Feb
14
Desde la materia “inerte”… ¡Hasta los pensamientos!
por Emilio Silvera ~
Clasificado en El Universo y la Mente ~
Comments (4)
Lo mismo que desconocemos la auténtica naturaleza de la Luz, que según creo encierra muchos secretos que tenemos que desvelar para conocer la realidad de la Naturaleza y del Universo, de la misma manera, tenemos que llegar a desvelar los secretos que se encierra en esa esencial y sencilla sustancia que llamamos agua, ya Tales de Mileto nos hablaba de la importancia que esa sustancia tenía para la vida.
¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros puedan pensar? Que cosa mágica se pudo producir en el corazón de las estrellas para que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno…, muchos miles de millones de años más tardes, en mundos perdidos en sistemas planetarios como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia
formas de vida superiores?
Los sentidos: las herramientas que utiliza el cerebro para estar comunicado con el exterior
La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.
El cerebro humano ¿es especial?, su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la Naturaleza.
Aquí se fraguan los pensamientos como en las galaxias se forman las estrellas
Nuestro cerebro adulto, con poco más de 1 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número
posible de circuitos neuronales, tendremos que habérnoslas con cifras hiperastronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.
Con tan enorme cantidad de circuitos neuronales, ¿cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento? Algunas veces hemos oido comentar: “Sólo utilizamos un diez por ciento del cerebro…” En realidad, la frase no indica la realidad, se refiere al hecho de que, aunque utilizamos el cerebro en su totalidad, se estima que está al diez por ciento de su capacidad real que, será una realidad a medida que evolucione y, en el futuro, esa capacidad de hoy será un 90 por ciento mayor.
Aún no conocemos bien la direccionalidad de los circuitos neuronales, pero indagamos todo
Veamos, por ejemplo, la Ecuación de Schrödinger
¿Qué dice?
La ecuación modela la materia no como una partícula, sino como una onda, y describe cómo estas ondas se propagan.
¿Por qué es importante?
La ecuación de Schrödinger es fundamental para la mecánica cuántica, que junto con la relatividad general constituyen en la actualidad las teorías más efectivas del universo físico.
¿Qué provocó?
Una revisión radical de la física del mundo a escalas muy pequeñas, en las cuales cada objeto tiene una «función de onda» que describe una nube de probabilidad de posibles estados. A este nivel el mundo es incierto intrínsecamente. Intentos de relacionar el mundo microscópico cuántico con nuestro mundo macroscópico clásico llevaron a temas filosóficos que todavía tienen eco. Pero experimentalmente, la teoría cuántica funciona maravillosamente bien y los láseres y chips de los ordenadores actuales no funcionarían sin ella.
Conectados con el Universo, un día lo comprenderemos todo
El límite de lo que podremos conseguir tiene un horizonte muy lejano. Y, llega un momento en el cual, se puede llegar a pensar que no existen limites en lo que podemos conseguir: Desde hablar sin palabras sonoras a la auto-transportación. Si -como pienso- somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.
Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!
¿Quién podría decir, si no se les explicara, que son “mundos” diferentes” Nuestra Red Neuronal y el Universo. Sin embargo, ¡parece tan iguales! Si pudiéramos medir la grandeza del cerebro por la imaginación, entonces, el universo sería, casi tan grande como él.
La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas que, sin embargo y en sentido figurado, podríamos decir que son tan grandes como el universo mismo.
Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para que eso pueda llegar a ocurrir, aún falta mucho tiempo. Sin embargo, si el Universo no lo impide y nuestro transcurrir continúa, todo lo que podamos imaginar… podrá ser posible. Incluso imposibilidades físicas de hoy, dejarán de existir mañana y, ¡la Mente! posiblemente (al igual que hoy ordena a las distintas partes del cuerpo que realice esta o aquella función), se encargará de que todo funcione bien, erradicará cualquier enfermedad que nos pueda atacar y, tendrá el conjunto del “sistema” en perfectas condiciones de salud, lo cual me lleva a pensar que, para cuando eso llegue, los médicos serán un recuerdo del pasado.
Cuando se explica la evolución del ser humano se habla del proceso de hominización. Esta es el surgimiento de la especie humana tal y como la conocemos, …
Es curioso y sorprendente la evolución alcanzada por la Mente Humana. El mundo físico se representa gobernado de acuerdo a leyes matemáticas. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales que aún no hemos podido llegar a comprender y, ni que sabemos que puedan existir.
Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, o, Ramanujans… que, con sus nuevas ideas transformarán el pensamiento matemático para hacer posible que podamos, al fin, comprender lo que realmente somos.
Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido descubrir que existen “números misteriosos” dentro de los cuales subyacen mensajes que tenemos que desvelar.
Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo -, de la constante de Planck (h) – el cuando
te acción – y de la luz (c) – la relatividad -.
No lo sabemos ¿tendrá nuestra presencia en el Universo algún sentido?
Nuestras mentes siempre quieren ir más allá de lo que pueden comprender. El cerebro humano avanza al ritmo que le marca el Universo
Los resultados son lentos, no se avanza con la rapidez que todos deseamos. Sin embargo, eso ocurre por algo, el ritmo del Universo considerado como Naturaleza, podríamos decir que está determinado por una Naturaleza “sabia” y, si actúa de esa manera… ¡Por algo será! Deja que de vez en cuando, sobresalgan algunas mentes y se eleven por encima del común, de ejemplos tenemos la historia llena. Esos “saltos” de la conciencia son los tiempos que marca el Universo para que, poco a poco, se produzca nuestra evolución, es la única forma de que todo se haga de manera correcta y de que, los nuevos pensamientos se vayan asentando debidamente en las Mentes futuras. Pongamos un ejemplo: Poincaré expuso su conjetura y, más de un siglo después, Perelman la resolvió. Riemann expuso su geometría del espacio curvo, y hasta 60 años más tarde no fue descubierta por Einstein para hacer
posible su formulación de la relatividad general, donde describe cómo las grandes masas distorsionan el espacio y el tiempo por medio de la fuerza de gravedad que generan. El conocimiento humano avanza al ritmo que le impone la Naturaleza.
¡Son tantos los secretos que nos quedan por desvelar! la Naturaleza es la portadora de todas las respuestas…Observémosla con atención y, aprendamos de ella y, de ser posible, procuremos no molestarla, “Ella” nos permite estar aquí para que evolucionemos y, algún día, cuando seamos mayores…quizás nos deje formar parte de algo más…¿mental?
No, no será nada fácil imitar a la Naturaleza…¡Esa perfección! Sin embargo, llegados a ese punto, debemos pensar que nosotros también formamos parte de ella, la parte que piensa y, si es así, ¿qué cometido tendremos asignado en este Universo? Esa es la pregunta que ninguno de los grandes pensadores de la Historia, han podido contestar.
Pensar, por ejemplo, en las complejas matemáticas topológicas requeridas por la teoría de supercuerdas puede producir incomodidad en muchas personas que, aún siendo físicos, no están tan capacitados como para entender tan profundas ideas (me incluyo).
Bernhard Riemann introdujo muchas nuevas ideas y fue uno de los más grandes matemáticos. En su corta vida (1.826 – 1.866) propuso innumerables propuestas matemáticas que cambiaron profundamente el curso del pensamiento de los números en el planeta Tierra, como el que subyace en la teoría relativista en su versión general de la gravedad, entre otras muchas (superficie de Riemann, etc.). Riemann les enseñó a todos a considerar las cosas de un modo diferente.
La superficie de Riemann asociada a la función holomorfa “tiene su propia opinión” y decide por sí misma cuál debería ser el, o mejor, su dominio, con independencia de la región del plano complejo que nosotros podamos haberle asignado inicialmente.
Superficie de Riemann que aparece al extender el dominio de la función
Este bello concepto desempeña un papel importante en algunos de los intentos modernos de encontrar una nueva base para la física matemática (muy especialmente en la teoría de cuerdas), y al final, seguramente se descubrirá el mensaje que encierra.
El caso de las superficies de Riemann es fascinante, aunque desgraciadamente sólo es para iniciados. Proporcionaron los primeros ejemplos de la noción general de variedad, que es un espacio que puede pensarse “curvado” de diversas maneras, pero que localmente (por ejemplo, en un entorno pequeño de cualquiera de sus puntos), parece un fragmento de espacio euclídeo ordinario.
