sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Interacciones fundamentales de la Naturaleza! Una reseña breve

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las Fuerzas Fundamentales | Humanidades

 

Como pueden haber deducido por el título, me estoy refiriendo a cualquiera de los cuatro tipos diferentes de interacciones que pueden ocurrir entre los cuerpos.  Estas interacciones pueden tener lugar incluso cuando los cuerpos no están en contacto físico y juntas pueden explicar todas las fuerzas que se observan en el universo.

 

Empédocles | Filosofia do Início

Para Empédocles, hay cuatro elementos primordiales. Estos elementos son:

  • fuego;
  • tierra;
  • agua;
  • aire;

Estos cuatro elementos están presentes en todos los seres del universo, por lo que afirmó que estos elementos son las «raíces de todas las cosas». Empédocles fue un filósofo presocrático, perteneciente a la escuela pluralista, compuesta por otros filósofos de renombre como DemócritoAnaxágorasLeucipo y Arquelao. Nació en Agrigento, Sicilia, hacia el 495 a.C. y murió hacia el 424 a.C.

Los átomos son homogéneos, poseen la misma naturaleza, forma y ser. Pero son infinitos en cantidad por su configuración y figura.

Los átomos están en continuo movimiento, chocando entre sí casualmente. En el proceso, se agrupan o se separan. Una vez unidos, los átomos dan lugar a cuerpos, con una calidad y naturaleza determinadas.

Otro concepto importante en la filosofía atomista de Demócrito es el concepto de vacío. Los conceptos de átomo y vacío forman la estructura básica del dualismo atomista.

Para él, toda la realidad está compuesta de vacío. El vacío es la ausencia del ser, es decir, el no-ser, que Parménides negaba. El vacío es como un espacio infinito que hace posible el movimiento de los átomos, y sin él, los átomos no podrían moverse.

 

j. Demócrito | Proyecto Telémaco

Según Demócrito de Abdera, toda la realidad está formada por átomos y vacío. Todos los fenómenos se forman por la combinación y separación de estos átomos infinitos e imperceptibles.

Demócrito estaba de acuerdo con Parménides en que el ser debía ser plenamente uno, inmutable e indivisible, pero no aceptaba la tesis de Parménides que negaba el movimiento y el cambio. El cambio y el movimiento no eran ilusiones del sentido, eran hechos. El movimiento demostró la existencia de un no-ser, es decir, del vacío.

Demócrito sostenía que todas las cosas estaban formadas por partículas invisibles, totalmente imperceptibles para los sentidos; sólo el «ojo del intelecto» podía verlas.

A estas partículas les dio el nombre de átomo, que en griego significa «no divisible». Parménides defendía la unidad absoluta del ser, y Demócrito, de forma similar, sostenía que el átomo es totalmente uno, indivisible y eterno.

 

 

Leucipo | Filosofia do Início

Leucipo

Aristóteles afirmaba que Leucipo fue el creador de la teoría de los átomos (atomismo), y fundador, por tanto, de la escuela atomista, la última escuela presocrática. La doctrina atomista fue bien desarrollada por su discípulo Demócrito.

Los átomos, para Demócrito, tienen las siguientes características:

  • Principio de todas las cosas;
  • Las cosas nacen y mueren por la unión y la separación de los átomos;
  • Invisible;
  • Indivisible;
  • Inmutable;
  • Dotado naturalmente de movimiento;
  • No posee cualidades, sólo formas geométricas, y ocupa el vacío.

 

Cap 03: Empédocles / Anaxágoras / Demócrito (o Leucipo) - YouTube

                                               Empédocles, Leucipo o Demócrito

Todos recordamos lecturas en las que nos hablaban sobre aquellos pensadores del pasado que como Empédocles, Leucipo o Demócrito nos hablaban de sustancias y elementos y hasta de átomos, ellos tenían la intuición de que la materia, estaba compuesta por esos minúsculos objetos que hoy llamamos partículas elementales. Pasado mucho tiempo y cerca ya del siglo XX, llegaron científicos como Dalton,  J.J Tomson (que descubrió el electrón) y propuso en modelo atómico con el electrón dentro del átomo,

 

Descubrimiento del electrón - ¡¡RESUMEN CORTO!!

Eugen Goldstein descubrió los rayos canales (con carga positiva) y después Rutherford el nombre del protón, esa partícula positiva generada a partir del hidrógeno y se completaron la presencia de las partículas fundamentales en la que cada una tenía un tipo de carga (la del protón y la del electrón eran idénticas para nivelar la simetría del átomo con esa igualdad de fuerzas). Ya en el siglo XX se postuló la existencia del neutrón algo más masivo que el protón pero sin carga eléctrica, su existencia se confirmó en 1932.

 

Las partículas que forman la materia

Poco a poco se fueron comprendiendo las interacciones entre las partículas de materia

A comienzos del siglo XX, el desarrollo del modelo atómico de Rutherford, coloca a los protones y neutrones en el núcleo del átomo y a los electrones en su corteza. Las investigaciones sobre el efecto fotoeléctrico llevan a Einstein a formular su teoría corpuscular de la luz y predecir la existencia del fotón, que sería una partícula sin masa ni carga eléctrica.  Así pues, hasta 1932 podía explicarse la constitución de la materia sólo con cuatro partículas elementales: el electrón, el protón, el neutrón y el fotón. Sin embargo, pronto se comprobó que el número de partículas elementales era mucho mayor.

