viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Curvatura del Espacio-Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Densidad Crítica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Así representan algunos como sería el camino para burlar la velocidad de la luz y desplazarnos por el espaciotiempo a distancias inmensas en tiempos y espacios más cortos. Es el famoso agujero de gusano o el doblar el espacio trayendo hacia tí el lugar que deseas visitar.

Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

Los modelos de universo que pudieran ser, en función de la Densidad Crítica (Ω) sería plano, abierto o cerrado. La Materia tiene la palabra.

La curvatura del espacio–tiempo es la propiedad del espacio–tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espacio–tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

Los Modelos Cosmológicos son variados y todos, sin excepción, nos hablan de una clase de universo que está conformado en función de la materia que en él pueda existir, es decir, eso que los cosmólogos llaman el Omega negro. La Materia determinará en qué universo estamos.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio–tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson–Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio–tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein–de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

La geometría del espacio-tiempo en estos modelos de universos está descrita por la métrica de Robertson-Walker y es, en los ejemplos precedentes, curvado negativamente, curvado positivamente y plano, respectivamente (Alexander AlexandrovichFriedmann). Y, las tres epresentaciones gráficas de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividad especial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

gemelos en el tiempo

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un  anciano jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. Parece mentira que la velocidad con la que podamos movernos nos puedan jugar estas malas pasadas.

Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Durante diez dias del mes de enero de 1999 astrofísicos italianos y estadounidenses efectuaron un experimento que llamaron Boomerang. El experimento consistió en el lanzamiento de un globo con instrumentos que realizó el mapa mas detallado y preciso del fondo de radiación de microondas (CMB) obtenido hasta el momento. Su conclusión: el universo no posee curvatura positiva o negativa, es plano.

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein–de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

 Los cosmólogos y astrofísicos, en sus obervaciones, notaron que las galaxias se alejaban las unas de las otras a mayor velocidad de la que correspondería en función de la materia que se puede ver en el Universo, había algo que las hacía correr más de la cuenta, así que, el primero en poner nombre all fenómeno que se ha dado en llamar  “materia oscura” fue el astrofísico suizo Fritz Zwicky, del Instituto Tecnológico de California (Caltech) en 1933. Con su invento (intuición), dejó zanjado el tema que traía de cabeza a todos los cosmólogos del mundo, encantados con que al fín, las cuentas cuadraran.

Mencionamos ya la importancia que tiene para diseñar un modelo satisfactorio del universo, conocer el valor de la masa total de materia que existe en el espacio. El valor de la expansión o de la contracción del universo depende de su contenido de materia. Si la masa resulta mayor que cierta cantidad, denominada densidad crítica, las fuerzas gravitatorias primero amortiguarán y luego detendrán eventualmente la expansión. El universo se comprimirá en sí mismo hasta alcanzar un estado compacto y reiniciará, tal vez, un nuevo ciclo de expansión. En cambio, si el universo tiene una masa menor que ese valor, se expandirá para siempre. Y, en todo esto, mucho tendrá que decir “la materia oscura” que al parecer está oculta en alguna parte.

El  símbolo Ω (parámetro de densidad) lo utilizan los cosmólogos para hablar de la densidad del universo.

Ω =r /rcrit

Tenemos así que para Ω>1 tenemos que el universo se contraería en un futuro Big Crunch, para Ω<1 e universo debería expandirse indefinidamente (Big Rip) y para Ω=1 el universo se debería expandir pero deteniéndose su expansión asintóticamente.

Además Las observaciones del fondo de microondas como las WMAP dan unas observaciones que coinciden con lo cabría esperar si la densidad total del universo fuera igual a la densidad crítica.

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica y poder saber en qué clase de universo nos encontramos: Plano, cerrado o abierto.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. En la imagen se quiere representar tal efecto.

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

Un sistema solar en el que los planetas aparecen cohexionados alrededor del cuerpo mayor, la estrella. Todos permanecen unidos gracias a la fuerza de Gravedad que actúa y los sitúa a las adecuadas distancias en función de la masa de cada uno de los cuerpos planetarios.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

No pocas veces hemos querido utilizar la fuerza electromagnética para crear escudos a nuestro alrededor, o, también de las naves viajeras, para evitar peligros exteriores o ataques. Es cierto que, habiéndole obtenido muchas aplicaciones a esta fuerza, aún nos queda mucho por investigar y descubrir para obtener su pleno rendimiento.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Para saber dónde se encuentra una partícula hay que iluminarla. Pero no se puede utilizar cualquier tipo de luz: hay que usar luz cuya longitud de onda sea por lo menos, inferior a la partícula que se desea iluminar. Pero sucede que cuanto más corta es la longitud de onda, más elevada es la frecuencia, de modo que esa luz transporta una muy elevada energía. Al incidir sobre la partícula ésta resulta fuertemente afectada.
El científico puede finalmente averiguar donde esta la partícula, pero a cambio de perder toda información acerca de su velocidad. Y a la inversa, si consigue calcular la velocidad, debe renunciar a conocer su posición exacta.

emite3.gif (3517 bytes)

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida. No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Se denomina cuerpo negro a aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros.