En matemática, la esfera de Riemann (o plano complejo extendido), llamado en honor al matemático del siglo XIX del mismo nombre, es una esfera obtenida del plano complejo mediante la adición de un punto del infinito. La esfera es la representación geométrica de los números complejos extendidos
, (véase fig.1 y fig.2), la cual consiste en los números complejos ordinarios en conjunción con el símbolo
para
representar el infinito.
La esfera de Riemann, superficie de Riemann compacta, el teorema de la aplicación de Riemann, las superficies de Riemann y aplicaciones complejas… He tratado de exponer en unas líneas la enorme importancia de este personaje para las matemáticas en general y la geometría y para la física en particular. Es uno de esos casos a los que antes me refería. Después de él, la Humanidad ha tenido un parón en el desarrollo de las ideas hasta que asimilaron las suyas y, después, llegó Einstein y otros.
La Geometría de Riemann de los espàcios curvos
Tenemos que convenir que todo, sin excepción, es relativo y resulta ya evidente la gran crisis de la noción de realidad “veritas” que el mundo padece, la ciencia BASE, la matemática, sufrió el varapalo a partir de la matemática topológica de Poincaré, y el desarrollo sorpresivo de la matemática del caos; de pronto el idealismo de la ecuación diferencial queda derribado : el mundo que funciona como un reloj de Tolomeo queda finiquitado; ¿donde puñetas está la materia perdida?; de pronto nuestras consciencias “comprenden” que la “verdad” no existe, es decir, que no existe nuestra realidad del mundo.
Y, mientras tanto, nuestras mentes siguen su camino, siempre queriendo ir más allá y siempre profundizando en los secretos de la Naturaleza de lo que tenemos muchos ejemplos, tales como nuestras consideraciones sobre los dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.
Mediante la combinación de diversas observaciones de telescopios, y la ayuda del trabajo de modelación avanzada, el equipo de Emanuele Farina, de la Universidad de Insubria en la provincia de Como, Italia, y Michele Fumagalli del Instituto Carnegie de Ciencia, en Washington, D.C., Estados Unidos, fue capaz de captar como tal el trío de quásares, llamado QQQ J1519+0627. La luz de esos quásares ha viajado 9.000 millones de años-luz para llegar hasta nosotros, lo que significa que dicha luz fue emitida cuando el universo tenía sólo un tercio de su edad actual.
Todo es finito, es decir, que tiene un fin, y la velocidad de la luz no podía ser una excepción
Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1.638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco (otro ejemplo de la evolución que, con el tiempo, se produce en nuestras mentes). Él no tenía forma
alguna de anticipar la extraordinaria velocidad de la luz.
Parece que tanto Galileo como Newton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida y, si consideramos que esa fuerza que hace posible la unión de la materia reside en el corazón de los átomos (en sus núcleos), podemos hacernos una clara idea de lo ilimitado que puede
ser el pensamiento humano que, ya en aquellos tiempos -en realidad mucho anters- pudo llegar a intuir las fuerzas que están presentes en nuestro Universo.
En los núcleos atómicos reside la fuerza (nuclear fuerte) que hace posible la existencia de la materia que comienza por los átomos que, al juntarse y formar células, hace posible que éstas se junten y formen moléculas que a su vez, se reunen para formar sustancias y cuerpos.
Pero la comprensión adecuada de estas ideas tuvo que esperar hasta el siglo XX, cuando se reveló la verdadera naturaleza de las fuerzas químicas y de las fuerzas que mantienen unidos los átomos individuales. Ahora sabemos que tales fuerzas tienen un origen fundamentalmente electromagnético (que vincula y concierne a la implicación del campo electromagnético con partículas cargadas) y que la teoría del electromagnetismo es también la teoría de la luz.
Para entender los átomos y la química se necesitan otros ingredientes procedentes de la teoría cuántica, pero las ecuaciones básicas que describen el electromagnetismo y la luz fueron propuestas en 1.865 por el físico escocés James Clark Maxwell, que había sido inspirado por los magníficos descubrimientos experimentales de Michael Faraday unos treinta años antes y que él plasmó en una maravillosa teoría.
El electromagnetismo presente en el Universo
El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo.
