sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Ley de Vida, la gente nueva se abre paso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Van quedando atrás nuestros ídolos de la juventud y llegan nuevos valores que los sustituyen

LO que se piensa en los distintos ámbitos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Me quedo con la charla de Doña Julia, ella nos dice los objetivos de la Agenda 20/30 que, sin embargo, para muchos, no parece ser el camino más adecuado, toda vez que, una cosa es lo que se pone en el papel y otra distinta lo que se hace en la práctica.

Un ejemplo:

Dejar que circulen por las ciudades coches de alto coste impidiendo que se utilicen los vehículos a los que tienen acceso los pobres.

Parece que las cosas no pintan tan bonitas como se leen en el papel.

Lo que tenga que pasar… ¡Pasará! El futuro es incierto

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Un reloj de arena celeste: publican una foto de una de las nebulosas planetarias más hermosas - 27.02.2020, Sputnik Mundo

Ahí nacen las estrellas nuevas, se forman nuevos sistemas planetarios, se conjugan los elementos que forman las moléculas esenciales para la Vida, y, ¿Quién sabe cuantas cosas más?

              La ciencia de la ignorancia: lo que sabemos que nos sabemos - Ethic : Ethic
A la ignorancia, es el déficit cognitivo que padecemos, la carga que llevamos arrastrando desde que nuestra especie comenzó a evolucionar en este planeta, hemos aprendido algunas cosas en las distintas áreas del saber humano que, hasta el Presente, no son suficientes para lo que necesitamos saber. Siguen siendo más las preguntas que las respuestas. El Filósofo decía:
“Cambio todo lo que se por la mitas de lo que no se”
No era tonto el hombre.

 

Planetas que sobreviven a la fase de gigante roja - Eureka

             El Sol como Gigante roja crecerá cerca de una Unidad Astronómica, se “tragará” a Mercurio y Venus y quedará tan cerca de la Tierra que, los mares y océanos se evaporarán, y, la Vida tal como la conocemos… ¡Desaparecerá!

 

Hallan un planeta similar a la Tierra en una zona habitable

 

  Claro que, algunas cosas son bien sabidas. Lo que no sabemos es si estaremos aquí cuando sucedan: Que el Sol se convertirá en Gigante roja primero y Enana Blanca después, que dentro de 1.700 millones de años (probablemente), la Tierra se saldrá de la zona habitable, que la galaxia Andrómeda se fusionará con la Vía Láctea…

 

Galaxy formation GIF - Conseguir el mejor gif en GIFER

                               Para cuando esto suceda… ¿Estaremos todavía por aquí?

La Galaxia Andrómeda se nos acerca a una velocidad de 500.000 kilómetros por hora (o, nosotros nos acercamos a ella a esa velocidad, según se mire). La cuestión, aunque irreversible, no es tema de preocupación para nadie, ya que, la distancia que nos separan de 2,3 millones de años-luz, nos habla de un tiempo cifrado en miles de millones de años para que el encuentro de produzca.

En ese Tiempo, si aún seguimos por aquí y no hemos provocado nuestra propia destrucción, ya habremos descubierto la forma de trasladarnos a otras estrellas e instalarnos en otros planetas. Sin embargo, siendo conscientes de la condición humana… ¡Las cosas no están muy claras!

 

              Resultado de imagen de plasma en las nebulosa Andrómeda se nos acerca

 

De tal encuentro se han hecho algunas simulaciones por ordenador y, en el primer contacto, la Vía Láctea, de menor tamaño, pasará a través de Andrómeda. El impacto arrancará una gran cola de estrellas. La escena coincide con algunas imágenes reales captadas por el Hubble en las que otras galaxias similares a Andrómeda y la Vía Láctea, ya ha  tenido ese encuentro.

 

Simulación computarizada del choque. Foto: NASA.El fin de la Vía Láctea llegará antes de lo previsto

                                       Simulación por ordenador del choque

Mucho es lo que se ha hablado de ese posible suceso futuro y, cada cual imagina a su manera lo que allí pasará: “El Sol no será dañado pero, sí desplazado de su lugar actual. Las estrellas están tan separadas las unas de las otras que no hay peligro de colisiones, y, finalmente, ambas galaxias, después de un baile en el que se acercan y separan distorsionadas por las fuerzas gravitatorias y los los vientos estelares, quedaran fundidas en una enorme galaxia.

