miércoles, 30 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Curvatura del Espacio-Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

espacio tiempo2

    Hay que entender que el espacio-tiempo es la única descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.

          De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.

El tiempo puede ser medido, por tanto, de manera relativa, como los son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

Resultado de imagen de Campos gravitatorios intensosResultado de imagen de estrellas masivas

Las estrellas con sus grandes masas crean irregularidades en el espacio y se mueven por él conforme a esa geometría que genera la Gravedad que emiten los cuerpos masivos.

          La curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos.

          La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias (entre otros).

Resultado de imagen de Una lámina rectángular de goma plana

          En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es en esencia, lo que ocurre en relatividad general.

Resultado de imagen de La paradoja de los gemelos

          Los efectos de c (la velocidad de la luz en el espacio vacío). Recordad la paradoja de los gemelos: el primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa, cuando baja de la nave espacial, tiene 8,6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, el regreso de su hermano, era ya un viejo jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. La velocidad ralentiza el transcurrir del tiempo.

          Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E= mc2 que, nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Resultado de imagen de La contracción de Lorentz

La contracción de Lorentz es un efecto relativista que consiste en la contracción de la longitud de un cuerpo en la dirección del movimiento a medida que su velocidad se acerca a la velocidad de la luz.

          Hay otras implicaciones dentro de esta maravillosa teoría de la relatividad especial, ahí está presente también la constracción de Lorentz. Un objeto que se mueve a velocidad de cercana a c, se achata o contrae en el sentido de la marcha, y, además, a medida que se acerca a la velocidad de la luz (299.752,458 Km/s), su masa va aumentando y su velocidad disminuyendo.

          Así se ha demostrado con muones en los aceleradores de particulas que, lanzados a verlocidades relativista, han alcanzado una masa en 10 veces superior a la suya.

          Esto quiere decir que la fuerza de inercia que se le está transmitiendo a la nave (por ejemplo), cuando se acerca a la velocidad de la luz, se convierte en masa.

          Así queda demostrado que, masa y energía son dos aspectos de la misma cosa E=mc2.

          Seguiremos con otras cuestiones de interés.

Resultado de imagen de el espacio-tiempo es la única descripción en cuatro dimensiones del Universo

Espacio-tiempo. Entidad geométrica en la cual se desarrollan todos los eventos físicos del Universo, de acuerdo con la teoría de la relatividad y otras …

    Hay que entender que el espacio-tiempo es la única descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.

          De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.

          El tiempo puede ser medido, por tanto, de manera relativa, como los son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

Resultado de imagen de Agujero negro

Sagitario A es un agujero negro que situado a 26.000 años luz de la Tierra, ha dado mucho trabajo a los astrónomos queriendo saber que es lo que allí está pasando. Han podido captar imágenes y ver que, es capaz de tragarse el espacio-tiempo, de generar una singularidad de densidad “infinita” y de intrigar a los científicos. Tanto a aquellos que quieren entender la Relatividad como a esos otros que quieren estudiar la relación entre la gravedad y las partículas.

          La curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos.

          La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias (entre otros).

Resultado de imagen de La nave que se acerca a la velocidad de la luz

          Sabemos que la fuerza de inercia que se le está transmitiendo a la nave (por ejemplo), cuando se acerca a la velocidad de la luz, se convierte en masa.

          Así queda demostrado que, masa y energía son dos aspectos de la misma cosa E=mc2.

Pero todo esto que hemos repasado y que, en algunos aspectos nos resultan cuestiones poco familiares y hasta extrañas, nos lleva a pensar que, en nuestro Universo existen cuestiones que no hemos logrado entender… del todo. Una es la velocidad de la luz y las implicaciones que tiene en cuanto se quiere igualar o sobrepasar (algo imposible en nuestro Universo), y, la otra cuestión compleja es la que nos plantea la Gravedad… ¿En verdad la entendemos?

          Seguiremos con otras cuestiones de interés.

emilio silvera

Las cosas del Universo siempre nos han fascinado

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Breve historia del Universo de Timothy Ferriss

 

 

 

Breve Historia del Universo según Timoty Ferris II

Si queréis estar bien informados, os recomiendo este libro en el que el autor, un maestro indiscutible de la literatura de divulgación científica, nos cuenta la apasionante historia de cómo el hombre ha ido descubriendo el escenario cósmico en el que habita, desde aquellos grandes pensadores clásicos hasta las más modernas visiones del origen y el fin del universo.