Esta teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que en unidades ordinarias es aproximadamente 3 × 108 metros por segundo. Maxwell, guiado por los experimentos de Faraday, hizo posible un hecho que cambió la historia de la humanidad para siempre. Un hecho de la misma importancia que el descubrimiento del fuego, la rueda o los metales. El matemático y poeta escocés unificó los campos eléctrico y magnético a través de unas pocas ecuaciones que describen como
estos campos se entretejen y actúan sobre la materia.
La infinita escalera que tenemos que subir para tratar de saber, se pierde en las alturas, allí donde las brumas ocultan lo que deseamos desvelar. Nadie nunca, lo podrá saber todo sobre todo. Sin embargo, es cierto que, cada día, arrancamos un secreto a la Naturaleza y la comprendemos mejor.
Claro que, estos importantísimos avances han sido simples escalones de la “infinita” escalera que tenemos que subir y, la misma relatividad de Einstein no ha sido (después de un siglo) aún comprendido en su plenitud y muchos de sus mensajes están escondidos en lo más profundo de nuestras mentes que, ha sabido parcialmente descubrir el mensaje de Einstein pero
, seguimos buscando.
Sin embargo, esto nos presenta un enigma si queremos conservar el principio de relatividad. El sentido común nos diría que si se mide que la velocidad de la luz toma el valor concreto c en el sistema de referencia del observador, entonces un segundo observador que se mueva a una velocidad muy alta con respecto al primero medirá que la luz viaja a una velocidad diferente, aumentada o disminuida, según sea el movimiento del segundo observador.
Estaría bueno que, al final se descubriera que alfa (α) tuviera un papel importante en la compleja teoría de cuerdas, ¿Por qué no? En realidad alfa, la constante de estructura fina, nos habla del magnetismo, de la constante de Planck y de la relatividad especial, es decir, la velocidad de la luz y, todo eso, según parece, emergen en las ecuaciones topológicas de la moderna teoría de cuerdas. ¡Ya veremos!
Pero el principio de relatividad exigiría que las leyes físicas del segundo observador (que definen en particular la velocidad de la luz que percibe el segundo observador) deberían ser idénticas a las del primer observador. Esta aparente contradicción entre la constancia de la velocidad de la luz y el principio de relatividad condujo a Einstein (como
de hecho, había llevado previamente al físico holandés Hendrick Antón Lorentz y muy en especial al matemático francés Henri Poincaré) a un punto de vista notable por el que el principio de relatividad del movimiento puede
hacerse compatible con la constancia de una velocidad finita de la luz.
¿Cómo funciona esto? Sería normal que cualquier persona creyera en la existencia de un conflicto irresoluble entre los requisitos de una teoría como la de Maxwell, en la que existe una velocidad absoluta de la luz, y un principio de relatividad según el cual las leyes físicas parecen las mismas con independencia de la velocidad del sistema de referencia utilizado para su descripción.
¿No podría hacerse que el sistema de referencia se moviera con una velocidad que se acercara o incluso superara a la de la luz? Y según este sistema, ¿no es cierto que la velocidad aparente de la luz no podría seguir siendo la misma que era antes? Esta indudable paradoja no aparece en una teoría, tal como la originalmente preferida por Newton (y parece que también
por Galileo), en la que la luz se comporta como partículas cuya velocidad depende de la velocidad de la fuente. En consecuencia, Galileo y Newton podían seguir viviendo cómodamente con un principio de relatividad.
La velocidad de la luz en el vacío es una constante de la Naturaleza y, cuando cientos de miles de millones de millones salen disparados de esta galaxia hacia el vacío espacial, su velocidad de 299.792.450 metros por segundo, es constante independientemente de la fuente que pueda emitir los fotones y de si ésta está en reposo o en movimiento.
Así que, la antigua imagen de la naturaleza de la luz entró en conflicto a lo largo de los años, como era el caso de observaciones de estrellas dobles lejanas que mostraban que la velocidad de la luz era independiente de la de su fuente. Por el contrario, la teoría de Maxwell había ganado fuerza, no sólo por el poderoso apoyo que obtuvo de la observación (muy especialmente en los experimentos de Heinrich Hertz en 1.888), sino también por la naturaleza convincente y unificadora de la propia teoría, por la que las leyes que gobiernan los campos eléctricos, los campos magnéticos y la luz están todos subsumidos en un esquema matemático de notable elegancia y simplicidad.
Las ondas luminosas como las sonoras, actúan de una u otra manera dependiendo del medio en el que se propagan.