 

             Las galaxias conocidas como los ratones que están en esa fase de fusión

 

File:NGC 2207 and IC 2163.jpg

             NGC 2207 e IC 2163 que se juntan en el baile que las llevará a la inexorable fusión

 

                                     http://upload.wikimedia.org/wikipedia/commons/8/81/Whirlpool_%28M51%29.jpg

                 La Galaxia del Remolino con su galaxia satélite NGC 5195

 

      No hay ninguna descripción de la foto disponible.

 

Galaxia de las antenas. Éste es posiblemente el aspecto que presentarían vistas desde lejos la Vía Láctea y Andrómeda mientras se alejaran la una de la otra. Y, desde luego, viendo esta desgarrada imagen de las dos galaxias medio fundidas y desgarradas en el vaivén de la inercia y de la atracción gravitatoria, es difícil de imaginar que no ocurran auténticas catástrofes en todos los objetos que están ahí presente: Nebulosas que serán desgarradas, mundos que colisionaran con estrellas, estrellas de todo tipo que se fusionaran para hacerse estrellas mayores y más masivas. Agujeros negros giratorios que, al colisionar de manera violenta, saldrán despedidos hacia el espacio, otros, se podrán fusionar. Las explosiones, los vientos solares, la radiación gamma y ultravioleta… Todo eso presente en un inmenso revoltijo de los primeros momentos será un espectáculo asombroso que, con el paso de algunos miles o millones de años, se irá calmando hasta dejar una sola gran galaxia ¡Androlact!

 

                                             Resultado de imagen de plasma en las nebulosa Andrómeda se nos acerca

 

Debe ser impresionante estar asomado al ventanal de tu casa y poder contemplar como se acerca Andrómeda haca nosotros. La escena, aunque la podemos imaginar, nunca será lo mismo que si la pudiéramos vivir in situ. Por otra parte, no creo que el suceso sea tranquilo de contemplar como si de una puesta de Sol se tratara.

 

            El Planeta 9, el Planeta 10 y los misterios de los confines del sistema solar - Eureka

 

Algunos dicen que nuestro Sistema solar podría ser lanzado hacia el espacio sin sufrir daño alguno, o, por el contrario, resultar aniquilado por la enorme radiación que en el ambiente se formará debido a colisiones que desataran energías que ni podemos sospechar. Supernovas en explosión, inmensos Jets, Nebulosas creadas por eyecciones de material de estrellas masivas que se verán distorsionadas por los acontecimientos. De todo ello, saldrá con el tiempo una nueva y mayor galaxia que… ¡No será lo mismo! Ni Andrómeda ni la Vía Láctea existirán tal como la conocíamos y, los seres vivos… ¿Qué suerte correrán en todo esto, si no han podido escapar a lugares lejanos?

 

              Si sale de la Zona habitable… ¡Mal se pondrán las cosas para nosotros!

Según un estudio de la NASA, la Tierra dejará de ser habitable dentro de un período de tiempo que va de los 1.750 millones de años a los 3.250. A mí, tal resultado no me extraña en lo más mínimo. Sabemos que todo cambia y que nada permanece y, al fin y al cabo, dentro del Sistema solar, sus componentes son objetos dinámicos expuesto a cambios y transiciones de fase por motivos diversos, e incluso, imprevistos.

 

Cultura y Serenidad: CUEVAS (IX): EL DESARROLLO DE LA CIVILIZACIÓN HUMANA

Nuestro destino es incierto y tales acontecimientos (si no espabilamos), nos retrotraerá en el Tiempo.

El destino de la Humanidad es un misterio, y, posiblemente, su salvación, estará en nuestras manos.

 

El fenómeno natural que destruiría nuestra civilización sin posibilidad de defensa

 

Científicos llegan a esta conclusión por nuestra distancia del Sol y las temperaturas a las que es posible que el planeta tenga agua líquida, aunque estiman que la humanidad desaparecerá mucho antes.