¿Es viejo el Universo?

Nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí están presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales” la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

George Johnstone Stoney
PSM V79 D211 George Johnston Stoney.png
Max Planck
Bundesarchiv Bild 183-R0116-504, Max Planck.jpg

t_{P}={\sqrt  {{\frac  {\hbar G}{c^{5}}}}}\;\approx \quad 5,39106(32)\cdot 10^{{-44}}

{\displaystyle l_{P}=c\ t_{P}={\sqrt {\frac {\hbar G}{c^{3}}}}}

{\displaystyle m_{P}={\sqrt {\frac {\hbar c}{G}}}}

{\displaystyle T_{P}={\frac {m_{P}c^{2}}{k}}={\sqrt {\frac {\hbar c^{5}}{Gk^{2}}}}}

{\displaystyle {G_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}\ }

{\displaystyle {G_{\mu \nu }=8\pi T_{\mu \nu }}\ }

{\displaystyle {E=mc^{2}}\ }

{\displaystyle -{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\psi (\mathbf {r} ,t)+V(\mathbf {r} )\psi (\mathbf {r} ,t)=i\hbar {\frac {\partial \psi }{\partial t}}(\mathbf {r} ,t)}

{\displaystyle {E=\hbar \omega }\ }

{\displaystyle F={\frac {1}{4\pi \epsilon _{0}}}{\frac {q_{1}q_{2}}{r^{2}}}}

{\displaystyle \nabla \cdot \mathbf {E} ={\frac {1}{\epsilon _{0}}}\rho }
{\displaystyle \nabla \cdot \mathbf {B} =0}
{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\mathbf {J} +\mu _{0}\epsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}}

Si sabes leer y comprender el significado de todas estas ecuaciones serás consciente del ingenio humano

Telescopios MAGIC en la isla canaria de La Palma. / Daniel Lopez, IAC

Al menos una vez al día, el cielo en su parte alta, es iluminado por un gran destello producido por grandes explosiones de rayos gamma. A menudo, esos destellos alcanzan magnitudes superiores a las que pueden ser generadas por todo un conjunto de otros rayos cósmicos y desaparecen posteriormente sin dejar más rastro. Nadie puede predecir cuando volverá a ocurrir la próxima explosión o de que dirección del cielo procederá. Hasta ahora, no contamos con evidencias duras como para asegurar cuáles podrían ser las fuentes precisas de donde provienen esos rayos gamma que observamos en lo alto del cielo, las razones que ocasionan los grandes destellos y la distancia en la cual ocurre el fenómeno.

cluster-galaxias

La edad actual del Universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el Universo es un reflejo del hecho de que:

Densidad actual del Universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto, es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el Universo está estructurado en una escala sobre humana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones el Universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del Universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

Resultado de imagen de En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasivaResultado de imagen de En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasiva

Resultado de imagen de En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasivaResultado de imagen de En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasiva

En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasivas se pueden producir sucesos de inmensas energías y, en regiones de gas y polvo de muchos años-luz de diámetro, es donde surgen los Sistemas solares que contienen planetas aptos para la vida.

¿Por qué nuestro Universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el Universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el Universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas.

Nuestro Sol es una estrella de tercera o cuarta generación. Así lo confirman los materiales que existen en el Sistema solar que son complejos y creados por una Supernova o Hipernova, de otra manera, reinaría sólo el Hidrógeno y el Helio en Lugar de estar presentes el plomo y el Uranio… por Ejemplo.

Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

Resultado de imagen de Vientos estelaresResultado de imagen de Vientos estelaresResultado de imagen de Vientos estelaresResultado de imagen de Vientos estelares

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen series amenazas exteriores.

Como veréis no estamos a salvo y, cualquier colisión entre estos pedruzcos los puede desviar hacia nosotros y las consecuencias…

La mayoría de asteroides, incluyendo Vesta, están en el cinturón de asteroides que se sitúa entre Marte y Júpiter. Otros asteroides giran en círculos mas cerca del Sol que de la Tierra, mientras que un gran número de ellos comparten orbitas planetaria. Dada esta gran variedad de asteroides, algunos particularmente extraños han sido descubiertos en los últimos dos siglos desde que el primer asteroide fuera descubierto (Ceres en 1801).

