclipse de Sol
Es cierto que la ignorancia ha sido siempre nuestra compañera inseparable. Siempre hemos adolecido de una gran ignorancia y, gracias a ello, hemos sentido curiosidad por el por qué de las cosas que, habiéndolas observado a nuestro alrededor o en la lejanía del espacio, despertó nuestra curiosidad, la otra compañera inseparable del Ser Humano.
Ya en Mesopotamia y Babilonia se interesaron por la Astronomía y los fenómenos celestes
Gracias a esas dos eternas compañeras de viaje (Curiosidad e Ignorancia), hemos podido evolucionar y avanzar a lo largo del transcurso del Tiempo. Siempre nos preguntamos, mirando al cielo estrellado, por aquellas maravillas que titilaban como queriendo decirnos alguna cosa que no llegábamos a entender. También, en el “universo” de lo muy pequeño, fijamos nuestra atención, y, de esa manera pudimos llegar a descubrir el átomo de Demócrito y el Cosmos “infinito” de las galaxias.
Decía que la ignorancia siempre ha estado con nosotros y, junto a la curiosidad, ha sido un gran acicate para ir aprendiendo de los fenómenos que podíamos observar y, de aquellos otros misterios que presentíamos y tratamos de desvelar. Nunca estamos conformes con lo que sabemos, ya que, cada nuevo conocimiento nos posibilita para poder seguir haciendo más y más preguntas, cada vez de temas más complejos.
Sabemos por el gran filósofo Karl Popper que, mientras nuestros conocimientos son limitados, nuestra ignorancia es infinita.
Si existen otras dimensiones… ¿Dónde están?
Como siempre nos pasa cuando no sabemos alguna cosa, nuestra imaginación se desboca y plantea mil y una solución de lo que podría ser. , nos ocurre con el Universo y los secretos que aún no hemos podido desvelar. Construimos modelos que nos den una satisfactoria explicación o menos aceptable, buscamos remedio -no pocas veces poniendo “parches”- para cuestiones que no podemos explicar, y nos inventamos escenarios y situaciones que, tampoco sabemos si alguna vez podremos comprobar: materia oscura, agujeros de gusano, universos paralelos…
Imaginamos naves que nos lleven a travéz de agujeros de gusanos hasta otras galaxias en menos tiempo
Cuando oímos la palabra hiperespacio todos pensamos en un lugar por encima, alto, más allá del “espacio normal” de tres dimensiones en el que nos movemos en nuestra vida cotidiana. Y, las ideas se pueden mezclar para confundirnos más, con espacios vectoriales lineales que pueden tener un infinito de dimensiones, como si fuera un espacio de Hilbert. Es como un túnel situado fuera de este mundo nuestro que nos puede llevar hacia regiones lejanas en la galaxia o, incluso, en otras galaxias y hasta en otro universo, sin tener que recorrer el espacio que de esos lejanos lugares nos separa.
Nuestra fantasía dibuja de mil maneras el Hiperespacio
Michio Kaku, un físico que nos habla de dimensiones extra y de hiperespacio, en una de sus obras comienza diciendo:
“¿Existen dimensiones superiores? ¿Están los mundos invisibles más allá de nuestro alcance, más allá de las leyes corrientes de la física? Aunque las dimensiones superiores hayan históricamente cosa de charlatanes, místicos y de escritores de ciencia ficción, muchos físicos teóricos creen ahora, no solo que las dimensiones superiores existen, sino que además pueden llegar a explicar algunos de los más profundos secretos de la naturaleza. Aunque queremos aclarar que no existen evidencias experimentales de la existencia de dimensiones superiores, en principio, pueden llegar a resolver el problema esencial de la física: la unificación de todo el conocimiento físico a un nivel fundamental.”
Hemos mirado por todo el Universo y, añadiendo el tiempo como otra dimensión, vemos que es tetradimensional, no podemos ver dimensiones que alguna teoría dice que están compactadas en el límite de Planck.
Michio Kaku, que en sus escritos nos dice que ve el futuro, nos cuenta:
“Mi propia fascinación con las dimensiones superiores comenzó durante mi infancia. En uno de mis felices recuerdos de la infancia permanecía agachado junto al estanque del Jardín del Te Japonés de San Francisco, contemplando hipnotizado las carpas de colores nadando suavemente bajo los nenúfares. En esos momentos de calma, me hacia una tonta que solo un niño podría hacerse: ¿Cómo ven las carpas en aquel estanque el mundo que les rodea ?. Habiendo pasando su vida entera dentro de aquel estanque, las carpas creerían que su universo consiste de agua y de nenúfares; solo vagamente conscientes de la posibilidad que un mundo
extraño existiese por encima de la superficie.