Si esas previsiones son ciertas, ¿Para qué tanto trabajo, tanto dolor y sufrimiento?

 

La Tierra dejará de ser habitable dentro de 1.750 millones de años
      Lo que ha sido un vergel durante algunos miles de millones de años… ¡Será un infierno!

Astro-biólogos de la británica Universidad de Anglia del Este (UEA) publicaron en la revista Astrobiology una investigación en la que estiman el tiempo que le queda a nuestra querida bola azul para seguir resultando acogedora. La Tierra mantendrá de habitabilidad, según calculan, por lo menos otros 1.750 millones años, una conclusión que tiene en cuenta nuestra distancia del Sol y las temperaturas a las que es posible que el planeta tenga agua líquida. Después, la desolación.

 

Resultado de imagen de Otros planetas habitablesResultado de imagen de Otros planetas habitables

¿Planetas habitables? ¡Muchos! La cuestión estriba en cómo llegar a ellos

 

El equipo se fijó en planetas recientemente descubiertos fuera de nuestro sistema solar (exoplanetas) como ejemplos para investigar su potencial para albergar vida. «Hemos utilizado el concepto de ‘zona habitable’ para hacer estas estimaciones, la distancia de un planeta a su estrella en la que las temperaturas son propicias para que tenga agua líquida en la superficie», explicó Andrew Rushby, de la escuela de Ciencias Ambientales de la Universidad de East Anglia y responsable del estudio.

«Hemos utilizado los modelos de evolución estelar para estimar el final de la duración de la vida habitable de un planeta determinando cuándo dejará de estar en la zona habitable. Creemos que la Tierra dejará de ser habitable en algún dentro de 1.750 a 3.250 millones de años. Después de este punto, la Tierra estará en la ‘zona caliente’ del Sol, con temperaturas tan altas que los mares se evaporarán. Se producirá un evento de extinción catastrófico y terminal que afectará a todas las formas de vida», relata Rushby

 

Resultado de imagen de Los primeros habitantes de la Tierra: Los microbiosResultado de imagen de Los primeros habitantes de la Tierra: Los microbios

Ellos fueron los primeros y… ¡También serán los últimos habitantes del planeta Tierra! Los microbios

 

Microorganismo - Concepto, tipos, características y ejemplos

Los microbios, últimos supervivientes

Por supuesto, para los seres humanos y otras formas de vida complejas ya se habrán vuelto imposibles mucho antes.  Cerca del final solo los microbios en nichos ambientales extremófilos serían capaces de aguantar el calor. Después, también desaparecerán.

 

Resultado de imagen de Los primeros habitantes de la Tierra: Los microbios

 

«Mirando hacia atrás una cantidad similar de tiempo, sabemos que hubo vida celular en la Tierra. Tuvimos insectos hace 400 millones de años, dinosaurios hace 300 millones de años y plantas florecientes hace 130 millones de años. Los seres humanos anatómicamente modernos sólo han existido durante los últimos 200.000 años, lo que significa que hace falta mucho tiempo para que la vida inteligente se desarrolle.

Las estrellas han necesitado diez mil millones de años para “fabricar” los materiales de los que estamos hechos.

 

                         Las posibilidades de Gliese 581d

 

El equipo cree saber que lo que aprendimos en nuestro planeta será útil para conocer la vida en otros, ya que nos habla de la posibilidad de la evolución de la vida compleja y en qué etapa puede estar otro lugar de la galaxia, si es que esto fuera posible. Por supuesto, gran parte de la evolución es cuestión del Azar, pero sabemos que las especies complejas e inteligentes, como los humanos, no pueden aparecer después de solo unos pocos millones de años, ya que llevó el 75% de toda la vida útil habitable de este planeta que evolucionara. Creemos que es probable que la historia sea similar en otro lugar.