Resultado de imagen de Cometas peligrososResultado de imagen de Cometas peligrosos

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una serie y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución, o, por el contrario, evitar que siga cualquier clase de evolución produciendo la extinción total y dejando la Tierra como un planeta muerto.

emilio silvera

El l fascinante “mundo” del saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

Resultado de imagen de El plasma estelar

 

 

 

 

¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?

Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyeron para conseguir llegar al conocimiento del átomo y del núcleo actual; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.

Resultado de imagen de Partículas dentro del núcleo atómico

Partículas

El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.

El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.

Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cera del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.

Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.

Ahora bien, la siguiente partícula inédita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había deducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva

.

En 1.930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.

Resultado de imagen de Cámara de ionización

Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1.963 se descubrió que los positrones figuraban también entre las radiaciones primarias.

Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.

Resultado de imagen de electrón y6 positrón

                                                     Detectan exceso de positrones en el Espacio

Dibujo20180517 radial pressure distribution in the proton nature 41586_2018_60

                                                            La presión en el interior del protón

“El protón está formado por tres quarks de valencia confinados entre una infinidad de gluones y pares quark-antiquark virtuales. Usando electrones de alta energía que se internan en el protón y colisionan con los quarks mediante dispersión de Compton se ha medido la distribución radial de la presión a la que están sometidos los quarks dentro del protón. Se publica en Nature que la presión media alrededor del centro (en una esfera de radio menor de 0,6 femtómetros) alcanza los 1035 pascales, como un orden de magnitud superior a la que se alcanza en el centro de una estrella de neutrones, cuyo máximo se estima en unos 1034 Pa (*).”

La Ciencia de MUla Francis

Resultado de imagen de Asociación del electrón y el positrónResultado de imagen de Asociación del electrón y el positrón

Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1.945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1.951, el físico americano de origen austriaco  Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.

Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1.936.

Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.

Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:

aluminio 27 + helio 4 = silicio 30 + hidrógeno 1

Nótese que los números másicos se equilibran:

27 + 4 = 30 + 1

Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

Resultado de imagen de Hidrógeno pesadoResultado de imagen de Hidrógeno pesado

Fusión del Hidrógeno pesado

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.

Representación 3D animada de un deuterio. Hay que tener en cuenta que la órbita del electrón no es regular.

El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión  a 20’5º K.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre de ambas son las matemáticas. Las matemáticas componen ese lenguaje que explica lo que las palanbras no pueden.

emilio silvera

Los “ladrillos” del cerebro

Autor por Emilio Silvera    ~    Archivo Clasificado en El cerebro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Es evidente que el estímulo para la expansión evolutiva del cerebro obedeció a diversas necesidades de adaptación como puede ser el incremento de la complejidad social de los grupos de homínidos y de sus relaciones interpersonales, así como la necesidad de pensar para buscar soluciones a problemas surgidos por la implantación de sociedades más modernas cada vez.  Estas y otras muchas razones fueron las claves para que la selección natural incrementara ese prodigioso universo que es el cerebro humano.

Claro que, para levantar cualquier edificio, además de un estímulo para hacerlo se necesitan los ladrillos específicos con las que construirlo y la energía con la que mantenerlo funcionando.

Resultado de imagen de La energía del cerebro

La evolución rápida del cerebro no solo requirió alimentos de una elevada densidad energética y abundantes proteínas, vitaminas y minerales; el crecimiento del cerebro necesitó de otro elemento fundamental:

Resultado de imagen de ácidos grasos poliinsaturados de larga cadenaResultado de imagen de ácidos grasos poliinsaturados de larga cadena

Ácidos grasos poliinsaturados (PUFAs) Los PUFAs son compuestos orgánicos formados por una larga cadena carbonada (de carbonos: C en la figura) unida a un ácido carboxílico (COOH en la figura).”

Un aporte adecuado de ácidos grasos poliinsaturados de larga cadena, que son componentes fundamentales de las membranas de las neuronas, las células que hacen funcionar nuestro cerebro.