En la teoría de Maxwell, la luz toma forma de ondas, no de partículas, y debemos enfrentarnos al hecho de que en esta teoría hay realmente una velocidad fija a la que deben viajar las ondas luminosas.
El punto de vista geométrico-espaciotemporal nos proporciona una ruta particularmente clara hacia la solución de la paradoja que presenta el conflicto entre la teoría de Maxwell y el principio derelatividad.
Este punto de vista espaciotemporal no fue el que Einstein adoptó originalmente (ni fue el punto de vista de Lorentz, ni siquiera, al parecer, de Poincaré), pero, mirando en retrospectiva, podemos ver la potencia de este enfoque. Por el momento
, ignoremos la gravedad y las sutilezas y complicaciones asociadas que proporciona el principio de equivalencia y otras complejas cuestiones, que estimo aburrirían al lector no especialista, hablando de que en el espacio-tiempo se pueden concebir grupos de todos los diferentes rayos de luz que pasan a ser familias de íneas de universo.
Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.
El Universo está dentro de nuestras Mentes
¡La Mente! Qué caminos puede recorrer y, sobre todo ¿quien la guía? Comencé este trabajo con la imagen del ojo humano y hablando de los sentidos y de la consciencia y mira donde he finalizado…Sí, nos falta mucho camino por recorrer para llegar a desvelar los misterios de la Mente que, en realidad, es la muestra más alta que el Universo nos puede mostrar de lo que puede surgir a partir de la sencillez de los átomos de hidrógeno que, evolucionados, primero en las entrañas de las estrellas y después en los circuitos de nuestras mentes, llega hasta los pensamientos y la imaginación que…son palabras mayores de cuyo alcance, aún no tenemos una idea que realmente refleje su realidad.
Pero, ¿existe alguna realidad?, o, por el contrario todo es siempre cambiante y lo que hoy es mañana no existirá, si “realmente” es así, ocurre igual que con el tiempo. La evolución es algo que camina siempre hacia adelante, es inexorable, nunca se para y, aunque como el tiempo pueda ralentizarse, finalmente sigue su camino hacia esos lugares que ahora, sólo podemos imaginar y que, seguramente, nuestros pensamientos no puedan (por falta de conocimientos) plasmar en lo que será esa realidad futura.
emilio silvera
Feb
14
¿La Naturaleza? ¡Simetría dentro de la Diversidad!
por Emilio Silvera ~
Clasificado en Simetrías ~
Comments (0)
Nuestro mundo, aunque en la Galaxia existan muchos como él (que no los hemos podido encontrar), es un lugar privilegiado que conforma un Ecosistema superior en su conjunto formado por muchos ecosistemas locales aislados los unos de los otros y sin embargo, todos conexionados. La Diversidad de regiones diferentes que existen dentro del mismo planeta es asombrosa y, lo mismo nos podemos encontrar en un lugar como ese que vemos arriba, o en una isla paradisíaca, una selva, un desierto, o perdidos en un inmenso y embravecido océano, en la ventisca de nieve de inmensas montañas y, también, en grutas enormes en las profundidades del planeta.
Esos pequeños “seres” a los que llamamos extremófilos… los ambientes que habitan, estos poseen un ciclo reproductivo y un metabolismo muy lento; en los casos más extremos, solo se produce el proceso de división …
Pero todos esos climas diferentes son el resultado de la diversidad y, en cada uno de esos lugares ocurren cosas y, la vida, aunque parezca imposible, está allí presente. Es la consecuencia de que el planeta Tierra esté situado en la zona habitable del Sol, ni demasiado cerca para que la vida perezca achicharrada, ni demasiado lejos para que resulte congelada por el frío. Aquí el agua discurre líquida y cantarina por multitud de lugares y hace posible que, entre el preciado líquido y los rayos del Sol que nos envían la luz y el calor necesarios para la fotosíntesis y la vida… ¡Podamos estar aquí!
Todos sabemos que la materia en nuestro Universo adopta muchas formas distintas: Galaxias de estrellas y mundos que, en alguna ocasión, pueden incluso tener seres vivos y algunos han podido evolucionar hasta adquirir la consciencia. Sin embargo, no me quería referir a eso que es bien sabido por todos, sino que, trato de pararme un poco sobre una curiosa propiedad que la materia tiene en algunas ocasiones y que, la Naturaleza se empeña en repetir una y otra vez: ¡La Simetría!