 

La NASA confirma 5.000 planetas fuera del Sistema Solar

                                                                             Según la NASA

Más de 5.000 planetas fuera de nuestro Sistema Solar han sido identificados por los astrónomos. El equipo de investigación analizó algunos de estos ejemplos, y estudió la naturaleza evolutiva de la habitabilidad planetaria con el tiempo astronómico y geológico. Compararon la Tierra con ocho planetas que se encuentran actualmente en su fase habitable, incluido Marte, y descubrieron que los mundos que orbitan estrellas con masas más pequeñas tienden a pasar más tiempo en su zona de habitabilidad.

 

Resultado de imagen de Kepler 22bResultado de imagen de Kepler 22b

Más allá del Sistema Solar: Exoplanetas y curiosidadesUn lejano planeta con nubes cargadas de metales parece "un espejo gigante en el espacio"

No pocos de ellos están en la zona habitable de sus estrellas ¿Cómo llegar a ellos?

Uno de los planetas a los que aplicaron su modelo es Kepler 22b , que mantenerse en la zona de habitabilidad de su estrella entre 4.300 y 6.100 millones años. Aún más sorprendente es Gliese 581d, con una duración de vida habitable de entre 42.000 y 54.700 millones de años. «Este planeta es cálido y agradable y tiene diez veces más tiempo del que ha existido nuestro Sistema Solar».

 

Descubren dos planetas similares a la Tierra a solo 16 años luz

Los astro-biólogos creen que es posible que se encuentre un planeta habitable, similar a la Tierra, a una distancia de 10 años luz, lo que está muy cerca en términos astronómicos. Aunque llegar a él llevaría cientos de miles de con la tecnología actual.

«Si alguna vez necesitamos movernos a otro planeta,Marte es probablemente nuestra mejor apuesta. Está muy cerca y se mantendrá en la zona habitable hasta el final de la vida del Sol . 6.000 millones años a partir de », concluye Andrew Rushby.”

 

               

 

Claro que, no todo queda ahí. Sabemos que Andrómeda se nos acerca y la Vía Láctea se acerca a ella a 5oo.ooo Km/h, que la Tierra, es muy probable que dentro de un tiempo cifrado en 1.750-3.250 millones de años, podría salir de la zona habitable del Sol. Es decir, esa zona en la que no es posible la presencia del agua líquida y por lo tanto, tampoco de la vida como la conocemos.

 

El cometa Halley, la Superluna y la lluvia de meteoritos Eta Acuáridas

                                    Cometas y asteroides que nos amenazan

Además, hay otro suceso futuro que nos amenaza y que no tiene reversión alguna, es la evolución natural del Sol que, al agotar su combustible nuclear de fusión, dentro de unos pocos miles de millones de años, se convertirá en una gigante roja y crecerá y crecerá, su órbita engullirá a Mercurio y a Venus  y posiblemente quede muy cerca de la Tierra. Para cuando eso llegue, mucho antes, la atmósfera de la Tierra habrá sufrido transiciones de fase y las temperaturas serán tan elevadas que los océanos se evaporarán, ya no será un planeta habitable. Después de todo eso, al final, se convertirá nuestro Sol en una enana blanca dentro de una Nebulosa Planetaria. Nosotros no podremos estar por aquí.

 

 

Cómo sobrevivir al fin del Sol y otros 6 problemas a los que se enfrentará el ser humano (si no se extingue antes) - BBC News Mundo

                         Faltan cinco mil millones de años para la muerte del Sol

Es cierto que hablamos de miles de millones de años y, en un tiempo tan extenso, ni sabemos si estaremos por aquí o nuestra especie habrá desaparecido, extinguida como muchas otras que fueron antes que nosotros. Aunque por otra parte, si pensamos en todos estos sucesos futuros, nos podremos dar cuenta de que, casi los tres, están situados en el tiempo dentro de un círculo muy similar, es decir, podrían coincidir algunos de esos sucesos.

 

                           

 

Tampoco podemos descartar que, para cuando eso pueda llegar, la Humanidad mucho más evolucionada, habrá podido salir del confinamiento del planeta Tierra y habrá viajado a las estrellas y, cómodamente instalada en otros mundos, podría observar, con sus adelantados ingenios tecnológicos, lo que sucedería en todos y cada uno de esos eventos cosmológicos que, para entonces, ya no nos afectarían.