Ya hemos visto en otros artículos la importancia de los ácidos grasos omega-3. Con respecto al estrés, diremos que están implicados en el funcionamiento y desarrollo cerebrales y que incluso se estudia su influencia en enfermedades psiquiátricas como el trastorno bipolar y la depresión. No hay que olvidar que los ácidos grasos omega 3 son necesarios para que se sintetice la serotonina, neurotransmisor asociado a la calma y el buen estado de ánimo, a partir del triptófano de la dieta. Pescado azul, nueces y semillas de lino son algunas de las fuentes de omega 3 que no deberían faltar en nuestra alimentación

Resultado de imagen de SerotoninaResultado de imagen de Serotonina

                                                                                                                             Serotonina

“Sustancia que está presente en las neuronas y realiza funciones de neurotransmisor.”

Nuestro organismo, como ya he señalado, es incapaz de sintetizar en el hígado suficiente cantidad de estos ácidos grasos; tiene que conseguirlos mediante la alimentación.  Estos ácidos grasos son abundantes en los animales y en especial en los alimentos de origen acuático (peces, moluscos, crustáceos).   Por ello, algunos especialistas consideran que la evolución del cerebro no pudo ocurrir en cualquier parte del mundo y, por lo tanto, requirió un entorno donde existiera una abundancia de estos ácidos grasos en la dieta: un entorno acuático.

El cerebro humano contiene 600 gramos de estos lípidos tan especiales imprescindibles para su función.  Entre estos lípidos destacan los ácidos grasos araquidónico (AA, 20:4 W-6) y docosahexanoico (D H A, 22:6 W-3); entre los dos constituyen el noventa por 100 de todos los ácidos grasos poliinsaturados de larga cadena en el cerebro humano y en el resto de los mamíferos.

Una buena provisión de estos ácidos grasos es tan importante que cualquier deficiencia dentro del útero o durante la infancia puede producir fallos en el desarrollo cerebral. El entorno geográfico del este de África donde evolucionaron nuestros ancestros proporcionó una fuente única nutricional, abundante de estos ácidos grasos esenciales para el desarrollo cerebral.  Esta es otra de las circunstancias extraordinarias que favoreció nuestra evolución.

Las evidencias fósiles indican que el género Homo surgió en un entorno ecológico único, como es el formado por los numerosos lagos que llenan las depresiones del valle del Rift, el cual, en conjunto y desde un punto de vista geológico, es considerado un “protoocéano”.  El área geográfica formada por el mar Rojo, el golfo de Adén y los grandes lagos del Rift forman lo que en geología se conoce como “océano fallido”.  Son grandes lagos algunos de una gran profundidad (el lago Malwi tiene 1.500 metros y el lago Tanganika 600 m.) y de una enorme extensión (el lago Victoria, de casi 70.000 km2, es el mayor lago tropical del mundo).  Se llenaban, como hacen hoy, del agua de los numerosos ríos que desembocan en ellos; por eso sus niveles varían según las condiciones climatológicas regionales y estaciónales.

Resultado de imagen de el golfo de Adén

Muchos de estos lagos son alcalinos debido al intenso volcanismo de la zona.  Son abundantes en peces, moluscos y crustáceos que tienen proporciones de lípidos poliinsaturados de larga cadena muy similares a los que componen el cerebro humano.  Este entorno, en el que la especie Homo evolucionó durante al menos dos millones de años, proporcionó a nuestros ancestros una excelente fuente de proteínas de elevada calidad biológica y de ácidos grasos poliinsaturados de larga cadena, una combinación ideal para hacer crecer el cerebro.

Resultado de imagen de Los grandes lagos africanos

                                                                                Grandes lagos africanos

Ésta es otra de las razones en las que se apoyan algunos para sugerir que nuestros antecesores se adaptaron durante algunos cientos de miles de años a un entorno litoral, posiblemente una vida lacustre, en el “océano fallido” de los grandes lagos africanos y que nuestra abundante capa de grasa subcutánea es la prueba de esta circunstancia de nuestra evolución.

La realidad es que este entorno lacustre proporcionó abundantes alimentos procedentes del agua, ricos en proteínas de buena calidad y en ácidos grasos poliinsaturados.  Estos alimentos completaban la carroña incierta o la caza casi imposible.  Durante cientos de miles de años evolucionaron los homínidos en este entorno entre la sabana ardiente y las extensiones interminables de aguas someras por las que vagaban los clanes de nuestros antepasados chapoteando a lo largo de kilómetros en busca de alimento.  Este entorno único no solo garantizó los nutrientes necesarios para desarrollar el cerebro, sino que aceleró numerosos cambios evolutivos que confluirían en el Homo sapiens.