Las Galaxias espirales, la redondez de los mundos, las estrellas del cielo, los árboles y las montañas, los ríos y los océanos, las especies animales (incluída la nuestra) que, se repiten una y otra vez y, en general, salvando particularidades, todas repiten un patrón de simetría.
Recuerdo aquí aquel pensamiento de Paul Valery en el que nos decía:
“El Universo está construído según un plan cuya profunda simetría está presente de algún modo en la estructura interna de nuestro intelecto.”
La Naturaleza está llena de simetrías
La simetría es una propiedad universal tanto en la vida corriente, como desde un punto de vista matemático desde el quehacer de la Física Teórica. En realidad, lo que observamos en la vida corriente es siempre lo repetitivo, lo simétrico, lo que se puede relacionar entre sí por tener algo común. Es siempre lo mismo dentro de una inmensa diversidad formada por grupos iguales.
En un sentido dinámico, la simetría podemos entenderla como lo que se repite, lo reiterativo, lo que tiende a ser igual. Es decir, los objetos que, por mantener la misma geometría, son representativos de otros objetos. En el Caos matemático encontramos concepción de la simetría en el mundo los fractales. Sin embargo, la simetría es mucho más. Hay distintas maneras de expresarla: “Conjunto de invariancias de un sistema”, podría ser una de ellas. Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado, la simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y las rotaciones en las moléculas y las translaciones en las redes cristalinas.
Aquí hay mucho más de lo que a asimple vista parece
Los físicos teóricos también se guían en sus investigaciones por motivaciones estéticas tanto como racionales. Poincaré escribió: “Para hacer ciencia, es necesario algo más que la pura lógica”. Él identificó ese elemento adicional como la intuición, que supone “el sentido de la belleza matemática”. Heisenberg hablaba de “la simplicidad y belleza de los esquemas matemáticos que la Naturaleza nos presenta”.
La simetría está presente por todas partes y, cada objeto, tiene la suya que siempre, está relacionada con la de otro de la misma especie. Hay simetrías que en física incluye todos los rasgos de un sistema físico que exhibe propiedades de la simetría – eso es, que bajo ciertas transformaciones, aspectos de esos sistemas son “incambiables”, de acuerdo a una observación particular. Una simetría de un sistema físico es un rasgo físico o matemático de un sistema que es preservado sobre cierto cambio.
En matemática, una transformación es un operador aplicado a una función tal que bajo esa transformación, ciertas operaciones sean simplificadas. En ejemplo, en la aritmética cuando se busca un algoritmo de números, el proceso de búsqueda es reducido a la suma de los algoritmos de cada factor.
Por ejemplo, veámos la invariancia de escala: En un recipiente con agua a punto de hervor, las burbujas de vapor, nucleadas en el fondo del recipiente, crecen, se liberan, y fluctúan hasta la superficie de donde se escapan para la atmósfera. A la temperatura de ebullición, el agua existe al mismo tiempo en dos fases distintas – líquido y gas – y a medida que las burbujas se forman las dos fases se separan en el espacio. Si cerramos el recipiente la temperatura de ebullición aumenta, como en una olla a presión. A medida que la presión aumenta, el sistema llega al punto crítico, donde las propiedades del líquido y del gas se vuelven idénticas. Por encima de esa temperatura, en el régimen supercrítico, dejan de existir dos fases distintas y existe apenas un fluido homogéneo.
Cerca del punto crítico, la materia fluctúa sin límites. Burbujas y gotas, unas tan pequeñas como unos cuantos átomos, otras tan grandes como el recipiente, aparecen y desaparecen, se unen y se separan. Exactamente en el punto crítico la escala de las mayores fluctuaciones divergen, pero el efecto de las fluctuaciones en escalas menores no es despreciable. La distribución de las fluctuaciones es invariable para transformaciones de escala.
De la figura se deduce que la teoría tiene una “simetría interna”: la figura no cambia cuando hacemos rotaciones en el plano definido por A y B. La invariancia es definida matemáticamente por transformaciones que dejan magnitudes sin cambio. Por ejemplo, la distancia entre dos puntos de un sólido que se mueve, pero no se deforma.
