Algunos consideran que unos 400 mini agujeros negros podrían atravesar la Tierra cada año. Además, podrían ser detectables por sus fuertes emisiones electromagnéticas. Quizás ha llegado la hora de buscarlas. Cosas como esta se leen de vez en cuando y también otras que…
“Como si de fantasmas cósmicos se tratase, es posible que agujeros negrosen miniatura atraviesen la Tierra diariamente sin crear ningún peligro, como sugiere un estudio reciente.
Los autores del estudio creen que estos minúsculos agujeros negros tienen un comportamiento completamente distinto al de sus hermanos mayores, llamados agujeros negros astrofísicos o de masa estelar.
A pesar de tener la masa de aproximadamente mil coches, un mini agujero negro es más pequeño que un átomo. Con ese tamaño un agujero negro no podría atraer mucha materia y en su lugar atraparía átomos y algunas moléculas más grandes a órbitas circulares, al igual que los protones atraen a los electrones en los átomos.
Así, los autores del estudio llaman a los mini agujeros negros que atraen materia a las órbitas «equivalentes gravitatorios de los átomos».”
¿Os acordáis? Tanto miedo a que el Gran Colisionador de Hadrones (LHC) de Ginebra formara un agujero negro que podría haber atraído toda la materia a su alrededor y que pudiera haber destruído el planeta y resulta que, según un grupo de investigadores, es posible que este tipo de fenómenos, al menos los que son muy diminutos, atraviesen la Tierra cada día sin que ocurra absolutamente nada, son inofensivos y su ínfimo tamaño los hace inofensivos. Y esto, según un atrevido estudio publicado por una pareja de físicos en arXiv. org, porque quizás interactúen con la materia de forma muy diferente a como se creía hasta ahora.
Los mini agujeros negros (si realmente existen) podrían ser diferentes a los gigantes que nos ha enseñado la astrofísica y cuya imagen todos tenemos en la cabeza. Los agujeros astrofísicos se originan cuando se colapsan las grandes estrellas para crear una región en el espacio cuya gravedad es tan potente que nada puede escapar a su atracción. Sus dimensiones son monstruosas. El que se encuentra en el centro de nuestra galaxia tiene 4 millones de veces la masa del Sol.
Si alguna vez existieron nunca ningún ingenio tecnológico lo pudo captar
“Sin embargo, el caso de los microagujeros es diferente en ese aspecto, puesto que la pequeña masa de un microagujero negro podría ser del orden de la masa de Planck, que es aproximadamente 2 × 10−8 kg ó 1,1 × 1019GeV. A esta escala, la fórmula de la termodinámica del agujero negro predice que el miniagujero negro podría tener una entropía de sólo 4π nats; una temperatura Hawking de , requiriendo energía térmica cuántica comparable aproximadamente a la masa del miniagujero negro completo; y una longitud de onda Compton equivalente al radio de Schwarzschild del agujero negro (esta distancia siendo equivalente a la longitud de Planck). Este es el punto donde la descripción gravitacional clásica del objeto no es válida, siendo probablemente muy importantes los efectos cuánticos de la gravedad.”
Todo esto me recuerda lecturas en las que, un gran físico, Gerard ´t Hooft, nos contaba como había dedicado gran parte de su tiempo al estudio y la investigación del comportamiento de los agujeros negros y de cómo las consideraciones obtenidas le llevaron a ese alto nivel sobre las leyes últimas de la física. Él suponía tener un pequeño agujero negro que obedecía tanto a las leyes de la mecánica cuántica como a las de la gravedad y, se preguntaba: ¿cómo se debería describir su comportamiento?
¿Se comportaría ese agujero negro como si fuera un átomo o molécula que obedece las leyes de la mecánica cuántica? No todo el mundo está de acuerdo con ese punto de vista. Algunos dicen que los agujeros negros son algo totalmente diferentes. ¿Pero que es tan diferente en ellos? Los agujeros negros emiten partículas, igual que hacen los átomos radiactivos. Entonces, ¿por qué no deberían seguir las mismas reglas? Para decirlo de otra manera más clara, ´t Hooft creía que ellos tenían que obedecer absolutamente esas leyes si tenemos que creer en alguna clase de “ley y orden” a escala de la longitud de Planck.
Uno de los resultados de sus cálculos le produjo una enorme sorpresa. ¡Se encontró prácticamente con las mismas expresiones matemáticas que las de la Teoría de cuerdas! La fórmula para la captura y emisión de partículas por un agujero negro es exactamente igual a la fórmula de Veneziano. Aquello era extraño ya que no era un tema de cuerdas.