 

La ecuación de Dirac predice la existencia de la antimateria

Dirac fue increíblemente brillante al haber obtenido su ecuación, aplicando ingeniosamente las matemáticas, y también es notable la forma en que interpretó sus soluciones. Al principio, a Dirac no le quedaba claro si había electrones con energía cinética negativa. Entonces teorizó lo siguiente:

 

Qué es la ecuación de Dirac? - Quora

 

  • El vacío (la ausencia de electrones) no es tal, sino que está lleno de electrones con energía negativa en sus dos estados de espín.
  • Lo que sucede es que los científicos no tienen la posibilidad de ver esos electrones, de la misma forma que normalmente no se ven los peces del mar, de allí sale la denominación mar de Dirac.
  • Ahora bien, si un fotón es capaz de entregar energía suficiente a uno de los electrones de ese mar, entonces sí será visible, apareciendo de la nada.
  • Pero el espacio vacante en el mar de Dirac es un hueco de carga positiva, es decir una partícula de la misma masa y carga que el electrón, pero positiva, llamada positrón.

Poco tiempo después de la interpretación de Dirac, en 1932, Carl D. Anderson detectó experimentalmente el positrón.

 

No hay ninguna descripción de la foto disponible.

 

Investigando sobre una hipótesis de Paul Dirac, se descubrió en ese año el positrón por Carl Anderson. Es esta una partícula con la misma masa que el electrón y el mismo valor absoluto de carga, sólo que positiva (e+) . También se denomina antielectrón

 

Опис фотографије није доступан.

 

Otra partícula descubierta a principio de los años treinta del pasado siglo fue el neutrino, que ya había sido postulado por W. Pauli, para poder explicar una aparente violación en el principio de conservación del principio de conservación de la energía cuando se producía una desintegración b. Fue detectado en 1956 por un equipo de físicos de la universidad de Berkeley, entre los cuales se encontraban Segre y Chamberlain, que posteriormente fueron galardonados con el premio Nobel por su descubrimiento.

 

 

Los quarks tienen masa. Los gluones están compuestos de quarks y antiquarks. ¿Por qué entonces decimos que son partícula sin masa? - QuoraGluón | Química | Fandom

 

 

 

Los piones de Huideki eran en realidad Gluones. Los quarks tienen masa. Los gluones están compuestos de quarks y anti-quarks. ¿Por qué entonces decimos que son partícula sin masa?

 

Hideki Yukawa [1907-1981] – Grandes Cientificos de Fisica – CiberTareas

 

En 1935 Hideki Yukawa propone la existencia de una partícula para explicar las fuerzas que mantienen unidos a los nucleones. Esta partícula se denominó mesón, ya que tenía una masa intermedia entre la del protón y la del electrón (unas 200 veces la masa de éste). Actualmente esta partícula se denomina pión o mesón p y se detectó por primera vez en la radiación cósmica que llega a la Tierra (1947).

En 1937 se descubre el muón, una partícula con la misma carga que el electrón, pero con una masa de una 200 veces la de éste.  A partir de 1940 se descubrieron cientos de partículas elementales y además las correspondientes antipartículas, idénticas en masa y vida media, pero con carga opuesta. Esta proliferación de partículas hizo que los físicos desarrollasen unos criterios para clasificarlas y llegar a comprender tanto la estructura interna de la materia como la naturaleza de las interacciones que existen entre ellas.

 

 

El universo tendría un alma magnética invisible • Tendencias21

                  El electromagnetismo está presente en todo el Universo

De todos aquellas ideas similares y  trabajos pioneros, hemos llegado a discernir lo que, en realidad, son las interacciones fundamentales y viene de lejos el deseo de muchos físicos que han tratado de unificar en una teoría o modelo a las cuatro fuerzas, que pudieran expresarse mediante un conjunto de ecuaciones. Einstein se pasó los últimos años de su vida intentándolo, pero igual que otros antes y después de él, aún no se ha conseguido dicha teoría unificadora de los cuatro interacciones fundamentales del universo. Se han hecho progresos en la unificación de interacciones electromagnéticas y débiles. Veamos donde estamos hoy:

 

An erratic pulsar | Max-Planck-GesellschaftRealizan las Primeras Mediciones Precisas y el Primer Mapa de Superficie de un Púlsar :: NASANET

 

            La Interacción electromagnética está presente por todo el Universo

Es la fuerza con la cual las partículas cargadas se repelen (si sus cargas son iguales) o se atraen (si sus cargas sis diferentes, de signos opuestos). La Interacciones magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.