 

Los sorprendentes proyectos para que la Humanidad pueda vivir en el espacio - LA NACION

Conociendo la tenacidad del Ser Humano, no descarto que podamos llegar a otros planetas

No podemos negar nada de lo que en un futuro podamos conseguir, si profundizamos un poco en los adelantos que estamos consiguiendo en Física de materiales, de superconductores, de nanotecnología, de fotónica y electrónica, en los medios de computación y robótica y en otras ramas del saber humano… Tendremos que convenir, con Julio Verne que, todo lo que podamos imaginar se puede convertir en realidad… ¡alguna vez! Sólo necesitamos Tiempo.

emilio silvera

¿Alquimia estelar? ¿Protoplasma vivo?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

La vida pudo surgir en la Tierra en antiguas islas, salpicadas en un enorme océano global

Pudo surgir en aguas aisladas y calientes bombardeadas por los rayos del Sol

Estrategias para controlar nuestros pensamientos

                                                     ¿Será la meditación la manera?

 

“Los historiadores griegos llamaron Mesopotamia, que significa “país entre rios”, a un basto territorio que se extendía desde las montañas del Kurdistan, a los montes Zagros y el Golfo Pérsico. Parajes de condiciones climáticas extremas que los ríos Tigris y Eúfrates hacían fétiles y habitables.  Allí vivieron, entre otros, los sumerios, los acadios, los qutu, los semitas y los amorreos. Pueblos que cultivaron las bellas artes, idearon la escritura, fundaron las escuelas, iniciaron la medicina, la farmacopea y la química, impulsaron la religión, y crearon la administración para ordenar la vida de los ciudadanos.

Masa y peso
Todos sabemos lo que es la masa y, desde la Relatividad Especial sabemos que también es energía

             

                   Biomimetic Cell Structures: Probing Induced pH-Feedback Loops and pH Self-Monitoring in Cytosol Using Binary Enzyme-Loaded Polymersomes in Proteinosome | Biomacromolecules

 

Estructuración del protoplasma-vivo como el plasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas. ¡Cuánto se habría excitado y cuán complacido habría estado Pasteur si hubiera conocido el famoso experimento de Miller! Pese a ser el mismo un teísta, Pasteur estaba convencido de que Dios creó la vida sobre la Tierra combinando precisamente fuerzas químicas y azar. Reconocía también, como sabemos, que los compuestos orgánicos de los seres vivos son ópticamente activos, es decir, poseen una asimetría interna capaz de desviar planos de luz polarizada. Estaba impresionado, con el hecho de que, fuera de los tejidos vivos, los compuestos asimétricos se encuentran siempre en forma racémica: una mezcla de moléculas orientadas a la derecha, y otras, orientadas a la izquierda. Solamente en estos tejidos vivos, los compuestos orgánicos tienen una lateralidad bien definida.

Ciclofilina A - Viquipèdia, l'enciclopèdia lliure

“Ciclofilina: La Ciclofilina A es una enzima presente en el citosol con estructura de barril beta con dos alfa hélices y una beta lámina. Esta ciclofilina, unida a la ciclosporina A, inhibe a la fosfatasa dependiente de calcio/calmodulinacalcineurina.”

Calcineurina - Wikipedia, a enciclopedia libre

Calcineurina, funciones:

“La calcineurina es una enzima dependiente del calcio y una proteína fosfatasa estimulada por la calmodulina. Es responsable de la activación de la transcripción de la interleucina-2 (IL-2), proteína a su vez responsable de la estimulación del crecimiento y diferenciación de los linfocitos T.”
                                                   ‎


En la imagen 1ª de arriba podemos ver la estructura de molécula de ciclosporina A en forma de corona, izquierda de la imagen (representación de bolas y varillas) y unida a su diana por la que ejerce su función farmacológica (representada como modelo de esferas). Se une a la ciclofilina (en blanco) y esta a su vez a la Calcineurina. Esta última es la encargada de permitir la respuesta inmune de los linfocitos por lo que ésta queda bloqueada. Siempre hemos querido saber sobre el origen de la vida y los secretos que la rodean y cómo apareció en nuestro mundo.