Resultado de imagen de Homo sapiens.

Nuestra especie es muy homogénea en sus características: somos muy similares a pesar de lo que pudiera parecer a causa de las diferencias del color en la piel o en los rasgos faciales de las diferentes poblaciones.  Tanto los datos de la genética homo los de la paleantropología muestran que los seres humanos, como especie, procedemos de un grupo pequeño de antepasados que vivían en África hace unos cuatrocientos mil años.

Mapa de las migraciones humanas en haplogrupos mitocondriales según teorías de Spencer Wells (2002) del Proyecto Genográfico.

Hemos logrado determinar con precisión nuestros orígenes como especie mediante precisos análisis genéticos; por ejemplo, los estudios llevados a cabo sobre los genes de las mitocondrias pertenecientes a individuos de todas las poblaciones del mundo y de todas las razas.

Resultado de imagen de Estudiando el A D N mitocondrial

Imagen relacionadaImagen relacionadaImagen relacionadaResultado de imagen de Estudiando el A D N mitocondrial

Estudiando el A D N mitocondrial de miles de personas se ha llegado a formular la llamada “Teoría de la Eva Negra”, según la cual todos nosotros, los Homo sapiens sapiens, procedemos de una hembra que vivió en algún lugar de África hace ahora unos tres cientos mil años.  Otros estudios se han realizado mediante el análisis del polimorfismo del cromosoma Y.

Resultado de imagen de La Eva mitocondrial

Escena que bien pudo ser una realidad. Según la teoría genetista, la Eva mitocondrial …

Pero tanto unos estudios como otros han dado el resultado similar.  Los estudios del material genético del cromosoma Y confirman que la Humanidad tuvo un antepasado varón que vivió en África hace unos doscientos mil años.  Seria la “Teoría del Adan Negro”.  Estudios del Gen de la hemoglobina ratifican que todas las poblaciones humanas modernas derivan de una población ancestral africana de hace unos doscientos mil años compuesta por unos seiscientos individuos.

Los hallazgos paleo antropológicos ratifican el origen único y africano de nuestra especie.  Se han encontrado en diversa regiones de África algunos fósiles, de características humanas modernas, con una antigüedad de entre tres cientos mil y cien mil años; estos incluyen: el cráneo de kabwe (en Zambia), de 1.285 c.c.; el fósil KNM-ER-3834 del lago Turkan, en Kenia, de casi litro y medio; los fósiles encontrados en los yacimientos de Border Cave y Klassies River Mouth, de África del sur; y los esqueletos y cráneos encontrados en los enterramientos de la Cueva de Qafzeh y del abrigo de Skhul, ambos en Israel y datados en unos cien mil años.

Resultado de imagen de En 1968 se descubrieron en Dordoña el cráneo y el esqueleto de uno de nuestros antepasados,

En 1968 se descubrieron en Dordoña el cráneo y el esqueleto de uno de nuestros antepasados, al que se denominó Hombre de Cro-Magnon.  Hoy sabemos que hace unos cuarenta mil años aparecieron en Europa unos inmigrantes de origen africano, que eran los primeros representantes de la especie Homo sapiens sapiens que alcanzaban estos territorios.  Llegaron con unas armas terribles e innovadoras, conocían el modo de dominar el fuego y poseían una compleja organización social; y por lo que se refiere a las otras especies de homínidos que habitaban por aquel entonces Europa, concretamente los Homo neandertales, al parecer, los eliminaron por completo.

Resultado de imagen de La evolución del hombre

Ahora podemos decir que sabemos como fuimos, como somos e imaginar como podríamos ser

Los hombres de cromañón poseían las características de los pobladores de las regiones próximas al ecuador: poco macizos, muy altos y de brazos y piernas largas; sus huesos eran muy livianos por aumento del canal medular, dentro de la diáfisis.  Los huesos que formaban las paredes del cráneo eran más finos, que los de sus predecesores.  Habían sufrido una reducción de la masa muscular.  El desarrollo de armas que podían matar a distancia con eficacia y sin requerir gran esfuerzo, como los propulsores, las hondas y, más tarde, el arco y las flechas, hicieron innecesarias una excesiva robustez.  En general, eran muy parecidos a nosotros y, hasta tal punto es así que, si cogiéramos a uno de estos individuos, lo lleváramos a la peluquería, le pusiéramos un buen traje, y lo sacáramos de paseo, se confundiría con el resto de la gente sin llamar a atención.