 

Para qué sirve el campo magnético de la tierra? - Quora

                     El electromagnetismo del núcleo terrestre nos libre de la radiación solar

Un electrón y un protón se atraen de dos maneras, por un lado a causa de que el primero tiene carga eléctrica positiva y el segundo negativa, y ya se sabe que cargas contrarias se atraen. Por el otro, a causa de sus propias masas, como efecto de la fuerza de la gravedad. Se puede calcular que la atracción causada por las cargas eléctricas es aproximadamente “1040” veces mayor que la atracción gravitatoria.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

 

Límite Derivado de las Variaciones de la Constante de Estructura Fina

Límite Derivado de las Variaciones de la Constante de Estructura Fina

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

 

NASA | Star Wars: agencia espacial aclara que hay cuatro fuerzas en el universo | RPP Noticias

 

La Interacción Gravitatoria que mantiene unidos los planetas alrededor del Sol y las galaxias en los Cúmulos, También nuestros pies unidos al suelo de la Tierra. Sin la Gravedad, todo el Universo sería un gran Caos de objetos dispersos y flotando de manera aleatoria por todas partes.

                          No hay ninguna descripción de la foto disponible.

 

Así que la Gravedad es una Interacción fundamental de la Que Newton y después Einstein, nos dejaron bien claras sus complejas estructuras (al menos las que al momento creemos que son) que fueron relacionadas a partir de 1915 con las estructuras del espacio-tiempo. Sin embargo, aún no sabemos como poder conciliar las leyes de la gravedad, con las leyes de la mecánica cuántica (excepto cuando la interacción gravitatoria es extremadamente débil -entre dos partículas por ejemplo).

– La interacción gravitatoria actúa exclusivamente sobre la masa de las partículas.

– La interacción es de largo alcance (probablemente llegue a los más lejanos confines del Universo conocido).

– La Interacción es tan debido que probablemente nunca podremos detectar experimentalmente la atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medir esta interacción es porque es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

. La partícula mediadora es el hipotético “Gravitón”. Aunque aún nos e ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene una masa nula y espín 2.

Una ley general para las interacciones es que, si el mediador tiene espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsivas. Si el Espín es impar (como en el electromagnetismo) se cumple la inversa

 

                               Interaición nuclear fuerte - Wikipedia

                                                          La Interacción fuerte

Hasta 1972, sólo se conocían las reglas de simetría de las interacción fuerte y no fuimos capaces de formulas las leyes de esta Interacción con la debida precisión.:

– El alcance de esta interacción no se extiende más allá del radio del núcleo atómico (10-13 cm aproximadamente)..

-La interacción es fuerte. Bajo la influencia de esta interacción, las partículas que pueden desintegrarse, las “resonancias” lo hacen muy rápidamente. Un ejemplo es la resonancia Δ, con una vida media de solamente 0,6 x 10-23 s Esta colisión es extremadamente probable cuando dos hadrones se encuentran a una distancia cercana a 10-13 cm.

Hasta 1972 se pensaba que los mediadores de las interacciones fuertes eran piones, que tienen espín 0 y masa comprendida entre 135 y 140 MeV. Por ejemplo, la fuerte atracción entre dos protones se debe fundamentalmente al intercambio de un pión. Hoy día se dice que esto obedece al hecho que de que los piones son los hadrones más ligeros y que como los demás hadrones, están formados por “Quarks”. La interacciones fuerte es entonces un efecto secundario de una interacción más fuerte incluso entre Quarks. Los mediadores de esta interacción más fuerte son los gluones.

 

 

Fuerza Nuclear Debil Concepto

 

La interacción fuerte es unas 102 veces mayor que la interacción electromagnética y, como ya se dijo antes, aparece sólo entre los hadrones y es la responsable de las fuerzas entre nucleones que confiere a los núcleos de los átomos su gran estabilidad. Actúa a muy corta distancia dentro del núcleo (10-15 metros) y se puede interpretar como una interacción mediada por el intercambio de mesones virtuales llamados Gluones. Está descrita por una teoría gauge llamada Cromodinámica cuántica.

 

 

La interacción fuerte, como se ha explicado muchas veces, es la más fuerte de todas las fuerzas fundamentales de la Naturaleza, es la responsable de mantener unidos los protones y neutrones en el núcleo del átomo. Como los protones y neutrones están compuestos de Quarks, éstos dentro de dichos bariones, están sometidos o confinados en aquel recinto, y, no se pueden separar por impedirlo los gluones que ejercen la fuerza fuerte, es decir, esta fuerza, al contrario que las demás, cuando más se alejan los quarks los unos de los otros más intensa se vuelve. Aumenta con la distancia.

 

 

El concepto de campo de Faraday ha dado mucho juego en Física, es un concepto ideal para explicar cierttos fenómenos que se han podido observar en las investigaciones de las fuerzas fundamentales y otros. El campo no se ve, sin embargo, está ahí, rodea los cuerpos como, por ejemplo, un electrón o el planeta Tierra que emite su campo electromagnético a su alrededor y que tan útil nos resulta para evitar problemas.