 

Diapositivas de metabolismo de carbohidratos - Página web de bioscientia

                      Diapositivas de metabolismo de carbohidratos

El protoplasma-vivo para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj y Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.

Alquimia estelar? ¿Protoplasma vivo? ¿De dónde venimos? : Blog de Emilio Silvera V.

Michurín estudió la relación del organismo y el medio. Los fermentos de las estructuras protoplasmáticas determinaban sus reacciones por la velocidad y la dirección, estableciendo una relación con el medio. Se establecía un círculo de fenómenos relacionados y ordenados regularmente. Se producían asimilaciones y desasimilaciones de sustancias orgánicas con el fin de autoconservación y auto-renovación del protoplasma.

 

                                     

 

En la base de la organización de todo individuo está la célula, y en la célula el protoplasma vivo, en cuya compleja estructura morfológica y química reside el principio de todas las funciones vitales. Inicialmente la organización morfológica de la célula sólo se conocía a través de los medios ópticos. Dentro de los límites de su poder resolutivo; con la introducción del microscopio electrónico amplió notablemente los conocimientos sobre la estructura celular, al conseguirse aumentos hasta 200 veces superior a los obtenidos por los medios ópticos.

Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar la cuestión del proceso del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma vivo, ese sustrato material que será la base de todos los seres vivos, sin excepción.

Palabras Dvida - MENSAJES DE VIDA PARA EL MUNDO

Cuando se estudia la complejidad del cuerpo Humano, el asombro llega a nuestras mentes. ¿Cómo es posible que se haya podido organizar una estructura tan compleja que funciona a la perfección, sin que haya intervenido ningún arquitecto o Ingeniero? ¿A quien otorgamos la autoría?

A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma vivo era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma vivo, era precisamente, según ellos, la causa específica de la vida. Y, a todo ello, sin olvidarse del Carbono, la base de todo signo de vida que conocemos.

 

Pero el estudio concreto del protoplasma vivo desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma vivo.

 

Estructuración del Protoplasma vivo : Blog de Emilio Silvera V.                                                                 Estructuración del Protoplasma vivo : Blog de Emilio Silvera V.

                                             Estructuración del Protoplasma vivo

Es bien conocido que la masa básica del protoplasma vivo es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia coacervática fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma vivo. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.

 

Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos? : Blog de Emilio Silvera V.MEMBRANA, NÚCLEO Y CITOPLASMA | LA CÉLULA y SUS ORGÁNULOS 3.0

Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma vivo y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma vivo son dos sistemas distintos y contrarios.

Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma vivo. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma vivo es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.

Es de vital importancia para la formación del protoplasma vivo que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma vivo lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.

Por otra parte, en todo esto debemos tener en cuenta un gente que, siendo ineludible para la vida, está siempre presente en todo lo que a ella concierne. El Agua.

 

                               

 

El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en estado sobre-enfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación.

 

 

Una mirada a nuestro mundo viviente: SESIÓN N° 3

                           Más rápidos o más lentos, todos los eres vivos se mueven

Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.

Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.

 

Página 17 | Fotos de Agua Chorro, +69.000 Fotos de stock gratuitas de gran calidad

Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.

Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.

Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma vivo,  es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.

 

                           

El ácido pirúvico (ver otros nombres en la tabla) es un ácido alfa-ceto que tiene un papel importante en los procesos bioquímicos. El anión carboxilato del ácido pirúvico se conoce como piruvato. El ácido pirúvico es un compuesto orgánico clave en el metabolismo. Es el producto final de la glucolisis, una ruta metabólica universal en la que la glucosa se escinde en dos moléculas de piruvato y se origina energía (2 moléculas de ATP).

Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.

Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.

Célula de levadura fotografías e imágenes de alta resolución - Alamy

 

Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.