emilio silvera

La familia de la Tierra… Y, nosotros.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Sistema Solar    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El Sistema Solar es un sistema planetario de la Vía Láctea que se encuentra en uno de los brazos de ésta, conocido como el Brazo de Orión. Según las últimas estimaciones, el Sistema se encuentra a unos 28 mil años luz del centro de la Vía Láctea. Está formado por una única estrella llamada Sol, que da nombre a este Sistema, más ocho planetas que orbitan alrededor de la estrella: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno; más un conjunto de otros cuerpos menores: planetas enanos (Plutón, Eris, Makemake, Haumea y Ceres), asteroides, cometas, así como el espacio interplanetario comprendido entre ellos. Y, no lo olvidemos, algunos planetas están acompañados de “pequeños mundos” que llamamos satélites naturales y en el caso de la Tierra Luna.

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

 

 

  La Gran Nebulosa de Orión, también conocida como M42, es una de las nebulosas más famosas del cielo. Si hacemos un viaje en el tiempo hacia el pasado y nos situamos en aquel tiempo de hace unos cuatro mil quinientos millones de años, seguramente podríamos haber contemplado una hermosa Nebulosa que, parecida a ésta de arriba, dió lugar al nacimiento del Sol y de todos los planetas y lunas del Sistema Solar en el que vivimos ahora nosotros. Para entonces, varios miles de millones de estrellas habían vivido y habían muerto, algunas, las más masivas, explosionaron como supernova y dieron lugar a Nebulosas que, como decimos, a partir de una de ellas surgió todo nuestro entorno.

Aunque estemos contemplando IC-434 Nebulosa de la Cabeza de Caballo, lo cierto es que en aquella Nebulosa primordial a partir de la que se formó el Sistema solar, también estaban presentes los gases primordiales y el polvo o sustancia cósmica mezclada con elementos tales como el Carbono, el Oxígeno, el Silicio, el Nitrógeno, Hierro o Azufre entre otros muchos, hechos todos ellos en aquellas estrellas que murieron para poder dejarlos esparcidos por el espacio interestelar para formar nuevas estrellas y nuevos mundos.

Si pudiéramos tener una vida eterna y nos situáramos cerca de una de estas inmensas nubes de material estelar transmutado en las distintas fases de la fusión, podríamos contemplar como inmensas extensiones de espacio estaban ocupadas por estos objetos residuales de las explosiones de estrellas al final de sus vidas. Al principio, la nube primigenia es enorme y en algunas regiones espesa y densa y en otras tenue como el velo de la bailarina de las Mil y una noches. El tiempo sigue su transcurrir y, la Gravedad -que nunca duerme-, va ejerciendo su atracción sobre los átomos que se van juntando hasta crear grandes regiones en las que, el material allí acumulado se hace más y más caliente. Pasan millones de años antes de que, en el núcleo de aquel conglomerado de gas, la temperatura llegue hasta un nivel que hace que, aparezca la incandescencia y, a millones de grados, se producen las primeras etapas de la fusión nuclaer del hidrógeno en Helio. ¡Ha nacido una estrella!

                 Estas son imágenes captadas por el Hubble de una estrella en formación

Las estrellas, a partir de ese momento en el que comienzan la fusión nuclear, son objetos astronómicos que brillan con luz propia y que, según la masa que los conforma, pueden durar millones, cientos o miles de millones de años. Son esferas de plasma que se mantienen gracias al equilibrio de dos fuerzas contrapuestas: Por una parte, la fuerza de Gravedad que trata de comprimir la materia de la estrella hacia el centro de masas, hacia el núcleo, y, por otra parte, la fusión que se está produciendo en el núcleo de la estrella, hace que el plasma se vea expandido con fuerza hacia fuera y, tal como sucede en los gases, tiende a expandirse siendo frenado por la Gravedad y esta es, al mismo tiempo frenada por la presión de radiación de la fusión. Esa es básicamente la explicación de la estabilidad estelar que, a partir de ahí, puede estar, como digo, miles de millones de años en la secuencia principal.