Mi mundo escapaba a su comprensión. Me intrigaba que pudiese estar a solo unos centímetros de las carpas y que al mismo tiempo estuviésemos separados por un abismo. Concluí que si hubiese algún científico entre las carpas se mofaría de cualquier pez que propusiese que un mundo paralelo podría existir por encima de los nenúfares. Un mundo invisible allá del estanque no tendría sentido para la ciencia.”
El Espacio Hiper-dimensional no se ve por ninguna parte
Claro que, esas explicaciones de Michio Kaku, no nos explican a , los humanos, lo que es el universo hiper-dimensional que sería para las carpas este mismo universo nuestro. El nos lleva a la de que, , al igual que le ocurre a las carpas de su estanque, tengamos a nuestro alrededor “otras dimensiones” que no somos capaces de ver. Pero yo me sigo preguntando:
¿Dónde, pues, ha de hallarse el universo hiper-dimensional de la simetría perfecta? Ciertamente, no aquí y ahora; el mundo en que vivimos está lleno de simetrías rotas, y sólo tiene cuatro dimensiones, tres de y una temporal. La imaginación que nunca descansa, nos lleva a una en la cosmología, la cual nos dice que el universo super-simétrico, si existió, pertenece al pasado. Como nos decían los autores de la Teoría Kaluza-Klein, esas otras dimensiones se quedaron compactadas cuando el universo se desarrolló y, aunque son parámetros necesarios para las grandes teorías de cuerdas y supercuerdas… ¡No las vemos por ninguna parte!
Hace tiempo ya que buscamos esas otras dimensiones pero,,, ¿Dónde están?
La implicación de eso es que el universo tuvo que comenzar en un estado de perfección simétrica, desde el que evolucionó a este otro universo menos simétrico que conocemos y en el que vivimos. Si es así, la de la simetría perfecta sería la del secreto del origen del universo, y la atención de sus acólitos puede volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica. Alguna vez hemos podido comentar aquí de aquella simetría primera, cuando todas las fuerzas de la naturaleza estaban unidas en una sola fuerza y, a medida que el universo se enfrió en los infiernos del big bang, aquella simetría se rompió, y se desgajó en las cuatro fuerzas que ahora conocemos y, algunos dicen que, se formaron las cuatro dimensiones que podemos ver y, otras, quedaron confinadas en el límite Planck. La simetría quedó rota para siempre.
Así que las teorías se han embarcado a la de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
Recordemos que: “En griego, la simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría para los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera. Asi, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético .”
De esa manera, como digo más arriba, buscar “la simplicidad primigenia” y, para ello, hacemos cábalas con dimensiones más altas que nos devuelva una simetría superior que nos lo explique todo y donde todo quepa sin que surjan los indeseables infinitos que aparecen cuando tratamos de juntar la Mecánica cuántica con la Relatividad general, es decir, cuando queremos unificar el “universo” de lo infinitesimal con el “universo” de lo muy grande.
Humo simétrico
Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos parte de ese Universo de simetría.
Los planetas son esféricos y, por ejemplo, simetría de rotación. Lo que quiere indicar es que poseen una característica -en este caso, su circular- que permanece invariante en la transformación producida cuando la Naturaleza los hace rotar. Las esferas pueden hacerse rotar en cualquier eje y en cualquier grado sin que cambie su “personalidad” , lo cual hace que sea más simétrica.
La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la Belleza
Sí, a nuestro alrededor podemos contemplar la simetría que en el Universo quedó rota. Así las cosas, nuestra imaginación que es libre de “volar” hacia espacios desconocidos y hacia escenarios imposibles, también puede, no sólo escenificar el Hiperespacio, sino que, llevando la fascinación aún más lejos, ¿Quién sabe? (como tantas veces hemos comentado), si los teóricos no habrán dado en el y, con su intuición “infinita”, haber podido vislumbrar que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas en un “universo hiper-dimensional” que no podemos ver pero que, está ahí.