Las encimas

 

Estructura de la triosafosfato isomerasa.  Conformación en forma de diagrama de cintas  rodeado por el modelo de relleno de espacio de la proteína. Esta proteína es una eficiente enzima involucrada en el proceso de transformación de azúcares en energía  en las células.

La enzimología, al igual que las disciplinas experimentales que han surgido como ramas del tronco común que es la biología, tiene una historia propia construida a través de observaciones, experiencias, pruebas y teorías.

Se inició con el estudio de los procesos de fermentación y de putrefacción y Antoine-Laurente Lavoisier fue el primero en plantear sobre bases cuantitativas el proceso de la fermentación alcohólica, al observar una relación entre cantidad de azúcar presente y productos formados durante el proceso.

Un estudio de la síntesis de distintas sustancias en el protoplasma vivo demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.

No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma vivo.

 

 

                                                       La Biología Físico-Química

La bioquímica, es la rama de la Química y de la Biología que tiene por objetivo principal el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de Carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas las que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.

Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma vivo y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.

Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma vivo, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.

Hidrógeno

Un estudio encuentra que el hidrógeno azul es peor para el clima que la quema de carbón o gas- El Periódico de la Energía

                             Todos sabemos de su importanicia para la vida

En el siglo XVI se observó que cuando el ácido sulfúrico actuaba sobre el hierro se desprendía un gas combustible. En 1766 Henry Cavendish demostró que dicho gas era una sustancia distinta a otros gases también combustibles, confundiendo el gas obtenido, al que llamo <<aire inflamable>>. Provenía del hierro y no del ácido sulfúrico, también demostró que el gas en el aire y en el oxígeno se formaba Agua.

 

                                                                      La Atmósfera

Es la capa de gas que rodea a un cuerpo celeste que tenga la suficiente masa como para atraer ese gas. Los gases son atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, con lo que tienen atmósferas muy profundas. Si no se dan ciertos parámetros, el protoplasma vivo de la vida, nunca habría hecho acto de presencia.

– Nitrógeno (78%) y
– Oxígeno (21%)

 

 

 El 1% restante lo forman el argón (0,9%), el dióxido de Carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de Carbono, helio, neón, kriptón y xenón.

Ozonosfera y sodiosfera

 

 

Desde 15 hasta 60 kilómetros de altitud, el ozono, que en las zonas próximas al suelo se encuentra sólo en pequeñas cantidades, aparece en porcentajes más sensibles y forma la ozonosfera. Este ozono absorbe la radiación ultravioleta procedente del Sol, haciendo posible de es modo la existencia de vida en la Tierra.

Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma vivo,  y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.

 

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

Las propiedades químicas de las sustancias integradoras del protoplasma vivo,  en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.

Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma vivo es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.

 

Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos? : Blog de Emilio Silvera V.

Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.

En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.

La Teoría Celular

 

Teoria celular

 

Llegados a este punto debemos profundizar un poco más en la constitución de los seres vivos. Para ello debemos saber la teoría celular, enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).

La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos: todos están compuestos por células y por productos elaborados por ellas. Aunque la idea de que la célula es el “átomo” de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.

La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Anton Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto).

 

imagen de un piojo

 imagen de células vegetales

Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sola lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, la existencia de capilares en la membrana interdigital de las ranas.

Ahora sabemos que tanto los paramecios como los organismos superiores están formados por una o más células, almacenan y transportan la energía, duplican su material genético y utilizan la información que ese material contiene para sintetizar proteínas siempre de la misma forma. Todos estos procesos, que están presentes en todas las células, son los que forman la maquinaria de la vida.

LIPOSOLUBLES (A, D, E, K) – BIOLOGÍA y GEOLOGÍA

                                           Sustancias orgánicas que nos dan las vitaminas

Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.

Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.

 

Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.

Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.

 

 

Tipos de respiración humana - ¡¡RESUMEN + IMÁGENES!!

 

De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).

En 1878 el biólogo alemán Walter Fleming descubrió que se podían teñir unas estructuras existentes en el interior del núcleo y llamo cromatina a la materia que las formaban.

Como las células de la preparación morían al teñirse, y en una preparación existían células en muy diferentes etapas de crecimiento y división, Fleming pudo estudiar estas etapas y comprender cómo evolucionaba la vida de la célula.