                                        Disco protoplanetario (Pat Rawlings – NASA;)

Se cree que al mismo tiempo que se formó el Sol en el centro caliente de aquella nube, las zonas más extremas y más frías van apareciendo nudos de materia condensada, estas agrupaciones de materia van juntándose también por su propia atracción gravitatoria. Más tarde, y según la moderna teoría sobre el origen del Sistema solar, esos nudos de materia condensada -casi siempre desprendidas de la propia estrella en formación- se convierten en planetas y, algunos, tienen a su vez en órbita otros pequeños nudos de materia que serán sus futuros satélites.

Púlsar encerrado en una superburbuja

           A àrtir de ese disco protoplanetario se fueron formando los mundos del sistema solar

Ese cuadro nos proporciona una imagen más o menos verídica de cómo se llegaron a formar los mayores planetas del Sistema solar: Júpiter Saturno, Urano y Neptuno. Los que denominamos planetas gigantes y están formados principalmente por hidrógeno y helio. Los mismos gases que componían la masa del Sol y de la mayoría de las estrellas. Pocas dudan caben al respecto: Los planetas gigantes se formaron de la misma manera que una estrella, con el importante detalle que, no pudieron llegar a fusionar el hidrógeno en Helio debido a su escasa masa.

Claro que, como en todo lo que gira alrededor del inmenso Universo, también en la formación de planetas alrededor de su estrella van surgiendo polémicas. Recientemente se han descubierto planetas que giran en sentido contrario al de sus estrellas madres y, tal realidad, va en contra de lo que sería físicamente normal, es decir, que giren todos en el mismo sentido que lo hace la estrella.

Resultado de imagen de LOS GIGANTES GASEOSOS DEL SISTEMA SOLAR

Todas esas explicaciones relacionadas con los planetas gigantes, pueden ser más o menos acertadas pero, de momento, esas son las hipótesis que tenemos de cómo se formaron los gigantes gaseosos pero, ¿qué pasó con Mercurio, Venus, la Tierra y Marte, esos planetas pequeñitos y rocosos? Todos ellos, conocidos bajo la denominación de planetas parecidos a la Tierra, son, como podéis contemplar en la imagen comparativa de arriba, bastante pequeños si los comparamos con los planetas gigantes; por ejemplo la Tierra es la trescientasava parte de Júpiter por lo que a la masa se refiere. Es esa pequeña masa de la Tierra la que constituye un problema. No parece haberse podido condensar a partir de los gases de la nube primigenia como hizo Júpiter y el resto de sus hermanos gigantes gaseosos.

Resultado de imagen de Los planetas telúricos o rocosos

                          Mercurio, Venus, la Tierra y Marte

Entonces, ¿cómo se formó la Tierra y sus hermanos más pequeños? Se trata, aunque no se hable mucho de ello, de uno de los misterios en el relato científico del Génesis. Los astrónomos creen que sucedió algo así:

“Al principio había una nube de materia gaseosa, con el joven Sol en su centro. Gradualmente, a medida que fueron pasando los años, esa nube fue perdiendo su calor en el espacio. Cuando se enfrió lo suficiente, los átomos del interior de la nube comenzaron a juntarse hasta formar pequeños grupos de materia sólida.

Resultado de imagen de Protoplanetas

Imagen relacionadaImagen relacionada

Estos primeros grumos de materia que aparecieron en abundancia eran diminutos trozos de Hierro. Y fueron los primeros en hacer su aparición porque los átomos de hierro tienen más probabilidad de unirse unos a otros que la mayoría de los átomos restantes y es, por tanto, más probable que se reúnan formando pequeños bloques. Después del hierro, los siguientes trozos de materia sólida en aparecer fueron granos de materiales parecidos a las rocas. A continuación, esos trozos de hierro y de roca comenzaron a dar vueltas alrededor del Sol, inmersos en los gases más ligeros de la nube primordial. Algunos chocaron y se unieron, ose vieron atraídos hasta unirse por la fuerza de gravedad, formando así cuerpos más grandes, hasta alcanzar el diámetro de un kilómetro y medio.