Me he referido a una teoría gauge que son teorías cuánticas de campo creadas para explicar las interacciones fundamentales. Una teoría gauge requiere un grupo de simetría para los campos y las potenciales (el grupo gauge). En el caso de la electrodinámica, el grupo es abeliano, mientras que las teorías gauge para las interacciones fuertes y débiles utilizan grupos no abelianos. Las teorías gauge no abelianas son conocidas como teorías de Yang–Mills. Esta diferencia explica por qué la electrodinámica cuántica es una teoría mucho más simple que la cromodinámica cuántica, que describe las interacciones fuertes, y la teoría electrodébil que unifica la fuerza débil con la electromagnética. En el caso de la gravedad cuántica, el grupo gauge es mucho más complicado que los anteriores necesarios para la fuerza fuerte y electrodébil.

En las teorías gauge, las interacciones entre partículas se pueden explicar por el intercambio de partículas (bosones vectoriales intermediarios o bosones gante), como los gluones, fotones y los W y Z.

Interacción débil

 

La Interacción débil es la responsable de que muchas partículas y también muchos nucleos atómicos exóticos sean inestables. Esta interacción puede provocar que una partícula se transforme en otra relacionada, por emisión de un electrón y un neutrino. Enrico Fermi en 1934 estableció una regla general de la interacción débil, que fue mejorada posteriormente por George Sudarshan, Robert Marshak, Murray Gell Mann, Rychard Feyman y otros. La fórmula mejorada funcionaba muy bien, pero hizo evidente que no era adecuada en todas las circunstancias. En 1970 de las siguientes características de las interacciones débiles sólo se conocían las tres primeras:

– La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta esclusivamente la interacción débil.

– Comparada con las demás interacciones, ésta tiene un alcance muy corto.

– La interacción es muy débil. Consecuentemente, los choques en partículas de los cuales los neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinos para poder estudiar los sucesos.

– Los mediadores de las interacción débil, llamados W+ y W, no se detectaron hasta la década de 1980. Al igual que el fotón tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por el que el alcance de la interacción es tan corto). Hay un tercer mediador Zº, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas.; la “corriente neutra”. Permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.

A partir de 1970, quedó clara la relación entre la interacción débil y la interacción electromagnética, que dio lugar a la teoría electrodébil tan conocida hoy.

 

Interacciones Fundamentales | Trinoceronte

 

Así, estas cuatro fuerzas fundamentales de la Naturaleza son las leyes que rigen en el Universo y, están presentes en todos sus campos y regiones por muy alejados que estos se puedan encontrar e inciden en los comportamientos de todos los objetos que conocemos como los mundos, las estrellas, los seres vivos, las galaxias y las Nebulosas y, también, en aquellos que no podemos ver pero que, de seguro están ahí supeditados a esas interacciones que todo lo rigen y hacen de nuestro mundo el que todos conocemos.

Todo ello lo hemos podido discernir a lo largo de un proceso largo de observación y experimento y mucha intuición de mentes privilegiadas que intuyeron donde se encontraban las respuestas. Nosotros, tenemos la suerte de encontrarnos ahora en una época más o menos avanzada y en la que contamos con tecnologías que nos llevarían mucho más allá del mundo que conocemos para adentrarnos en ese otro del futuro en el que, la Física, no tenga tantos secretos para nosotros y, si eso lo conseguimos, estaremos en un mundo mejor y conoceremos por fin, nuestro Universo y, de camino también a nosotros mismos…¡que falta hace!

emilio silvera

¿Sin la luz? ¡Sería otro Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                             

Nuestro Universo es de Luz, todo lo que podemos observar es posible gracias a la luz que incide en los objetos y se refleja en nuestras retinas, así podemos contemplar los planetas y las estrellas del cielo y cualquier coda que, hecha de materia borionica (materia radiante), se deja ver por nosotros. Decía  Leonard Susskind que, para comprender la realidad en sus niveles más elementales, basta con conocer el comportamiento de dos elementos: el electrón y el fotón.

Todo el argumento de la electrodinámica cuántica (QED) gira en torno a un proceso fundamental: la emisión de un único fotón por un único electrón.

 

Medio interestelar y materia oscura, con un bote de pintura – Un Universo con buena onda

 

Cuando el movimiento de un electrón es alterado súbitamente, puede responder desprendiendo un fotón. La emisión de un fotón es el suceso básico de la mecánica cuántica:

Toda la luz visible que vemos, así como las ondas de radio, la radiación infrarroja y los rayos X, está compuesta de fotones que han sido emitidos por electrones, ya sea en el Sol, el filamento de una bombilla, una antena de radio o un aparato de rayos.

 

Los electrones no son las únicas partículas que pueden emitir fotones. Cualquier partícula eléctricamente cargada puede hacerlo, incluido el protón. Esto significa que los fotones pueden saltar entre dos protones o incluso entre un protón y un electrón. Este hecho es de enorme importancia para toda la ciencia y la vida en general. El intercambio continuo de fotones entre el núcleo y los electrones atómicos proporciona la fuerza que mantiene unido al átomo. Sin estos fotones saltarines, el átomo se desharía y toda la materia dejaría de existir.

Mientras que un electrón pertenece al grupo de partículas llamadas fermiones, los fotones pertenecen a la familia de los bosones. Intentemos comprender esta película que es la existencia…

…protagonizada por bosones

 

 

bose-fermi

 

Centro de Física de Materiales (CSIC-UPV/EHU) y DIPC, ha obtenido el diagrama de fases de una mezcla bosón-fermión, demostrando que la presencia de fermiones aumenta la superfluidez de los bosones. Publican sus resultados en Physical Review A.