Muchas son las sorpresas que nos darán todavía los agujeros negros que esconden muchos secretos sin desvelar
Claro que la teoría de cuerdas está por acabar y es difícil predecir si finalmente será compatible con la teoría de la Gravedad. En cualquier caso, ambas teorías están incompletas y tienen mucho más que decir…en el futuro. Seguramente serán simplemente los comienzos de algo mucho más profundo y bello que, de una vez por todas nos explique como es, en realidad, el Universo que habitamos.
La deformación del espacio-tiempo, de la materia, las transiciones de fase aún no comprendidas, lo que hay más allá de los Quarks, esas cuerdas vibrantes que se suponen…serán el primer estadio de la materia. Si creemos a Stephen Hawking, los agujeros negros son sólo el principio de algo más profundo, de una deformación mucho más seria del “espaciotiempo espumoso”.
Allí donde está presente la espuma cuántica de la que hablaban Wheeler y Planck. Y eso no es todo. Algunos como el mismo Hawking y sobre todo Sydney Coleman de Harvard, especulan con el papel que en todo esto juegan los “agujeros de gusano”, esos conductos del espaciotiempo que nos podrían llevar hacia otras latitudes muy lejanas e incluso, hacia otras galaxias. Tales rarezas son admitidas por la teoría de Einstein y, como nuestra imaginación es imparable… Pasa lo mismo que ocurre en la mecánica cuántica, en la que todo lo que está permitido sucede obligatoriamente, es decir, si alguna configuración es posible, ésta tiene una probabilidad de que realmente ocurra.
Claro que, seguramente y al final del camino, los agujeros de gusano sólo serían una semilla que daría lugar al nacimiento de una teoría mejor, más avanzada y fiable que nos marcara el verdadero camino para burlar el muro que supone la velocidad de la luz sin tener que violar esa constante.
Muchas son las cosas que aún nos resultan misteriosas pero, ¿Qué alcanzaremos en el futuro? ¿Podremos realmente dominar y disponer de la energía de Planck que nos lleve hasta lugares inimaginables? ¿Serán nuestras mentes capaces de evolucionar hasta el extremo de que, algún día muy lejano en el futuro pudiéramos estar conectados con el ritmo vital del Universo, la energía pura que todo lo rige? Manejar esas potentes energías sería manejar los mundos, el espacio y, sobre todo, el Tiempo tan vital para nosotros.
¡Atravesar la pared y salir por el otro lado! El principio de incertidumbre dá lugar también a un efecto curioso conocido como efecto túnel: si se dispara un perdigón de plástico contra un muro el perdigón rebotará, porque no tiene energía suficiente para penetrarlo, pero a nivel de partículas fundamentales, la mecánica cuántica muestra inequívocamente que las funciones de onda de las partículas que constituyen el perdigón tienen todas ellas una parte diminuta que SÍ SALE a través del muro. ¿
Está claro que si nos dejamos llevar por nuestras elucubraciones, sin querer, nos metemos en terrenos donde las ideqas comienzan a ser extravagantes, entramos en el ámbito de la filosofía y, ¿por qué no? en el de la ciencia ficción pensando en lo que podría ser. Comenzamos a imaginar como viajeremos en el futuro imitando a los electrones cuando dan su “salto cuántico” y, de esa manera, iremos tan ricamente de un universo a otro al dominar esa cosmología cuántica que nos permitirá realizar ¡tántas maravillas!
Así, las partículas microscópicas pueden tomar prestada energía suficiente para hacer lo que es imposible desde el punto de vista de la física clásica, es decir abrirse camino, como por un túnel, a través del muro ( aunque dado la enorme cantidad de partículas que posee el muro el efecto túnel se vuelve muy improbable pues todas y cada una de las partículas tendrían que tener la suerte de poder abrirse camino juntas
Esta escena que la hemos visto en muchas películas, sólo podría ser posible si no estuvieran los electrones rodeando a los átomos que conforman la pared. Cuando batimos palmas, por ejemplo, nuestras manos no pasan la una a través de la otra precisamente por eso, porque los electrones lo impiden y forman un caparazón electromagnético alrededor de todos los átomos que componen nuestras manos que, al batirlas chocan entre sí.
Cuando dejamos volar nuestra imaginación ayudada por los pocos conocimientos que de las cosas tenemos, podemos llegar a conclusiones realmente curiosas.
Los días pasados un terremoto recorría el mundo matemático: este lunes, 24 de septiembre, Sir Michael Atiyah, uno de los matemáticos más laureados y respetados de la historia anunciaba en el abstract de su conferencia en el Laureate Forum de Heilderberg, que había demostrado de una manera sencilla la hipótesis de Riemann.
El abstract decía textualmente: ”Es un conocido problema matemático sin resolver desde el año 1859. Yo presentaré una prueba simple utilizando una perspectiva radicalmente nueva. Está basada en los trabajos de Von Neumann (1936), Hirzebruch (1954) y Dirac (1928)”.