“Figura 1. La imagen derecha muestra un cristal dodeca-édrico de tamaño milimétrico mostrando caras y aristas perfectamente definidas, correspondiente a la fase cuasi-cristalina de una aleación de AlCuFe (cortesía de An Pang Tsai). El recuadro superior muestra su patrón de difracción electrónico (cortesía de José Reyes-Gasga), en el que puede apreciase la existencia de motivos pentagonales auto-semejantes asociados a la existencia ejes quinarios a distintas escalas, así como la impronta del pentagrama pitagórico. El recuadro inferior muestra el patrón de difracción de rayos X de una muestra hidratada de ADN extraído de células del timo de un ternero obtenido por Rosalind Franklin en 1951. Esta imagen, correspondiente a una forma orgánica de sólido aperiódico, supuso la primera observación de la seña característica de una estructura helicoidal en una muestra de ácido nucleico (una exposición pedagógica de la información cristalográfica contenida en esta fotografía puede encontrarse en http://www.pbs.org/wgbh/nova/photo51).”
¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!
Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío. Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo deca-dimensional era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. pues, el universo estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.
Lo cierto es que, estemos en el universo que podamos estar, lo que no podemos negar es que es, ¡bello!
Los físicos, en su incansable de respuestas, nos llevan a “cosas” como la “super-gravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿Qué es la super-gravedad? Meternos en esos berenjenales matemáticos sería algo engorroso y (para muchos) aburrido.
¿Qué es la supergravedad, la teoría por la que tres científicos recibieron el “Oscar de la ciencia”
Tres físicos ganaron uno de los premios más prestigiosos en ciencia por su trabajo en
“super-gravedad”, la teoría que unifica en un mismo modelo teórico las fuerzas conocidas
de la naturaleza.
El italiano Sergio Ferrara, el estadounidense Daniel Freedman y el holandés Peter van Nieuwenhuizen fueron distinguidos este martes con el Premio Especial Breakthrough de Física Fundamental, conocido como el “Oscar de la Ciencia” y considerado tan prestigioso como el Nobel.
La supergravedad resuelve los aparentes conflictos entre dos las teorías más fundamentales de la física: la mecánica cuántica -que describe el mundo microscópico de átomos y partículas- y la relatividad general de Einstein, que describe la fuerza de la gravedad y su impacto a escalas cósmicas.
Mi impresión es que se han precipitado al otorgar el Premio ¿La Gravedad Junta a la Mecánica cuántica? ¿Cómo?
Existen otras Teorías por ahí que, sin haber sido verificadas… inducen a la ilusión
¿Qué pasa entonces con la super-gravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser una coincidencia y que la teoría final de todas las fuerzas podría estar a la . ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta de las leyes de la física? ¿Se podría conseguir eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.
Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el de masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, , sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.
En las explosiones de Supernovas está presente la Gravedad
Si la Gravedad llegara a ser una interacción fuerte, sería un verdadero desastre. No se puede ni imaginar lo que haría, en ese caso, la gravedad, tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.
Todo lo que conocemos acerca de la naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la naturaleza de la fuerza gravitatoria funciona espléndidamente, parte de un principio muy fundamental, uno que prácticamente tiene que ser correcto: la gravedad es una propiedad del y el tiempo mismos. El y el Tiempo están “curvados” decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasándole la plancha caliente. La fuerza Gravitatoria es la responsable de semejante rugosidad en el espacio-tiempo.
Hasta aquí, al menos sí hemos podido comprender. Sin embargo, cuando nos sumergimos en el océano profundo del hiperespacio y del universo extra-dimensional… ¡las cosas cambian! Estamos perdidos y, nuestras mentes no encuentran esa luz que ilumine el entendimiento para , de una vez por todas, todo eso puede estar ahí o, simplemente, son falsos escenarios que nuestras mentes imaginan para huir de la cruda realidad.
Claro que, por otra parte, como nos pasó con la paradoja del gato de Schrödinger que, al principio era tan extraña que uno podía recordar la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.
¡Lo que no sea capaz de nuestrsa imaginación! Y, a pesar de su “infinita riqueza, la Naturaleza la supera y contiene y ocurren cosas inimaginables.