Los fermiones hacen posible la materia “al estilo tradicional”, mientras que los bosones son elementos muy raros desde la forma de pensar a que estamos acostumbrados el común de los mortales. Para no complicarnos, la tabla periódica de elementos existe porque los fermiones no pueden “ser iguales”: no pueden solaparse uno sobre otro y se repelen si los obligamos. Es lo que damos por hecho cuando hablamos de materia, que cada pedazo de ésta ocupa su lugar y tiene sus propias cualidades.

 

 

“Dos electrones en un átomo no pueden tener idéntico número cuántico. Este es un ejemplo de un principio general que se aplica no sólo a los electrones, sino también a otras partículas de espín medio-entero (fermiones). No se aplica a partículas de espín entero (bosones).”

 

 

En cambio, los bosones carecen de este sentido de la individualidad, digamos que poseen “alma grupal” y, en su estado más puro, todos forman una misma “superpartícula”.

Para entenderlo mejor, conviene recordar que las partículas no son bolitas como nos siguen enseñando en la escuela, sino que más allá de esta imagen existen como ondas o, al menos, sus funciones se equiparan al comportamiento de una onda.

 

La Física del Grel on Twitter: "Ahora que está de moda el condensado de Bose -Einstein por haber sido conseguido en el espacio, ¿sabéis lo que es? Si queréis introduciros en él deBest Bose Einstein Condensate GIFs | Gfycat

Condensado de Bose-Einstein con átomos de Rubidio

Esta imagen fue proporcionada por JILA, Universidad de Colorado, Boulder. Está específicamente acreditada a Mike Matthews, del equipo de investigación JILA.

“En 1924, Einstein señaló que los bosones podían “condensarse” en cantidades ilimitadas en un único estado fundamental, ya que se rigen por las estadísticas de Bose-Einstein, y no están limitados por el principio de exclusión de Pauli. Este estado de la materia se llamó condensado de Bose-Einstein. En los años siguientes, se prestó poca atención a esta posibilidad, salvo en el comportamiento del helio superfluido, y en la superconductividad.”

En la década de 1920, Albert Einstein y el hindú Satyendra Nath Bose pronosticaron un quinto estado de la materia: el condensado de Bose-Einstein (BEC), el cual fue conseguido en laboratorio en 1995, algo que le valió el premio Nobel de 2001 a los científicos que lo lograron.

 

Foto animada | Coffee recipes, Keurig coffee recipes, Good morning coffee gif                                                                                                         Taza De Café Con Salpicar Los Cubos Del Azúcar Foto de archivo - Imagen de café, deslumbrante: 18289962

 

Imagínese una taza de té caliente, las partículas que contiene circulan por toda la taza. Sin embargo cuando se enfría y queda en reposo, las partículas tienden a ir en reposo hacia el fondo. Análogamente, las partículas a temperatura ambiente se encuentran a muchos niveles diferentes de energía. Sin embargo, a muy bajas temperaturas, una gran proporción de éstas alcanza a la vez el nivel más bajo de energía, el estado fundamental. (Fuente: wikipedia)

 

 

 

 

 

Cuando ciertas formas de materia [bosones] se enfrían hasta casi el cero absoluto, sus átomos se ponen en el estado de energía más baja, de modo que todos sus átomos vibran al unísono y se hacen coherentes. Las funciones de onda de todos los átomos se solapan, de manera que, en cierto sentido, un BEC [condensado de Bose-Einstein] es como un “superátomo” gigante en donde todos los átomos individuales vibran al unísono.

 

 

Best Bose Einstein Condensate GIFs | GfycatBose-Einstein Condensation GIF | Gfycat

 

Al enfriar los átomos, su velocidad disminuye hasta que las longitudes de onda de cada uno de ellos se vuelven casi planas, superponiéndose unas a otras para formar una única onda que los describe a todos.

Así que un BEC se forma cuando los átomos en un gas sufren la transición de comportarse como “bolas de billar” al estilo de la física clásica, a comportarse como una onda gigante de materia al estilo de mecánica cuántica:

 

 

El condensado de Bose-Einstein — IV | Cuentos Cuánticos

Un BEC es un grupo de unos cuantos millones de átomos que se unen para formar una sola onda de materia de aproximadamente un milímetro de diámetro.  Si creamos dos BECs y los colocamos juntos, no se mezclan como gases ordinarios ni rebotan como lo harían dos sólidos. Donde los dos BECs se superponen, ellos “interfieren” como las ondas: delgadas capas paralelas de materia son separadas por capas delgadas de espacio vacío. El patrón se forma porque las dos ondas se suman donde sus crestas coinciden, y se cancelan donde una cresta se encuentra con un valle — a lo cual llamamos interferencia “constructiva” y “destructiva” respectivamente. El efecto es similar al de dos ondas que se superponen cuando dos piedras son lanzadas a un lago.