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

                                           La radiación está presente en todos los objetos y cuerpos

Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

Existen en el Universo configuraciones de fuerzas y energías que aún no podemos comprender. La vastedad de un Universo que tiene un radio de 13.700 millones de años, nos debe hacer pensar que, en esos espacios inmensos existen infinidad de cosas y se producen multitud de fenómenos que escapan a nuestro entendimiento. Son fuerzas descomunales que, como las que puedan emitir agujeros negros gigantes, estrellas de neutrones magnetars y explosiones de estrellas masivas en supernovas que, estando situadas a miles de millones de años luz de nuestro ámbito local, nos imposibilita para la observación y el estudio a fondo y sin fisuras, y, a pesar de los buenos instrumentos que tenemos hoy, siguen siendo insuficientes para poder “ver” todo lo que ahí fuera sucede.

¡El Universo! Todo lo que existe.

emilio silvera

Una vieja entrevista con Kip thorne

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Kip Thorne posa frente a la sede de la Royal Society de Londres antes de la entrevista
Kip Thorne posa frente a la sede de la Royal Society de Londres antes de la entrevista / CARMEN VALIÑO (EL PAÍS)

Kip Thorne (Logan, EE UU, 1940) es uno de los mayores expertos mundiales en agujeros negros. Últimamente también se ha convertido en una estrella de la divulgación como asesor de Interstellar, la película que plantea una expedición humana a un agujero de gusano, seguida de una caída en un agujero negro, seguida de un viaje hacia la quinta dimensión. La semana pasada, este físico teórico del Instituto Tecnológico de California acudió a Londres para la presentación de la medalla Stephen Hawking, impulsada por el Festival Starmus. Después de la ceremonia, el físico explicó a Materia sus próximos proyectos.

Simulación de lente gravitacional por un agujero negro que distorsiona la imagen de una galaxia en el fondo

Pregunta. ¿Por qué cree que los agujeros negros son tan atractivos para la gente?

Respuesta. Bueno, son misteriosos, son extraños, llevan la marca personal de Stephen Hawking… Para los científicos, son únicos. Aunque se crearon por la implosión de una estrella, la materia desaparece en la singularidad en el centro del agujero negro. Por eso están hechos solo de tiempo y espacio curvos, no tienen materia, son completamente diferentes de ti y de mí.

P. Para Interstellar hizo cálculos reales de qué sucede si caes en un agujero negro. ¿Qué es lo más interesante que descubrió?

R. Lo más excitante fue ver cuál sería el aspecto de Gargantúa, el agujero negro. Es maravillosa, con ese halo alrededor y el disco que lo cruza. Otra cosa muy interesante es cuando Cooper [Matthew McConaughey] entra en el agujero negro. En ese momento dice: estoy cruzando el horizonte de sucesos [el punto de no retorno en un agujero negro]. Claro, nada escapa de un agujero negro, ni siquiera la luz, por lo que de frente no verías nada, pero, si miras atrás y ya estás dentro de él, sí verías el universo exterior. Y es una imagen maravillosa en la que el disco de gas caliente en torno al agujero negro es un anillo en el cielo que contiene al universo.

Los agujeros negros están hechos de tiempo y espacio curvo, no tienen materia, son completamente diferentes de ti y de mí”

 

P.¿Y qué pasa después?

R. Pues sabemos que hay tres singularidades diferentes dentro de un agujero negro. Una singularidad es un punto en el que la curvatura del espacio-tiempo se hace infinitamente fuerte. Hay una singularidad descubierta por tres físicos teóricos rusos alrededor de 1970. Si caes en esa, estás totalmente destruido, te haces trizas de forma caótica y salvaje. Una segunda singularidad está hecha de todas las cosas que caen al agujero negro después de ti. Este material cae durante miles de millones de años, pero el tiempo va tan lento dentro de un agujero negro que todo ese material se te cae encima en una fracción de segundo, como si fuera una plancha. No me gustaría que eso me pasase. Cooper encuentra la tercera singularidad, que es la más débil de todas. Esta singularidad la causa todo lo que cayó al agujero negro antes que tú. Una fracción pequeña de todo ese material rebotará como si fuera una piedra que da saltos sobre el agua de un estanque. Esa pequeña fracción de toda la materia que cayó al agujero negro sale despedida y saca con él a Cooper en una fracción de segundo. Así que hay una posibilidad de que sobrevivas a un agujero negro.