Al comenzar el proceso de división celular la cromatina forma una especie de hilos que se denominan, con mucha lógica, cromosomas (cuerpos coloreados) y Fleming llamó al proceso de división celular mitosis, una palabra griega que significa hilo.

En 1887 el biólogo belga Edouart van Beneden contó el número de cromosomas de células de diferentes especies y llegó a la conclusión de que el número de cromosomas es una característica de la especie. Todas las células humanas tienen 46 cromosomas.

También descubrió que los espermatozoides y los óvulos tenían la mitad de los cromosomas de las células normales, y dedujo que al unirse conservaban todos sus cromosomas, con lo que recuperaban el número característico de la especie.

 

imagen de espermatozoides

 

Tanto Fleming como van Beneden comprendieron que eran los cromosomas del huevo los que determinaban las características del animal que se iba a formar, pero no podían saber el mecanismo por el que lo hacían.

Por entonces se empezó a llamar citoplasma vivo al conjunto de protoplasma vivo y orgánulos que están comprendidos entre el núcleo y la pared o membrana celular, y se empezaron a estudiar estos orgánulos.

Así, en 1898 el biólogo alemán Carl Benda descubrió las mitocondrias, que en griego significa hilos de cartílago. Ahora sabemos que son los órganos que se encargan de la obtención de energía a partir de azúcar y oxígeno. Ese mismo año Golgi descubrió el complejo que lleva su nombre.

 

              Aminoácidos y azúcares de la vida están ahí presentes

Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.

Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.

Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.

Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva.

1.-Todos los seres vivos están formados por células y sus productos. Por tanto la célula es la unidad anatómica del organismo.

2.-Todas las células proceden de otras células preexistentes y éstas, a su vez, de otras células. Esto lo certificaron los viejos científicos con el axioma omnis cellula e cellula, latinajo que significa lo que todos ustedes suponen, que toda célula procede de otra célula.

3.-La célula es la unidad funcional del organismo.

4.-La célula es también la unidad genética del organismo.

Básicamente la célula está formada por tres elementos:

Núcleo
Membrana y
Citoplasma

 

 

Membrana plasmática - Wikipedia, la enciclopedia libre

 

La membrana envuelve la célula confiriéndole su individualidad. Dicho de otra manera, la célula es una unidad separada de otras células por su membrana.

El citoplasma está formado por un líquido llamado citosol (solución celular) y gran cantidad de gránulos que reciben el nombre genérico de organelos y que más adelante describiremos. Adelantemos que en estos organelos hay una gran actividad ya que se encargan de funciones digestivas y respiratorias.

El núcleo está separado del resto del citoplasma por otra membrana, la membrana nuclearEn su interior se encuentra el material genético que crea los patrones para producir nuevas células con las características de nuestra especie. Una célula humana siempre producirá otra célula humana.

Hablar de nosotros mismos es demasiado complejo para que, científicamente podamos abarcar todo lo que somos ym sólo poco a poco podemos ir comprendiendo la grandeza que en nosaotros está representada como esa parte del universo que piensa, tiene ideas y sentimientos y, en definitiva, es la materia del Universo evolucionada hasta su más alto grado hasta el momento conocido.

emilio silvera

El Origen de la Vida (Lo que se cree)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como otros muchos antes que él, aquí el Conferenciante nos cuenta “su” historia (que no tiene que converger con la realidad), y, se basa en los datos que ha podido ir recopilando y en los estudios de otros científicos que trabaron el tema antes que el.

Es cierto que la Historia de la Vida no la pudo escribir nadie, no había (cuando surgió), ningún cronista que pudiera hacer el reportaje in situ y que nos contara la verdad. Así, nos tenemos que conformar con los fósiles más antiguos de la Tierra, hallados en Australia, en Warradona y que tienen unos 3.800 millones de años.

Lo único que podemos tener claro es que, la Vida surgió personificada en aquella primera célula replicante que dio lugar a esta fascinante aventura a partir de la “materia inerte” que evolucionó hasta los pensamientos.