(Fuente: ciencia NASA)

…ambientada en: el vacío…

 

 

 

El hecho de que se puedan intercambiar partículas virtuales modifica el vacío alrededor de los átomos, y esto lleva a una fuerza. De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.

Y ahora, retrocedamos un poco más en este asunto del misterio que nos ocupa. Gracias a la tecnología láser, la física ha podido comprobar el extremo poder de la luz. Los láseres pueden hacer que las partículas virtuales se vuelvan reales. Pero, primero, aclaremos conceptos…

Las “partículas virtuales” son partículas fundamentales que están constantemente surgiendo aparentemente de la nada y permanecen en el espacio-tiempo la friolera de una milésima de trillonésima de segundo –una cantidad que se forma poniendo una veintena de ceros a la derecha de la coma—. A pesar de denominarse “virtuales”, sus efectos son muy reales: la constante agitación de este burbujeo cuántico de partículas hace que el vacío tenga energía. Y esto es algo que afecta a la realidad, pues en ésta las fuerzas de atracción y repulsión dependen de la masa, y la masa no es sino energía expresada en unidades diferentes: E=mc².

En el uso corriente la palabra vacío significa espacio vacío, espacio del que se ha extraído todo el aire, vapor de agua u otro material. Eso es también lo que significa para un físico experimental que trabaja con tubos de vacío y bombas de vacío. Pero para un físico teórico, el término vacío tiene muchas más connotaciones. Significa una especie de fondo en el que tiene lugar el resto de la física. El vacío representa un potencial para todas las cosas que pueden suceder en ese fondo. Significa una lista de todas las partículas elementales tanto como de las constantes de la Naturaleza que se pondrían de manifiesto mediante experimentos en dicho vacío. En resumen, significa un ambiente en el que las leyes de la física toman una forma particular. […] Un vacío diferente significa leyes de la física diferentes; cada punto en el paisaje representa un conjunto de leyes que son, con toda probabilidad, muy diferentes de las nuestras pero que son, en cualquier caso, posibilidades consistentes. El modelo estándar es meramente un punto en el paisaje de posibilidades.

 

Posible nuevo método de medida de las fluctuaciones del vacío del campo electromagnético - La Ciencia de la Mula FrancisLa energía del vacío –

 

… la energía del vacío es tomada como la base para la constante cosmológica. A nivel experimental, la energía del punto cero genera el efecto Casimir, … Se dice que:

La energía del vacío es, por tanto, la suma total de las energías de todas las partículas posibles. Es la llamada “energía oscura” que hace que el universo se expanda, haciendo frente a la atracción de la gravedad, y que proporciona alrededor del 80% de la materia-energía al universo –un 26% es “materia oscura”, y sólo un 4% es la materia conocida hasta el momento—.

Pero, ¿cómo una partícula virtual se convierte en real? Es decir, ¿cómo queda “atrapada” en el espacio-tiempo de forma más estable?

 

 

La teoría de cuerdas, también llamada de supercuerdas, pues la supersimetría es necesaria para incluir los quarks y otros fermiones, es una teoría …

 

Supersimetría (SUSY para los amigos) - Matemáticas y sus fronteras

La teoría de la supersimetría establece que, por cada partícula de materia, nace una gemela de antimateria. La antimateria es igual que la materia, pero con carga opuesta. Por ejemplo, el electrón tiene carga negativa, y su partícula de antimateria, el positrón, positiva. Materia y antimateria se aniquilan mutuamente pero, por algún motivo aún no aclarado, la simetría se rompió en algún momento, surgiendo más materia que antimateria, de ahí que nuestro universo, materia, pueda existir.

Pero hay algo más en todo esto. Y para ello, la luz es la clave.

 

Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Pero veamos.

 

 

Hubble confirms young planet at nearby starFomalhaut System

Los fenómenos que se producen en las estrellas y que tratamos de comprender

Pero sigamos

 

 

Clase 11: Concepto del Campo Eléctrico para una carga puntual y un conjunto discreto. on Make a GIFCampo magnetico | Majocosno :)

 

Ya en los años 30, los físicos predijeron que un campo eléctrico muy fuerte, que no es sino un espacio alterado por la actividad de un montón de fotones coordinados, podría impulsar a las partículas virtuales con carga opuesta en diferentes direcciones, impidiendo que la materia y la antimateria se aniquilen.

 

PairCreation.svg

 

Según el efecto de creación de pares, un fotón con energía suficiente, lo que equivale a tener el doble de la energía que posee un electrón en reposo, da lugar a una pareja de electrón y positrón. Aunque esto ya se consiguió en los años 90 a pequeña escala, gracias al desarrollo de la tecnología láser los científicos creen que estarán cerca de conseguir crear materia “en serie” mediante este proceso en unos pocos años. Por otra parte, una vez que existen las partículas, los fotones interactúan sin cesar con ellas, siendo absorbidos y emitidos por las mismas de manera ininterrumpida. Y de ello nace el movimiento gracias al cual todo existe en el espacio-tiempo. Sin movimiento, nuestra realidad desaparecería.