A continuación el Sol resplandeció, en medio de un violento estallido, como acostumbran a hacer las estrellas jovenes que quieren demostrar su fuerza energética lanzando emisiones ultravioletas al espacio interestelar mediante violentas erupciones. Ese estallido primordial del Sol, el viento solar, hizo volar los gases ligeros partiendo de la zona interior del Sistema solar. Pero aquellos cuerpos formados por hierro y roca, que contenían miles de millones de átomos independientes, eran demasiado pesados para ser expulsados fuera de la corriente de partículas por la radiación procedente del Sol. Continuaron moviéndose en círculo alrededor del Sol y acumulando materia que los hizo más y más grandes, los gases ya habían desaparecido y, cada uno de ellos: Mercurio, Venus, La Tierra y Marte, quedaron así convertidos en pequeños planetas rocosos que llevaban, en su interior, una inmensa cantidad de elementos que serían la seña de identidad de cada uno de ellos con el paso del tiempo.”

Resultado de imagen de Planetas enanos

También, más allá de los grandes planetas gaseosos, se formaron pequeños planetas o, planetas enanos que no eran de gas y sí de materiales sólidos y, ese hecho -planetas rocosos cerca y lejos del Sol-, aún nadie ha sabido explicarlo de manera convincente. ¿Por qué unos están cerca del Sol, después se produce una transición intermedia de planetas gasesoso enormes y, mucho más allá, vuelven a formarse pequeños planetas sólidos? Y, por otra parte, están las lunas que acompañan a esos planetas gigantes que, como la misma Tierra, también son sólidas y, como sabemos tienen hasta sus propios volvanes y océanos.

Imagen relacionada

Al menos seis lunas exteriores tienen océanos bajo la superficie que podrían ser lugares acogedores para la vida: Europa, Ganímedes, Calisto, Titán, Encelado y Tritón. Y, de todos esos pequeños mundos que orbitan alrededor de los grandes planetas gaseosos, tampoco tenemos una explicación muy fiable que digamos. Así que, buscamos el Bosón de Higgs, hablamos de “materia oscura”, nos sumergimos en los profundos océanos del “vacío”, nos atrevemos con teorías que van mucho más allá de nuestros conocimientos actuales de la materia y de la energía que conforma el Universo y… ¡No conocemos ni nuestro propio entorno! Lo único que sabemos de manera más acertada es, la formación del Sol, del resto de los cuerpos planetarios y demás cohorte que por el espacio de “nuestro barrio”, al que llamamos Sistema solar, saber lo que se dice saber, no sabemos lo suficiente como para poder dar una explicación fidedigna de lo que en realidad sucedió en su formación.

Claro que todas esas dudas que tenemos con nosotros, no deben llevarnos al equívoco, ni tampoco debe crear una imagen falsa que nos pueda poner en un plano de desconocimiento que no reflejaría la realidad. Simplemente es, un exponente claro y fiel de las muchas cosas que nos quedan por conocer. Lo cierto es que, en todos los diversos planos del saber humano en relación con la Naturaleza, hemos avanzado de manera asombrosa y, hoy día, podemos decir que estamos en unos aceptables niveles de conocimiento que, sin embargo, son todavía insuficientes para cubrir todo aquello que necesitamos.
Sabemos de las grandes estructuras del Universo, los grandes cúmulos de galaxias y, también, sabemos del átomo y las pequeñas partículas que los conforman, hemos llegado a desvelar las fuerzas que actúan en nuestro Universo y, descubierto, sobre nosotros mismos, sobre la vida, muchos de sus misterios. Sin embargo es mucho más, lo que nos queda por saber.

No es solamente el Sistema solar en el que vivimos lo que nos esconde secretos que tenemos que desvelar, sino que, mucho más cerca de nosotros aún, es decir, nosotros mismos, somos unos desconocidos y no sabemos explicar como se pudo transmutar, “la materia inerte” en “pensamientos”. ¡Son tántos los secretos que no hemos sabido desvelar…!

En un lugar como ese que vemos arriba comenzó todo, surgió nuestra estrella, el Sol y a su alrededor los planetas de nuestro entorno y todos los objetos que los acompañan. Pasados algunos miles de millones de años, se produjo la maravillossa transición que dio lugar a lo que podemos conte,mplar en la segunda imagen de abajo, aquella primera célula replicante que nos trajo aquí. A partir de aquel momento, la historia de nuestra especie caminó por inciertos caminos de peligros e inciertos futuros pero, a pesar de todo, aquí estamos para tratar de saber…

¡Quiénes somos, hacia donde vamos y, donde estamos!

¿Lo lograremos?

emilio silvera