Algunos, como Alejandro Jodorowsky piensan que: “Si tenemos un cuerpo imaginario, es también necesario que nos demos cuenta que tenemos una mente imaginaria. Tenemos pensamientos inconscientes, percepciones olfativas, audiciones, tactos, visiones, sabores mucho más desarrollados que los que creemos “reales”. Vemos más de lo que creemos ver, oímos más de lo que creemos oír, gustamos más de lo que creemos gustar, olfateamos más de lo que creemos olfatear, percibimos con el tacto mucho más de lo que creemos percibir, pensamos más de lo que creemos pensar. No sentimos por completo nuestras sensaciones, tenemos pensamientos de los que no nos damos cuenta, vivimos dentro de limites perceptivos, provocados desde que nacemos por nuestra familia y luego por la sociedad. Nos sumergen en prejucios y concepciones anquilosadas de la realidad y de nosotros mismos. Debemos aprender a pensar con libertad, (no digo con “inteligencia”, digo con “libertad”). El mágico consiste en disolver los límites de nuestra inteligencia y de nuestras percepciones. Estos limites nos encierran en calabozos irreales que nos impiden a la conciencia suprema.”
Veremos en que queda todo esto. Si se consigue, será el paso más importante en siglos
Si realmente eso es, estaríamos limitados por nuestras propias concepciones del mundo. Sin embargo, ahí están los físicos teóricos que se salen del “régimen” establecido y, sus mentes generan e imagina mundos y universos que, siendo muy dispares de este nuestro que creemos real, podrían ser, los auténticos mundos y los auténticos paisajes que la Naturaleza trata de mostrarnos y que, nosotros, nos empecinamos en no querer ver.
Antes, para conocer el mundo, teníamos que hacer grandes viajes, realizar grandes aventureras de las que nunca sabíamos cómo podríamos salir. El riesgo y la ventura era el pan de cada día para aquellos que querían descubrir otras tierras, otros pueblos y culturas. Hoy día, las cosas han cambiado. No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Y, cualquier joven, sentado tranquilamente en su casa, con un potente , puede realizar “aventuras” que antes, eran imposibles.
Sentado cómodamente ante este sencillo conjunto de inventos tecnológicos, cualquier jóven bien , puede construir e inventar “mundos” de inimaginable belleza. Y, lo que parecía un sueño, podrían recrear el de las galaxias, una colisión entre dos agujeros negros, e incluso, una explosión supernova.
Algunas veces me sorprendo al constatar que, algunas llegan a tu mente sin haberlas llamado en ese preciso momento. Son preguntas que te hiciste hace mucho tiempo y que no tuvieron una respuesta adecuada. Sin embargo, la experiencia, el ir acumulando y algún que otro saber, finalmente determina esa llegada del por qué de las cosas. Todo, sin que nos demos , queda registrado en nuestras mentes y, en el momento oportuno… ¡surge como por arte de magia aquello que queríamos saber!Ciertos parámetros mentales retienen esas cuestiones complejas y, finalmente, la mente consigue llegar a la resolución deseada y correcta que aparece ante nuestros ojos y nos producen, a pesar de todo, algo de asombro de que podamos haber llegado tan lejos en la comprensión de la Naturaleza.
Cien mil neuronas, tántas como estrellas tiene nuestra Galaxia. Conexiones sin fin
¿Cuántas veces no habré puesto aquí imágenes como la de arriba que quiere significar las conexiones del cerebro que generan los pensamientos? Y, la cuestión es, que esas conexiones no se limitan a estar ahí en ese ámbito reducido que llamamos cerebro, sino que, utilizando ese otro “ente” inmaterial y que llamamos mente y que también nos mantiene conexionados con el Universo, del que, al fin y al cabo, formamos parte.
Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos. Sabemos que si variara la carga del electrón y la masa del protón en una diezmillonésima parte, las cosas serían totalmente diferentes, es decir, nosotros, no estaríamos aquí para comentar todas estas cuestiones.
Sin embargo, y a pesar de todo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros” con distintas percepciones y sentidos, pudiera ser un mundo muy distinto al que nosotros percibimos y, “ellos” podrían “ver” cosas que nosotros no vemos.
Vivímos en nuestra propia realidad, la que forja nuestra mente a través de los sentidos y la experiencia. Incluso entre nosotros mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de , sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.
No, no será nada despejar las incógnitas presentes en esta inmensa complejidad que llamamos Universo. Pero, firmemente creo que las dimensiones extra están en nuestras Mentes, donde todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.