P. ¿Qué será lo siguiente para usted en este campo?

Las leyes de la gravedad cuántica nos dirán si es posible viajar en el tiempo”

 

R. Stephen Hawking, Lynda Obst, una productora de Hollywood, y yo, hemos escrito nueve borradores de una nueva película. Es muy diferente de Interstellar. Estamos empezando a hablar con posibles guionistas y estudios sobre ella. Es aún en un momento inicial del proyecto

P. ¿De qué tratará?

R. Algo que aprendí de Christopher Nolan es que no dices nada a la gente sobre una película antes de tiempo. Vas filtrando la información en el momento adecuado para aumentar la expectación, así que por ahora solo puedo decir esto. Y que tendrá física interesante.

P. ¿Cuál es el próximo gran reto en la física de los agujeros negros?

R. Hay algo que nunca hemos visto: cómo se comportan dos agujeros negros que chocan y crean una tormenta en el espacio-tiempo. La colisión hace que, por un breve periodo, el paso del tiempo acelere, desacelere, vuelva a acelerar… todo de una forma salvaje, caótica. Esto deforma el espacio en una dirección y otra, que gire en el sentido de las agujas del reloj y después al revés, crea vórtices que curvan el espacio y que luchan unos con otros. Hemos visto esto muy recientemente en simulaciones por ordenador y empezamos a entender cómo se comporta una tormenta en la que el tiempo y el espacio oscilan de forma salvaje. Nunca lo hemos observado, pero lo vamos a hacer muy pronto.

P. ¿Cómo?

R. Cuando estos agujeros negros chocan crean ondas en el tejido del espacio-tiempo que se llaman ondas gravitacionales. Estas nos darán suficiente información como para ir hacia atrás en el tiempo partiendo de la onda que vemos y las simulaciones y probar si estas predicen de forma correcta lo que está pasando.

P. ¿Cuándo esperan captarlas?

LIGO celebrates 1st anniversary of GW detection

R. Para hacerlo hemos construido los detectores LIGO. El equipo comenzó su primera tanda de búsquedas de ondas gravitacionales con los detectores avanzados en septiembre de 2015 y seguirá haciéndolo hasta enero de 2016. Estos detectores, incluso en la primera búsqueda, son tan sensibles que pueden captar un choque de agujeros negros a 1.000 millones de años luz de la Tierra, es decir, un décimo de la distancia hasta el límite del universo observable. Si tenemos suerte, captaremos algo en la primera búsqueda.

P. ¿Cuál es la próxima gran frontera de la física?

civilizaciones

Es muy probable que haya civilizaciones más avanzadas que las nuestras”

 

R. Entender las leyes de la gravedad cuántica que derivan de combinar la relatividad/a/”>Relatividad General con la física cuántica. No entendemos esas leyes bien, podría ser alguna variante de la teoría de cuerdas o la teoría M. Si tuviera que hacer una predicción diría que ese es el camino por el que iremos. Una vez entendamos esas leyes nos contarán de una forma muy clara el nacimiento del universo, qué pasa en la singularidad dentro de un agujero negro y si es posible retroceder en el tiempo.

P. ¿Cree que eso abrirá los viajes en el tiempo?

R. Abrirá una puerta a los viajes en el tiempo… o la cerrará [risas].

P. En uno de sus libros especulaba que si la humanidad quiere sobrevivir debería irse a un agujero negro ¿Cree que es es nuestro futuro?

R. Hará falta mucho tiempo hasta que los humanos podamos explorar un agujero negro. Pero es verdad que en el giro de un agujero negro hay una enorme cantidad de energía rotacional que la naturaleza extrae para producir los gigantes brotes que salen de los núcleos de las galaxias. Los humanos de una civilización avanzada podrían usarlos como una descomunal fuente de energía mucho más potente que la fusión nuclear que sucede en el interior de las estrellas.

P. ¿Piensa que hay otras formas de vida inteligente en el universo?

R. Es muy probable que haya vida inteligente en el universo, civilizaciones más avanzadas que las nuestras. Pero las distancias entre las estrellas son tan enormes que el viaje interestelar es cada vez más difícil. Dudo mucho que otra civilización haya visitado la Tierra, pero creo que es muy probable que nos comuniquemos con ellos algún día, quizás antes de que yo muera, quizás no. Buscar señales de civilizaciones extraterrestres es una de los empeños científicos más importantes que hay.

P. ¿Qué fue lo más importante que nos dejó Albert Einstein, la Relatividad General de la que se cumplen ahora 100 años?

R. Nos dio una ley que controla las leyes de la naturaleza. Es el principio de relatividad, que dice que sean cuales sean las leyes de la naturaleza, tienen que ser la mismas vistas por cualquier persona en cualquier lugar del universo si se están moviendo libremente. Creo que ese puede ser el mayor logro intelectual de todos los tiempos.

Hasta aquí aquella entrevista. A partir de ahora, con el descubrimiento publicado, comenzaremos una nueva etapa sobre el conocimiento del Universo que, de seguro., nos traerá muchyas sorpresas.