Si el anuncio fuese de otra persona, el revuelo no hubiera sido de esta envergadura, pero Michael Francis Atiyah, de 89 años, es medallista Fields en 1966 y Premio Abel en 2004 (entre otras muchas distinciones). La duda sobre esta supuesta prueba surgió enseguida, aludiendo a su edad y a otros anuncios fallidos previos, y también a la singularidad de la ocasión, cuando hace poco más de un mes, Atiyah impartió una conferencia en el Congreso Internacional de Matemáticos de Río de Janeiro.
¿Qué pinta π aquí?
¿Y qué dice esta famosa conjetura? Viene de una de esas extrañas relaciones internas de las matemáticas, entre los números primos y una función entre los números complejos llamada precisamente función zeta de Riemann, de manera que los ceros de esta función (los valores donde se anula) tienen todos parte real 1/2. Así que probar la conjetura de Riemann nos da una buena idea de cómo se distribuyen los números primos, que sabemos desde Euclides que son infinitos. Y los números primos son los ladrillos con los que se construyen todos los demás, piezas claves en muchas aplicaciones como en la criptografía.
Las pistas que daba Atiyah en su abstract, se referían a tres trabajos: el de John von Neumann titulado On an algebraic generalization of the quantum mechanical formalism, esencial para la formulación matemática de la mecánica cuántica; uno segundo titulado Arithmetic genera and the Theorem of Riemann-Roch, clásico en geomería algebraica, escrito por el matemático alemán Hirzebruch, y cuyo resultado principal está basado en la teoría del cobordismo de René Thom; y otra obra clásica del premio Nobel P.A.M. Dirac, The Quantum Theory of the Electron, en el que introduce la ecuación de onda del electrón unificando la mecánica cuántica y la relatividad especial.
Sólo un genio como Atiyah podría ser capaz de presentar un abstract basado en estas tres piezas maestras de tres maestros y decirnos que así ha probado de manera sencilla la hipótesis de Riemann. Sin embargo, tras una muestra de erudición matemática y física (implicando incluso a la famosa constante de estructura fina de Arnold Sommerfeld), nos hemos quedado con la miel en los labios. Atiyah usa la función de Todd (llamada sí en honor de su antiguo profesor John Arthur Todd) para obtener una contradicción, pero las dudas surgen. Por una parte, hay cuestiones técnicas sobre las funciones implicadas, y por otra, da la impresión de ser un argumento circular. En cualquier caso, esta presentación ha servido para remover el interés sobre las matemáticas y esta extraordinaria conjetura, uno de los problemas del milenio. Sabremos más en los próximos días sobre la veracidad o no de la prueba de Atiyah.
Una composición artísdtica del quásar brillante descubierto hasta el momento: ULAS J1120+064.
Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negrosupermasivo en su centro. Su brillo los convierte en poderosos faros que pueden ayudar a investigar la época en que se formaron las primeras estrellas y galaxias.Son útilespara ir comprendiendo cómo se formó el universo al revelar el estado de ionización del medio intergaláctico que tuvo lugar unos mil millones de años después del Big Bang. Parece que ULAS J1120+064 es es quásar más distante descubierto hasta el momento. Situado a más de doce mil millones de años-luz de nuestra Galaxia, está cerca de los limites del universo visible. La masa del agujero negro situado en el centro de ULAS J1120+0641 equivale a dos mil millones de veces la masa del Sol.
Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia. STScI.
Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negrossupermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.
La imagen de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidadpropia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.
Imagen de 3C273 recogida por el telescopio espacial Chandra
Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.
Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.
Comparando las dos imágenes, aunque sean tan distitas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.
Lo asombroso de los quásares está en una pregunta que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.
El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.
… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.
Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.
Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.
La teoría prevé que el diámetro de un agujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.
Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.
La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio, el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.
Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.
Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.
Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los …
Se conocen más de 200.000 cuásares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc (780 millones de años luz) y el más lejano a 6 Gpc (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.
Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.
Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aíun teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se entinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?
Antes de dar comienzo a la charla sobre el tema propuesto hoy, os quiero decir que estamos rodeados de cosas maravillosas en las que, inmersos en nuestros problemas cotidianos, no prestamos atención.
Viajamos en una “nave espacial” llamada Tierra que se mueve y gira sobre sí misma a 1.700 Km/h., viajando alrededor del Sol a 107.000 Km/h., no sentimos ningún movimiento debido a que estas velocidades son constantes, ni se aceleran ni desaceleran.
Todo en nuestro Universo nace con tiempo determinado de vida que, que de no ocurrir algún percance inesperado, se cumplirá: