jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Repòrtaje periodístico sobre Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en Vida en otros mundos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Publica ABC-Ciencia

EXOMARS El lugar de Marte donde Europa buscará señales de vida

 

La Agencia Espacial Europea (ESA) ha elegido las dos zonas candidatas para el aterrizaje del robot de la misión ExoMars en 2021

Robot de exploración ExoMars 2020 y plataforma rusa de superficie (al fondo)

  Robot de exploración ExoMars 2020 y plataforma rusa de superficie (al fondo) – ESA

Imagen relacionada

Aunque la misión ExoMars («Exobiology on Mars») será recordada sobre todo por el fracaso del aterrizaje del módulo de aterrizaje Schiaparelli, en octubre de 2016, la misión estrella para explorar Marte de la Agencia Espacial Europea (ESA) sigue adelante. Recientemente la agencia escogió los dos lugares del planeta rojo donde posiblemente posará el rover de exploración ExoMars 2020. Este robot perforará hasta dos metros del subsuelo y estudiará la habitabilidad del planeta (las probabilidades de que haya vida), haciendo un sofisticado análisis de moléculas orgánicas.

Map

La ESA ha escogido para el aterrizaje dos lugares que en el pasado fueron muy abundantes en agua: dos elipses de 120 por 19 kilómetros en la zona de Oxia Planum y Mawrth Vallis. Ambos son interesantes desde el punto de vista científico y además son lisos y carecen de elementos que puedan dificultar el aterrizaje, el despliegue y la salida del rover.

Ambos regiones serán estudiadas ahora con más detalle y en 2019 se escogerá el lugar definitivo de aterrizaje. El lanzamiento del rover está previsto para julio de 2020, y se espera que aterrice en Marte en 2021.

Junto al rover de exploración, la ESA desplegará una plataforma científica estacionaria rusa. Mientras tanto, el satélite «Trace Gas Orbiter», TGO, que lleva orbitando el planeta rojo desde octubre de 2016, funcionará como estación repetidora, y llevará a cabo su misión científica, en la que básicamente tratará de averiguar si el origen del gas metano de la atmósfera de Marte es biológico.

Imagen relacionada

En busca de huellas de vida

 

Por primera vez, el robot podrá extraer muestras del subsuelo marciano, situadas a hasta dos metros de distancia. Esto resulta clave, ya que la superficie marciana es un entorno hostil para los organismo vivos debido a la potente radiación solar y cósmica. Por eso, gracias a la exploración bajo tierra, el robot tiene más posibilidades de encontrar muestras conservadas.

Las dos zonas escogidas están al norte del ecuador marciano, en una región llena de canales que preservan un rico registro geológico de la historia pasada del planeta, que hace miles de millones de años estaba cubierto de agua. Esto es muy importante, porque el propósito final de ExoMars es buscar huellas de vida pasada en Marte.

Mapa del terreno de Oxia Planum
Mapa del terreno de Oxia Planum- NASA/JPL-Caltech/Arizona State University; analysis: IRSPS/TAS-I

 

En Oxia Planum hay muchos canales ricos en arcillas formados en condiciones húmedas hace 3.900 millones de años.

Región de Mawrth Vallis
Región de Mawrth Vallis- ESA/DLR/FU Berlin

 

Por otro lado, en Mawrth Vallis hay un gran canal en cuyo entorno también hay sedimentos distribuidos en capas y que muestra una gran diversidad mineral. Ambos rasgos sugieren la presencia sostenida de agua durante varios cientos de millones de años, incluso quizás en estanques localizados.

Curvatura del Espacio-Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Densidad Crítica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Así representan algunos como sería el camino para burlar la velocidad de la luz y desplazarnos por el espaciotiempo a distancias inmensas en tiempos y espacios más cortos. Es el famoso agujero de gusano o el doblar el espacio trayendo hacia tí el lugar que deseas visitar.

Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

Los modelos de universo que pudieran ser, en función de la Densidad Crítica (Ω) sería plano, abierto o cerrado. La Materia tiene la palabra.

La curvatura del espacio–tiempo es la propiedad del espacio–tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espacio–tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

Los Modelos Cosmológicos son variados y todos, sin excepción, nos hablan de una clase de universo que está conformado en función de la materia que en él pueda existir, es decir, eso que los cosmólogos llaman el Omega negro. La Materia determinará en qué universo estamos.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio–tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson–Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio–tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein–de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

La geometría del espacio-tiempo en estos modelos de universos está descrita por la métrica de Robertson-Walker y es, en los ejemplos precedentes, curvado negativamente, curvado positivamente y plano, respectivamente (Alexander AlexandrovichFriedmann). Y, las tres epresentaciones gráficas de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividad especial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

gemelos en el tiempo

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un  anciano jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. Parece mentira que la velocidad con la que podamos movernos nos puedan jugar estas malas pasadas.

Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Durante diez dias del mes de enero de 1999 astrofísicos italianos y estadounidenses efectuaron un experimento que llamaron Boomerang. El experimento consistió en el lanzamiento de un globo con instrumentos que realizó el mapa mas detallado y preciso del fondo de radiación de microondas (CMB) obtenido hasta el momento. Su conclusión: el universo no posee curvatura positiva o negativa, es plano.

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein–de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

 Los cosmólogos y astrofísicos, en sus obervaciones, notaron que las galaxias se alejaban las unas de las otras a mayor velocidad de la que correspondería en función de la materia que se puede ver en el Universo, había algo que las hacía correr más de la cuenta, así que, el primero en poner nombre all fenómeno que se ha dado en llamar  “materia oscura” fue el astrofísico suizo Fritz Zwicky, del Instituto Tecnológico de California (Caltech) en 1933. Con su invento (intuición), dejó zanjado el tema que traía de cabeza a todos los cosmólogos del mundo, encantados con que al fín, las cuentas cuadraran.

Mencionamos ya la importancia que tiene para diseñar un modelo satisfactorio del universo, conocer el valor de la masa total de materia que existe en el espacio. El valor de la expansión o de la contracción del universo depende de su contenido de materia. Si la masa resulta mayor que cierta cantidad, denominada densidad crítica, las fuerzas gravitatorias primero amortiguarán y luego detendrán eventualmente la expansión. El universo se comprimirá en sí mismo hasta alcanzar un estado compacto y reiniciará, tal vez, un nuevo ciclo de expansión. En cambio, si el universo tiene una masa menor que ese valor, se expandirá para siempre. Y, en todo esto, mucho tendrá que decir “la materia oscura” que al parecer está oculta en alguna parte.

El  símbolo Ω (parámetro de densidad) lo utilizan los cosmólogos para hablar de la densidad del universo.

Ω =r /rcrit

Tenemos así que para Ω>1 tenemos que el universo se contraería en un futuro Big Crunch, para Ω<1 e universo debería expandirse indefinidamente (Big Rip) y para Ω=1 el universo se debería expandir pero deteniéndose su expansión asintóticamente.

Además Las observaciones del fondo de microondas como las WMAP dan unas observaciones que coinciden con lo cabría esperar si la densidad total del universo fuera igual a la densidad crítica.

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica y poder saber en qué clase de universo nos encontramos: Plano, cerrado o abierto.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. En la imagen se quiere representar tal efecto.

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

Un sistema solar en el que los planetas aparecen cohexionados alrededor del cuerpo mayor, la estrella. Todos permanecen unidos gracias a la fuerza de Gravedad que actúa y los sitúa a las adecuadas distancias en función de la masa de cada uno de los cuerpos planetarios.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

No pocas veces hemos querido utilizar la fuerza electromagnética para crear escudos a nuestro alrededor, o, también de las naves viajeras, para evitar peligros exteriores o ataques. Es cierto que, habiéndole obtenido muchas aplicaciones a esta fuerza, aún nos queda mucho por investigar y descubrir para obtener su pleno rendimiento.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Para saber dónde se encuentra una partícula hay que iluminarla. Pero no se puede utilizar cualquier tipo de luz: hay que usar luz cuya longitud de onda sea por lo menos, inferior a la partícula que se desea iluminar. Pero sucede que cuanto más corta es la longitud de onda, más elevada es la frecuencia, de modo que esa luz transporta una muy elevada energía. Al incidir sobre la partícula ésta resulta fuertemente afectada.
El científico puede finalmente averiguar donde esta la partícula, pero a cambio de perder toda información acerca de su velocidad. Y a la inversa, si consigue calcular la velocidad, debe renunciar a conocer su posición exacta.

emite3.gif (3517 bytes)

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida. No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Se denomina cuerpo negro a aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros.

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

                                           La radiación está presente en todos los objetos y cuerpos

Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

Existen en el Universo configuraciones de fuerzas y energías que aún no podemos comprender. La vastedad de un Universo que tiene un radio de 13.700 millones de años, nos debe hacer pensar que, en esos espacios inmensos existen infinidad de cosas y se producen multitud de fenómenos que escapan a nuestro entendimiento. Son fuerzas descomunales que, como las que puedan emitir agujeros negros gigantes, estrellas de neutrones magnetars y explosiones de estrellas masivas en supernovas que, estando situadas a miles de millones de años luz de nuestro ámbito local, nos imposibilita para la observación y el estudio a fondo y sin fisuras, y, a pesar de los buenos instrumentos que tenemos hoy, siguen siendo insuficientes para poder “ver” todo lo que ahí fuera sucede.

¡El Universo! Todo lo que existe.

emilio silvera

Una vieja entrevista con Kip thorne

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Kip Thorne posa frente a la sede de la Royal Society de Londres antes de la entrevista
Kip Thorne posa frente a la sede de la Royal Society de Londres antes de la entrevista / CARMEN VALIÑO (EL PAÍS)

Kip Thorne (Logan, EE UU, 1940) es uno de los mayores expertos mundiales en agujeros negros. Últimamente también se ha convertido en una estrella de la divulgación como asesor de Interstellar, la película que plantea una expedición humana a un agujero de gusano, seguida de una caída en un agujero negro, seguida de un viaje hacia la quinta dimensión. La semana pasada, este físico teórico del Instituto Tecnológico de California acudió a Londres para la presentación de la medalla Stephen Hawking, impulsada por el Festival Starmus. Después de la ceremonia, el físico explicó a Materia sus próximos proyectos.

Simulación de lente gravitacional por un agujero negro que distorsiona la imagen de una galaxia en el fondo

Pregunta. ¿Por qué cree que los agujeros negros son tan atractivos para la gente?

Respuesta. Bueno, son misteriosos, son extraños, llevan la marca personal de Stephen Hawking… Para los científicos, son únicos. Aunque se crearon por la implosión de una estrella, la materia desaparece en la singularidad en el centro del agujero negro. Por eso están hechos solo de tiempo y espacio curvos, no tienen materia, son completamente diferentes de ti y de mí.

P. Para Interstellar hizo cálculos reales de qué sucede si caes en un agujero negro. ¿Qué es lo más interesante que descubrió?

R. Lo más excitante fue ver cuál sería el aspecto de Gargantúa, el agujero negro. Es maravillosa, con ese halo alrededor y el disco que lo cruza. Otra cosa muy interesante es cuando Cooper [Matthew McConaughey] entra en el agujero negro. En ese momento dice: estoy cruzando el horizonte de sucesos [el punto de no retorno en un agujero negro]. Claro, nada escapa de un agujero negro, ni siquiera la luz, por lo que de frente no verías nada, pero, si miras atrás y ya estás dentro de él, sí verías el universo exterior. Y es una imagen maravillosa en la que el disco de gas caliente en torno al agujero negro es un anillo en el cielo que contiene al universo.

Los agujeros negros están hechos de tiempo y espacio curvo, no tienen materia, son completamente diferentes de ti y de mí”

 

P.¿Y qué pasa después?

R. Pues sabemos que hay tres singularidades diferentes dentro de un agujero negro. Una singularidad es un punto en el que la curvatura del espacio-tiempo se hace infinitamente fuerte. Hay una singularidad descubierta por tres físicos teóricos rusos alrededor de 1970. Si caes en esa, estás totalmente destruido, te haces trizas de forma caótica y salvaje. Una segunda singularidad está hecha de todas las cosas que caen al agujero negro después de ti. Este material cae durante miles de millones de años, pero el tiempo va tan lento dentro de un agujero negro que todo ese material se te cae encima en una fracción de segundo, como si fuera una plancha. No me gustaría que eso me pasase. Cooper encuentra la tercera singularidad, que es la más débil de todas. Esta singularidad la causa todo lo que cayó al agujero negro antes que tú. Una fracción pequeña de todo ese material rebotará como si fuera una piedra que da saltos sobre el agua de un estanque. Esa pequeña fracción de toda la materia que cayó al agujero negro sale despedida y saca con él a Cooper en una fracción de segundo. Así que hay una posibilidad de que sobrevivas a un agujero negro.

P. ¿Qué será lo siguiente para usted en este campo?

Las leyes de la gravedad cuántica nos dirán si es posible viajar en el tiempo”

 

R. Stephen Hawking, Lynda Obst, una productora de Hollywood, y yo, hemos escrito nueve borradores de una nueva película. Es muy diferente de Interstellar. Estamos empezando a hablar con posibles guionistas y estudios sobre ella. Es aún en un momento inicial del proyecto

P. ¿De qué tratará?

R. Algo que aprendí de Christopher Nolan es que no dices nada a la gente sobre una película antes de tiempo. Vas filtrando la información en el momento adecuado para aumentar la expectación, así que por ahora solo puedo decir esto. Y que tendrá física interesante.

P. ¿Cuál es el próximo gran reto en la física de los agujeros negros?

R. Hay algo que nunca hemos visto: cómo se comportan dos agujeros negros que chocan y crean una tormenta en el espacio-tiempo. La colisión hace que, por un breve periodo, el paso del tiempo acelere, desacelere, vuelva a acelerar… todo de una forma salvaje, caótica. Esto deforma el espacio en una dirección y otra, que gire en el sentido de las agujas del reloj y después al revés, crea vórtices que curvan el espacio y que luchan unos con otros. Hemos visto esto muy recientemente en simulaciones por ordenador y empezamos a entender cómo se comporta una tormenta en la que el tiempo y el espacio oscilan de forma salvaje. Nunca lo hemos observado, pero lo vamos a hacer muy pronto.

P. ¿Cómo?

R. Cuando estos agujeros negros chocan crean ondas en el tejido del espacio-tiempo que se llaman ondas gravitacionales. Estas nos darán suficiente información como para ir hacia atrás en el tiempo partiendo de la onda que vemos y las simulaciones y probar si estas predicen de forma correcta lo que está pasando.

P. ¿Cuándo esperan captarlas?

LIGO celebrates 1st anniversary of GW detection

R. Para hacerlo hemos construido los detectores LIGO. El equipo comenzó su primera tanda de búsquedas de ondas gravitacionales con los detectores avanzados en septiembre de 2015 y seguirá haciéndolo hasta enero de 2016. Estos detectores, incluso en la primera búsqueda, son tan sensibles que pueden captar un choque de agujeros negros a 1.000 millones de años luz de la Tierra, es decir, un décimo de la distancia hasta el límite del universo observable. Si tenemos suerte, captaremos algo en la primera búsqueda.

P. ¿Cuál es la próxima gran frontera de la física?

civilizaciones

Es muy probable que haya civilizaciones más avanzadas que las nuestras”

 

R. Entender las leyes de la gravedad cuántica que derivan de combinar la relatividad/a/”>Relatividad General con la física cuántica. No entendemos esas leyes bien, podría ser alguna variante de la teoría de cuerdas o la teoría M. Si tuviera que hacer una predicción diría que ese es el camino por el que iremos. Una vez entendamos esas leyes nos contarán de una forma muy clara el nacimiento del universo, qué pasa en la singularidad dentro de un agujero negro y si es posible retroceder en el tiempo.

P. ¿Cree que eso abrirá los viajes en el tiempo?

R. Abrirá una puerta a los viajes en el tiempo… o la cerrará [risas].

P. En uno de sus libros especulaba que si la humanidad quiere sobrevivir debería irse a un agujero negro ¿Cree que es es nuestro futuro?

R. Hará falta mucho tiempo hasta que los humanos podamos explorar un agujero negro. Pero es verdad que en el giro de un agujero negro hay una enorme cantidad de energía rotacional que la naturaleza extrae para producir los gigantes brotes que salen de los núcleos de las galaxias. Los humanos de una civilización avanzada podrían usarlos como una descomunal fuente de energía mucho más potente que la fusión nuclear que sucede en el interior de las estrellas.

P. ¿Piensa que hay otras formas de vida inteligente en el universo?

R. Es muy probable que haya vida inteligente en el universo, civilizaciones más avanzadas que las nuestras. Pero las distancias entre las estrellas son tan enormes que el viaje interestelar es cada vez más difícil. Dudo mucho que otra civilización haya visitado la Tierra, pero creo que es muy probable que nos comuniquemos con ellos algún día, quizás antes de que yo muera, quizás no. Buscar señales de civilizaciones extraterrestres es una de los empeños científicos más importantes que hay.

P. ¿Qué fue lo más importante que nos dejó Albert Einstein, la Relatividad General de la que se cumplen ahora 100 años?

R. Nos dio una ley que controla las leyes de la naturaleza. Es el principio de relatividad, que dice que sean cuales sean las leyes de la naturaleza, tienen que ser la mismas vistas por cualquier persona en cualquier lugar del universo si se están moviendo libremente. Creo que ese puede ser el mayor logro intelectual de todos los tiempos.

Hasta aquí aquella entrevista. A partir de ahora, con el descubrimiento publicado, comenzaremos una nueva etapa sobre el conocimiento del Universo que, de seguro., nos traerá muchyas sorpresas.

¿Será único nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Multiverso    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

«

Quinteto de Stephan

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, ralizamos conjeturas y comparaciones con otros que podrìan ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimendiones espacio-temporales, no contamos con las físicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemos llegado a comprender. Sin embnargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello.

Es curioso como un equipo de astrónomos y cosmólogos estudiante la expansión del Universo y tratando de buscar la verdadera causa de dicho comportamiento (las galaxias se alejan las unas de las otras sin una razón aparente, toda vez que, la cantidad de materia bariónica percibida, no sería suficiente para arrastrarlas de esa manera), de manera denodada y pertinaz buscan el por qué se expande el universo de esa manera que no pueden explicar y, en dicha tarea, dicen haber percibido, más allá del supuesto “borde de nuestro Universo” la presencia de algo grande.

Lo único que se me ocurre pensar es en la presencia de otro universo que tira del nuestro por la fuerza de gravedad que genera y, al final del camino, como ocurre con las galaxias, terminiran fusionandose los dos universos. Es simplemente lo que ocurre con las galaxias pero, a escala mayor.

Imagináis la grandiosidad que está presente en una sola Galaxia como la nuestra. Así el poeta, hablando consigo mismo exclamó:

¡Oh mundo de mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de caracterísiticas diversas y no en todos, sería posible la de estrellas y como consecuencia la Vida.

En nuestras ánsias de querer saber sobre “esa verdad” que incansables perseguimos, hemos realizados innumerables excursiones por todos los senderos conocidos y otros nuevos que hemos dejado abiertos intentanto llegar a entender y explicar si, las fuerzas fundamentales de la Naturaleza y, las Constantes Universales pudieran estar presentes, en otros Universos de la misma manera que en el nuestro. La conclusión ha sido que no. Otros Universos (si existen) podrían ser iguales al nuestro y también, muy diferentes y todo dependería de su momento inicial que es el que determina la de Universo quen será cualquier universo que pudiera llegar a existir.

No es fácil imaginar cómo serían esos otros universos y como llegar a ellos, o, que criaturas los poblarán

Hemos visto como los cosmólogos contemplan activamente la naturaleza de “otros mundos” en los que las constantes harían la vida imposible. Esto nos plantea la cuestión más profunda de si estos otros mundos “existen” en algún sentido y, si es así, qué los hace diferentes del mundo que vemos nosotros. También ofrece una alternatica al vijeo argumento de que el aparente buen ajuste del mundo para que posea todas aquellas propiedades requeridas para la vida es de alguna forma de un diseño especial. Pues si existen todas las alternativas posibles, debemos encontrarnos necesariamente habitando en una de las que permiten que exista la vida. Y podríamos ir aún más lejos y aventurar la conjetura de que podríamos esperar encontrarnos en el tipo más probable de Universo que sustenta la vida.

“Si pudiéramos saber que nuestro propio Universo era sólo uno entre un número indefinido de ellos, con propiedades cambiantes, quizá podríamos invocar una solución análoga al principio de la selección natural; que sólo en ciertos universos, entre los que se incluye el nuestro, se dan las condiciones apropiadas para el surgir de la vida, y a menos que se satisfaga esta condición en otros universos no podría existir observadores para advertir tal hecho.”

 

 

¡No saben lo que se pierden! ¡Pobres universos!

Una de las dificultades de concebir siquiera semejantes multiversos de todos los universos posibles es que hay muchas cosas que podrían ser diferentes. De nuestro estudio de las matemáticas sabemos que existen lógicas diferentes a la que utilizamos en la práctica, en la que los enunciados son o verdaderos o falsos. Análogamente, hay diferentes estructuras matemáticas; diferentes leyes de la Naturaleza posible ; diferentes valores para las constantes de la Naturaleza; diferentes números de dimensiones de espacio y de tiempo; diferentes de partida para el Universo; y diferentes resultados aleatorios para secuencias complejas de sucesos. Frente a ello, la colección de todos los mundos posibles tendría que incluir, como mínimo, todas las permutaciones y combinaciones posibles de estas diferentes cosas. Obtener una comprensión de todo este maremagnum sería pedirnos demasiado (al menos por el momento).

Claro que, concebir Universos con más que el nuestro…se nos hace muy cuesta arriba. Nuestras mentes son tridimensionales y, hemos al añadido de esa cuarta dimensión temporal que nos trajo la relatividad especial pero, cuando tratamos de ir más allá, no asimilamos bien y la visión de ese “mundo” de domensiones extra, no caben en nuestra cabeza. Sin embargo, los números sí lo permiten y pueden configurar mundos de 10, 11 y hasta 26 dimendiones y, en ese mundo teórico-matemático, sí pueden convivir todas las fuerzas de nuestro Universo y allí podemos respuestas que, en nuestro Universo cotidiano cuatridimensional, no podemos hallar.

Lo cierto es que, ya hemos visto lo que puede suceder si se realizaran algunos de esos otros mundos posibles, mundos con más dimensiones u otros valores de las constantes cruciales. Sin embargo, no sabemos si estos diferentes mundos son realmente posibles. Está muy bien contemplar cambios en las constantes de la Naturaleza y las cantidades que definen la forma y el tamaño del Universo. Pero ¿hay realmente universos alternativos permitidos o son tan posibles como los círculos cuadrados? Podría ser que la “Teoría de Todo” sea muy restrictiva cuando se trate de dar permiso de planificación para otros universos.

                          Por imaginar que no quede. Nuestras mentes construyen escenarios que…

El hecho de que podamos concebir muchos universos alternativos, definidos por otros valores de las constantes de la Naturaleza, quizá sea simplemente un reflejo de nuestra ignorancia acerca de “la prisión” en la quen está confinada la consistencia lógica que exige una Teoría de Todo. Cuando se trata de comntemplar otros universos tenemos dos formas de abordar el problema. Existe la aproximación conservadora que produce mundos alternativos haciendo pequeños cambios en las propiedades de nuestro mundo; pequeños cambios en los valores de algunas de las constantes de la Naturaleza, propiedades ligeramente diferentes del Universo astronómico, quizá, pero no cambios en las propias leyes de la Naturaleza. Normalmente estos muestran que si “los pequeños cambios” son demasiado grandes hay consecuencias adversas para la existencia de la vida tal como la conocemos. Nuestro tipo de vida puede seguir existiendo si hubiera un cambio de una parte en cien mil millones en el valor de la constante de estructura fina, pensamos nosotros, pero no si hubiera un cambio de una parte entre diez.

 

¿Quién sabe? Con unas constantes diferentes podríamos tener cualquir clase de Universo incluso ¿Alguno en la sombra? Claro que grandes cambios pueden alterar otras cosas como las leyes, la lógica matemática subyacente o el de dimensiones del espacio tiempo. Tiene que concebir tipos de “vida” que ni podemos imaginar, serían completamente nuevos y que podrían existir en ambientes tan diferentes al nuestro que, incluso, teniendolos a nuestro lado, no lo podríamos ver y, claro, al llegar a este punto nos suscita tener que hacer un examen más detallado de qué entendemos por vida, dado que esa vida de ese otro universo, sería tan vida como la del nuestro.

Resultado de imagen de Las ciudades más modernas del mundo

Ante todas estas ideas… al ver escenas de nuestro mundo como la que arriba contemplamos, no puedo dejar de imaginar lo que pensarían seres de otros mundos que nos pudieran estar observando. Fabricamos “colmenas” que nos sirven de habitad y que están adecuadas a las de nuestro mundo. En otros mundos mucho mayores, de tener presente la vida, dada su enorme gravedad, ésta tendría que ser pequeña ¿De insectos quizá?

 

No sería nada agradable visitar otro Universo en cuyos mundos sólo vivieran insectos de dos metros, o, aquellos otros que, poblados de sofisticados robots tuvieran una Sociedad constituida sobre una continuada replicación y su único objetico sería el de poblar mundos y más mundos en los que, como sería lógico pensar, no cabrían otros seres que, como nosotros, vinieran de un origen natural que serían, seguramente, los seres primigenios del planeta que construyeron a los que hoy dominan esos mundos.

Imagen relacionada

Haber podido conquistar algunos conocimientos que nos hablan de la inmensidad del Universo, de la diversidad de infinitas estrellas y de la multiplicidad de mundos que existen en las galaxias que pueblan el Cosmos, no podemos dejar de imaginar los mundos que, con propiedades diferentes a las de la Tierra, puedan albergar a criaturas que, unas veces habrán alcanzado la consciencia y otras no. Cuando podamos alcanzar la tecnología necesaria para visitar otros mundos que orbitan a estrellas similares y diferentes al Sol, entonces, y sólo entonces, podremos comprender que la vida en el Universo es de muchas maneras y que no estamos solos en tan vasto espacio.

https://cnho.files.wordpress.com/2015/06/cosmos-universo-estrellas.jpg

                        Cientos de miles de millones de estrellas y de mundos y… de formas de vida

Negarlo no lo podemos negar y, hasta es muy probable que sí puedan existir esos otros Universos. Sin embargo, yo me quedo con el nuestro que, poco a poco,  se va dejando descorrer el velo que esconde sus secretos y estamos llegando a un nivel aceptable de comprensión de lo que su Naturaleza pudiera ser. Ningún Universo como el nuestro para vivir y tratar de llevar a cabo nuestros proyectos de futuro. Y, si finalmente nos vemos abocados a tener que “mudarnos” a uno de esos otros Universos, lo esencial será comprobar antes que, las son exactas o muy parecidas a las del nuestro,

Este escenario evolutivo de nuestro Universo tiene la característica clave de que las físicas en el pasado no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo y, si hemos hecho nuestra tarea, también sabremos de esos otros universos que nos pudieran acoger en ese momento final del nuestro.

¡Es todo tan complicado! ¡Sabemos tan poco!

 

¿Estaría programada la presencia de los seres vivos inteligentes en el Universo?

Por fuerza la cosmología conduce a cuestiones fronterizas entre ciencia experimental, filosofía y religión. No es solo el caso de los sabios antiguos. También los físicos de hoy se plantean preguntas de esa clase, sobre todo a propósito del llamado “principio antrópico”. A partir de los conocimientos actuales, este principio señala que las leyes y magnitudes físicas fundamentales parecen cuidadosamente afinadas para que la formación y el desarrollo del universo pudieran dar lugar a la vida en la Tierra y en otros planetas idóneos para acogerla.

El “Principio Copernicano”, invocado frecuentemente en la Cosmología moderna, insiste en la homogeneidad del Universo, negando cualquier primacía de posición o propiedades asociadas con la existencia humana. En cualquier parte del Universo podrán estar presentes los seres vivos.

El “Principio Copernicano” como habréis deducido ya, toma su nombre de la propuesta de Copérnico (ya anteriormente formulada por Aristarco) de desplazar a la Tierra de la posición central ocupada en el sistema de Tolomeo, aunque tal centralidad se debiese a la falta de paralaje estelar y no a una sobrevaloración de nuestra existencia en el planeta.

El paso siguiente lo dio Shapley hace un siglo, al mostrar que tampoco el Sol ocupa el centro de la Via Láctea. Finalmente, el Universo “finito pero ilimitado” de Einstein niega la posibilidad de encontrar un centro en su volumen tridimensional, y afirma la equivalencia de posición de todos los puntos del espacio. No tiene sentido preguntar dónde estamos en el continuo expandirse de un Universo que contiene probablemente más de 100.000 millones de galaxias, y que vuelve a la insignificancia aun la majestuosa estructura de la Vía Láctea, nuestra ciudad cósmica.

Sin embargo, a partir de la década de los años 30, se da una reacción interesante, que afirma, cada vez con argumentos más fuertes y detallados, que el Hombre está en un tiempo y un lugar atípicos y privilegiados en muchos respectos, que obligan a preguntarnos si nuestra existencia está ligada en un modo especial a características muy poco comunes en el Universo. Esta pregunta adquiere un significado especial al considerar las consecuencias previsibles (según las leyes físicas) de cualquier alteración en las condiciones iniciales del Universo. Con un eco de las palabras de Einstein¿tuvo Dios alguna alternativa al crear?. No solamente debemos dar razón de que el Universo exista, sino de que exista de tal manera y con tales propiedades que la vida inteligente puede desarrollarse en él. Tal es la razón de que se formule el Principio Antrópico, en que el Hombre (entendido en el sentido filosófico de “animal racional”, independientemente de su hábitat y su morfología corporal) aparece como condición determinante de que el Universo sea como es.

     No hemos logrado ese contacto pero…llegará y, al menos yo, no las tengo todas conmigo.

Las primeras sugerencias de una conexión entre vida inteligente y las propiedades del Universo en su momento actual aparecen en las relaciones adimensionales hechas notar por Eddington: la razón de intensidad entre fuerza electromagnética y fuerza gravitatoria entre dos electrones, entre la edad del Universo y el tiempo en que la luz cruza el diámetro clásico de un electrón, entre el radio del Universo observable y el tamaño de una partícula subatómica, nos da cifras del orden de 10 elevado a la potencia 40. El número de partículas nucleares en todo el cosmos se estima como el cuadrado de ese mismo número. ¿Son éstas coincidencias pueriles o esconden un significado profundo?. La hipótesis de los grandes números sugiere que el Hombre solamente puede existir en un lugar y momento determinado, cuando tales coincidencias se dan, aunque nadue hasta el momento ha podido dar una explicación de estas relaciones.

        Arthur Eddintong

Eddintong, un gran astrónomo, nos ayudo a comprender mucho mejor el Universo y sus ideas germinaron en el saber de esa ciencia que nos lleva a conocer el inmenso entorno al que pertenecemos.

Si la carga del electrón, la masa del protón o la velocidad de la luz, variaran tan sólo una diesmilésima parte… ¡La vida tal como la conocemos no existiría! Es decir, estamos ante el problema del ajuste fino que significa que las las constantes fundamentales de un modelo físico para el universo deben ser ajustados de forma precisa para permitir la existencia de vida. Sobre estas constantes fundamentales no hay nada en la teoría que nos indique que deban tomar esos valores que toman. Podemos fijarlas de acuerdo con las observaciones, pero esto supone fijarlas de entre un rango de valores colosal. Esto da la impresión de cierta arbitrariedad y sugiere que el universo podría ser una realización improbable entre tal rango de valores. He ahí el problema.

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la naturaleza y entrar en el juego virtual de ¿qué hubiera pasado si…? Ya hemos hablado aquí muchas otras veces de lo que pasaría si el valor de las constantes fueran diferentes.

                                     ¿Viviríamos en un mundo de revés?

Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal o cual manera para ocurrir de esta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para nosotros y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual; sólo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto. Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza. ¿Quién sabe lo que pasará mañana?

 

                   ¿Serán ellos y no nosotros los que dominen el futuro?

Siempre estamos imaginando el futuro que vendrá. Los hombres tratan de diseñarlo pero, finalmente, será el Universo el que tome la última palabra de lo que deba ser. Por mucho que nosotros nos empeñemos, las estructuras del Universo nunca podrán ser cinceladas por nuestras manos ni por nuestros ingenios, sólo las inmensas fuerzas de la Naturaleza puede transformar las estrellas, las galaxias o los mundos…lo demás, por muy bello que pudiera ser, siempre será lo artificial.

Lo que ocurra en la naturaleza del universo está en el destino de la propia naturaleza del cosmos, de las leyes que la rigen y de las fuerzas que gobiernan su mecanismo sometido a principios y energías que, en la mayoría de los casos se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización, además de estar supeditada al destino de nuestro planeta y de nuestro Sol, incluso de nuestro Sistema Solar y de  la Galaxia, de alguna manera,  también está en manos de los propios individuos que forman esta civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual de libre albedrío. Fijaos hoy mismo lo que puede dar de sí esa insensata polémica (que dura ya milenios) entre los palestinos y los israelitas.

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si… Lo que en la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Cuando el Sol agote todo su combustible nuclear, estará acercándose el final de la Tierra como planeta que albergó la vida. Los cambios serán irreversibles, los océanos se evaporarán y sus aguas hirvientes comenzarán a llenar la atmósfera de gases. La Gigante roja engullirá a los planetas Mercurio, Venus y probablemente se quedará muy cerca de la Tierra calcinada y sin vida.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

Resultado de imagen de Nebulosas planetarias

cualquiera de estas figuras podría ser nuestro sol dentro de 5.000 millones de años

En el inmenso Universo, eso es lo que podría quedar de nuestro Sol, una insignificante Nebulosa Planetaria y, la consecuencia de tal transición de fase será, una Tierra sin vida y un Sistema solar de objetos muertos.

Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que, un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente, se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch. Eso daría lugar a otro Big Bang, a otro universo. Sin embargo, según los datos de que se dispone hoy, no parece que el Big Crunch pueda suceder.

     Un universo replegándose sobre sí mismo…no parece probable


El irreversible final está entre los dos modelos que, de todas las formas  que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya piensan en la manera de escapar a tan terrible futuro. Claro que, ahora no podemos saber si finalmente, nuestro Universo se fundirá con otro como consecuencia de la expansión (el otro también se expande hacia nosotros) y, como se fusionan las galaxias, también deben hacerlo los universos. Si eso es así (que no se sabe), quizá todo diera lugar a un nuevo “amanecer” para la Humanidad.

Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo universo, o mini-universo en  los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

                           ¿Quién puede saber de lo que seremos capaces mañana?


El posible escenario futuro ha sido explorado y el resultado hallado es que, podrían exisitr otros universos en cada uno de esos universos, puede haber muchas cosas diferentes; pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la naturaleza, pudiendo unos albergar la vida y otros no. ¡Qué locura!

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferenta universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados, diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la gravedad-cosmos) y la mecánica cuántica de Planck (el cuanto-átomo), no será posible contestar a ciertas preguntas.

                           Hablando de universos paralelos, Douglas Adams nos dice:

“Lo primero que hay que comoprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que ha comprendido hasta el momento no es verdadero.”

 

 

 

 

La teoría de cuerdas tiene un gancho tremendo. Te transporta a un mundo de 11 dimensiones, universos paralelos, y partículas formadas por cuerdecitas casi invisibles vibrando a diferentes frecuencias. Además, te dice que no se trata de analogías sino de la estructura más profunda de la realidad, y que ésta podría ser la teoria final que unificara por fin a toda la física. ¿No estaremos hablando de Filosofía?

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, sólo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10, 11 ó 26 dimensiones. Allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del universo y de las fuerzas que en él actúan.

http://4.bp.blogspot.com/_eqb8qL2GKZc/SwWkkDDALgI/AAAAAAAACSs/LKgpCnAvOcc/s1600/hyperspace.jpg

Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida (sin tener las herramientas matemáticas necesarias para ello).

CAMINO HACIA EL UNIVERSO

                                  ¿Quién sabe si los caminos hacia otros universos no estarán ya imaginados?

Es cierto, los mejores siempre han buscado el Santo Grial de la Física. Una Teoría que lo pueda explicar todo, la más completa que, mediante una sencilla ecuación, responda a los misterios del Universo. Claro que tal hazaña, no depende siquiera de la inteligencia del explorador que la busca, es más bien un problema de que las herramientas necesarias (matemáticas) para hallarla, aún no han sido inventadas.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.

 

            Queremos llegar a manejar los mundos, las galaxias, el universo…

Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el hiperespacio puede proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos, de la muerte de este universo cuando al final llegue el frío o el calor.

Esta nueva teoría de supercuerdas tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas. Podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de gusano que unan partes distantes de nuestro universo. Por desgracia, los resultados son desalentadores. La energía requerida excede con mucho cualquier cosa que pueda existir en nuestro planeta. De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos. Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Que aún tardará mucho? Sí, pero el tiempo es inexorable, la debacle del frío o del fuego llegaría.

                  ¿Doblar el Hiperespacio…? ¡Encontrar la manera de burlar la velocidad de la luz!

No existen dudas al respecto, la tarea es descomunal, imposible para nuestra civilización de hoy, ¿pero y la de mañana?, ¿no habrá vencido todas las barreras? Creo que el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, sólo necesita tiempo:

¡El Tiempo! ¿Tendremos mucho por delante? ¿Sabremos aprovecharlo?

emilio silvera

¡¡Quásares!! Extraños objetos de inusitado brillo y energía

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

File:Artist's rendering ULAS J1120+0641.jpg

 

           Una composición artísdtica del quásar brillante descubierto hasta el momento: ULAS J1120+064.

Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negro supermasivo en su centro. Su brillo los convierte en poderosos faros que pueden ayudar a investigar la época en que se formaron las primeras estrellas y galaxias.Son útilespara ir comprendiendo cómo se formó el universo al revelar el estado de ionización del medio intergaláctico que tuvo lugar unos mil millones de años después del Big Bang. Parece que ULAS J1120+064 es es quásar más distante descubierto hasta el momento. Situado a más de doce mil millones de años-luz de nuestra Galaxia, está cerca de los limites del universo visible. La masa del agujero negro situado en el centro de ULAS J1120+0641 equivale a dos mil millones de veces la masa del Sol.

Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia.
STScI.

Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negros supermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.

La imagen  de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías  que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidad propia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.

File:3C273 Chandra.jpg

                        Imagen de 3C273 recogida por el telescopio espacial Chandra

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.

Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.

Comparando las dos imágenes, aunque sean tan distitnas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.

Lo asombroso de los quásares está en una pregunta  que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para  la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.

El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.

Arriba podemos contemplar la simulación por ordenador de Joshua Barnes de la Universidad de Hawai. Abajo la escenificación artística del corazón de un quásar, un agujero negro masivo que absorbe una estrella en un vórtice de gas. Los astrónomos e Hawai creen que el Quásar brilla debido a que una galaxia gigante con un agujero negro colisiona con otra galaxia rica en gas que alimenta al agujero negro. Según todos los síntomas y datos que podemos poner sobre la mesa de estudio, la conclusión que podría ser la más acertada nos lleva a pensar que, los quásares, son inmensos agujeros negros alojados en los núcleos de grandes galaxias ricas en gas y numerosas estrellas que rodean al masivo objeto que, de manera gradual va describiendo una espiral de materia que atrae hasta él. A medida que cada estrella se acerca lo suficiente al agujero negro, su cuerpo gaseoso se desprende…

… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.

Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.

Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.

La teoría prevé que el diámetro de un agfujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.

Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.

La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio,  el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.

Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.

Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los …

Se conocen más de 200.000 cuasares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc  (780 millones de años luz) y el más lejano a 6 Gpc  (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.

Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.

Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aíun teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se entinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?

emilio  silvera