 

La creación de pares de antipartículas, se hace a partir de un fotón, donde con sólo un fotón, se obtiene un par de antipartículas.
No se diferencia básicamente la obtención de un electrón-positrón, a la obtención de un protón-antiprotón, sino solamente en la energía del fotón, significa que son esencialmente lo mismo.

 Así, si el fotón tiene suficiente energía, el par será electrón-positrón, caso contrario será un par virtual (absorción), si la energía del fotón fuere mayor, la diferencia estará dada por la velocidad opuesta de las antipartículas (masa de las antipartículas), correspondiente a la energía “sobrante” de acuerdo a E=mc2. Si la energía del fotón fuere suficiente, como para llegar al umbral mínimo, se creará un protón-antiprotón, y si fuere mayor, se manifestará en velocidad opuesta (masa de las antipartículas). La energía del fotón (cantidad de movimiento, efecto Compton) será la energía correspondiente al total de las dos antipartículas (masa, E=mc2)

La carencia de masa de un fotón está ligada a su movimiento. Para que un cuerpo alcance la velocidad de la luz, su masa ha de ser cero. Y, como Einstein explicó en su día, la luz se mueve siempre a la velocidad de la luz. Si pretendemos que un fotón se pare, en lugar de ralentizarse observaremos que desaparece. Y, como se ha dicho al principio, si estos “fotones saltarines”  desaparecieran, toda la materia dejaría de existir.

 

Qué es un Fotón?

Su esencia es el movimiento y su misión, según parece, hacer girar la rueda de la existencia.

Ello es así debido al impacto de los fotones sobre las partículas elementales. La energía transmitida por un fotón es inversamente proporcional a su longitud de onda. Cuanto menos longitud de onda, más energía. Así, un fotón de luz visible tiene la energía suficiente para hacer reaccionar a un bastón de la retina. Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Más allá, los rayos gamma pueden romper protones y neutrones

 

 

Cuando la tensión llega a un punto insostenible la corteza de neutrones revienta en un temblor estelar, dejando escapar rayos gamma y rayos X. En una potencia descomunal capaz de destruir otras partículas cuando interaccionan.

Y ahora, vayamos al meollo de la cuestión e indaguemos en la cita con que se iniciaba este artículo: ¿qué hace que los electrones absorban y emitan fotones? Esto, en otros términos, vendría a ser lo mismo que preguntarnos: ¿por qué existe nuestro universo?

Alfa es la Constante de Estructura Fina

 

Qué es la Constante de Estructura Fina y Cómo la Calculan?

Alpha = 1 / 137

Esta constante caracteriza la interacción electromagnética. Este número guarda relación con la probabilidad de que un electrón emita o absorba un fotón. Sale de dividir el cuadrado de la carga del electrón por el producto de la velocidad de la luz y la constante de Planck. Esto significa que el número 137, encierra los meollos del electromagnetismo (el electrón), la relatividad (la velocidad de la luz) y la teoría cuántica (la constante de Planck). Menos perturbador sería que la relación entre todos estos importantes conceptos hubiera resultado ser un uno o un tres o quizás un múltiplo de pi. Pero ¿137?

¿Qué determina el momento exacto en que un electrón emite un fotón? La física cuántica dice que nada lo hace, pues la Naturaleza es caprichosa en sus niveles más elementales. Aunque no es caótica en extremo, sólo probabilística.

A diferencia de la física newtoniana, la mecánica cuántica nunca predice el futuro en función del pasado. En su lugar, ofrece reglas muy precisas para computar la probabilidad de varios resultados alternativos de un experimento.

 

La constante de estructura fina fue introducida en la física en 1916 por Arnol Sommerfeld, como una medida relativista de las desviaciones en las líneas espectrales atómicas de las predicciones hechas por el modelo de Bohr.

 

 

Históricamente, la primera interpretación física de la constante de estructura fina,  \alpha , fue el cociente de la velocidad del electrón en la primera órbita circular del átomo de Bohr relativista con la velocidad de la luz  en el vacío. De igual forma, era el cociente entre el momento angular mínimo permitido por la relatividad para una órbita cerrada bajo fuerza electromagnética y el momento angular mínimo permitido por la mecánica cuántica. Aparece de forma natural en el análisis de Sommerfeld y determina el tamaño de la separación o  estructura fina de las líneas espectrales del hidrógeno.

 

Estas relaciones de vectores, deben ser evaluadas y expresadas en términos de números cuánticos, con el fin de evaluar los desplazamientos de energía. La realización de los productos escalares de arriba lleva a

 

La QED predice una relación entre el momento magnético  sin dimensiones del electrón (o el g-factor de Lande, g) y la constante de estructura fina \alpha. Una nueva medida de g usando un ciclotrón cuántico de un electrón, junto con un cálculo QED que involucra 891diagrama de Feynman, determina el valor actual más preciso de \alpha:

 \alpha^{-1} = 137.035 999 710 (96)

esto es, una medida con una precisión de 0.70 partes por mil millones. Las incertidumbres son 10 veces más pequeñas que aquellas de los métodos rivales más próximos. Las comparaciones de los valores medidos y los calculados de g suponen un test muy fuerte de QED, y ponen un límite para cualquier estructura interna del electrón posible.

En 2010, el científico John Webb publicó un estudio en el que revelaba datos que afirmaban que la constante no era igual en todo el universo y que se observaban cambios graduales en torno a un eje concreto de éste.

Algunos científicos sostienen que las constantes de la naturaleza no sean en realidad constantes, y la constante de estructura fina no escapa a estas afirmaciones.

 

unsw_white_dwarf

 

Físicos de la University of New Wales (UNSW) tienen una teoría cuando menos controvertida, y es la de que la constante de estructura fina, α (alpha), en realidad no es constante. Y estudian los alrededores de una enana blanca lejana, con una gravedad más de 30.000 veces mayor que la de la tierra, para comprobar su hipótesis.

Recientemente, la detección de los mapas de enlace-dimensional de la constante de estructura fina

 

Y la probabilidad de que un electrón emita o absorba un fotón es la constante de estructura fina. El valor de esa constante es 1/137.

En otras palabras, sólo un afortunado electrón de cada 137 emite un fotón. Este es el significado de alfa: es la probabilidad de que un electrón, cuando se mueve a lo largo de su trayectoria, emita caprichosamente un fotón.

El inverso de la constante de estructura fina es 137. Desde su descubrimiento, éste número ha traído de cabeza a los grandes científicos.

Fue Richard Feynman, precisamente, quien sugirió que todos los físicos pusiesen un cartel en sus despachos o en sus casas que les recordara cuánto es lo que no sabemos. En el cartel no pondría nada más que esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina. Este número guarda relación con la probabilidad de que un electrón emita o absorba un fotón. La constante de estructura fina responde también al nombre de alfa, y sale de dividir el cuadrado de la carga del electrón por el producto de la velocidad de la luz y la constante de Planck. Tanta palabra no significa otra cosa sino que ese solo número, 137, encierra los meollos del electromagnetismo (el electrón), la relatividad (la velocidad de la luz) y la teoría cuántica (la constante de Planck). Menos perturbador sería que la relación entre todos estos importantes conceptos hubiera resultado ser un uno o un tres o quizás un múltiplo de pi. Pero ¿137?

 

Por qué el número 137 es uno de los grandes misterios de la física | Computer Hoy

 

“Lo más notable de este notable número es su adimensionalidad. La velocidad de la luz es de unos 299.792,458 metros por segundo. Abraham Lincoln medía 1,98 metros. La mayoría de los números vienen con dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa, ¡se borran todas las unidades! El 137 está solo: se exhibe desnudo a donde va. Esto quiere decir que a los científicos de Marte, o a los del decimocuarto planeta de la estrella Sirio, aunque usen Dios sabe qué unidades para la carga y la velocidad y qué versión de la constante de Planck, también les saldrá 137. Es un número puro.”

(Leon Ledderman, en La partícula divina”.

Uno de los padres de la mecánica cuántica, Wolfgang Pauli, se obsesionó tanto con este número que dijo que, de poder hacerle una pregunta a Dios, sería esta: “¿Por qué 137?”

Gracias a su gran amistad con Carl G. Jung, Pauli conoció el mundo “alternativo” de los estudios sobre la psique y accedió a la tradición esotérica que ha acompañado al hombre desde el principio de los tiempos. Es así como supo que 137 se aproxima al valor correspondiente al ángulo áureo. Esto es, la versión circular del número áureo o φ (phi).

 

En realidad, el ángulo de oro es, más o menos, 137,5º, y está presente en todo proceso natural donde se dé una combinación de espirales. Así, por ejemplo, las hojas de una planta surgen a lo largo del tallo cada 137,5º, pues así se logra la mayor eficiencia de espacio y de captación de la luz solar, ya que únicamente con éste ángulo es posible evitar que ninguna hoja obstaculice a las demás en la toma de luz sin que existan espacios muertos o vacíos.

Esta semejanza entre los valores de la constante de estructura fina y el ángulo áureo llevó a la doctora Raji Heyrovska a buscar el ángulo áureo en el universo atómico (véase versión en español de su estudio).

Que esto sea así no debería extrañarnos, pues si el número áureo es una constante en toda la Naturaleza, su versión angular es la apropiada para estar presente en el universo cuántico, donde, recordemos, los elementos básicos de la realidad se reducen a funciones de onda.

…y un final místico.

 

Los fotones no tienen masa ni carga eléctrica. Sin embargo, pueden “extraer” del vacío partículas con masa y carga, tanto negativa como positiva.

Más allá de la matería y la energía, del tiempo y del espacio, el concepto de función de onda nos introduce en una realidad abstracta de donde surge todo. Y si, como hemos dicho, a menor longitud de onda mayor energía, también es posible afirmar que, en eso que David Bohm llamaba “orden implicado”, cuanto menor es la longitud de una onda cuántica, mayor es la presencia de masa en el espacio-tiempo.

Para la física, las matemáticas se han mostrado como la realidad que subyace a la materia. Todo se puede reducir a números, entidades que forman y organizan el espacio-tiempo. En este nivel de realidad, ni la materia ni la energía existen como tales, sino que demuestran ser el resultado de la interacción de entidades abstractas.

Fuentes diversas.