Simetrías locales y globales
Una simetría global es una simetría que sostiene todos los puntos en el tiempo-espacio bajo consideración, a diferencia de la simetría local que solo sostiene a un subconjunto de puntos.
La mayoría de las teorías físicas son descritas por lagrangianos (En física, un lagrangiano es una función matemática a partir del cual se pueden derivar la evolución temporal, las leyes de conservación y otras propiedades importantes de un sistema físico) que son invariantes bajo ciertas transformaciones, cuando las transformaciones son realizadas en diferentes puntos del espacio-tiempo y están relacionadas linealmente – ellas tienen simetría global.
Por ejemplo, en toda teoría cuántica la fase global de una función de onda es arbitraria y no representa algo físico. Consecuentemente, la teoría es invariante bajo a cambio global de fases (Agregando una constante a la fase de todas las funciones de onda, en todos lados); esto es una simetría global. En la electrodinámica quántica, la teoría es también invariante bajo un cambio local de fase, es decir, que se puede alterar la fase de todas las funciones de onda tal que la alteración sea diferente en cada punto del espacio-tiempo. Esto es una simetría local.
También se habla de ruptura de simetrías temporales en la física de partículas.
Los físicos creen también que están en el camino correcto porque, de algún modo que no pueden explicar, tienen la convicción de que son correctas, y las ideas de simetría son esenciales para esa intuición. Se presiente que es correcto que ningún lugar del Universo es especial comparado con cualquier otro lugar del Universo, así que los físicos tienen la confianza de que la simetría de traslación debería estar las simetrías de las leyes de la Naturaleza. Se presiente que es correcto que ningún movimiento a velocidad constante es especial comparado con cualquier otro. De modo que los físicos tienen confianza en que la relatividad especial, al abrazar plenamente la simetría entre todos los observadores con velocidad constante, es una parte esencial de las leyes de la Naturaleza.
Se dice que esta ecuación de Euler es la más bella conocida. Aunque son muchas las ecuaciones que podríamos traer aquí y que son de todos conocidas y han quedado como símbolos en la historia de las matemáticas, la de Euler, es posible que por su elegancia y simplicidad, le pueda ganar a las demás en belleza. Ahí, en ese sencillo conjunto, los números más significativos de las matemáticas se abrazan: o, 1, e, π, y la unidad imaginaria i .
Si se fijan en la fórmula, en ella aparecen los 5 números más importantes en la historia de las matemáticas. El 0 y el 1 que, entre otras aportaciones a esta disciplina, son famosos por ser elementos neutros y, por lo tanto, indispensables en las operaciones de suma y producto; los números π y e, posiblemente, los dos irracionales más famosos (junto con φ, la razón aúrea) que existen (y que nos permiten hacer el chiste aquel de que la parte más irracional de nuestro cuerpo es el pi-e); y la unidad imaginaria, i, cuyo valor es
Dirac nos hablaba de ecuaciones bellas. La estética es, evidentemente, subjetiva, y la afirmación de que los físicos buscan la belleza en sus teorías tiene sentido sólo si podemos definir la belleza. Afortunadamente, esto se puede , en cierta medida, pues la estética científica está iluminada por el sol central de la simetría.
La Naturaleza nos la muestra por todas partes
La simetría es un concepto venerable y en modo alguno inescrutable y no podemos negar que tiene muchas implicaciones en la Ciencia, en las Artes y sobre todo, ¡en la Naturaleza! que de manera constante nos habla de ella. Miremos donde miremos…¡allí está!
El físico chino-norteamericano Chen Ning Yang ganó el Nóbel de Física por su en el desarrollo de una teoría de campos basada en la simetría y, aún afirmaba: “No comprendemos todavía el alcance del concepto de simetría”. Es lógico pensar que, si la Naturaleza emplea la simetría en sus obras, la razón debe estar implicada con la eficacia de los sistemas simétricos.
En griego, la palabra simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera, como de hecho, resultan ser en las imágenes que arriba contemplamos. Asi, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético superior.
Humo simétrico
Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Escuela Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos de ese Universo de simetría.
Los planetas son esféricos y, por ejemplo, tienen simetría de rotación. Lo que quiere indicar es que poseen una característica -en caso, su perfil circular- que permanece invariante en la transformación producida cuando la Natuiraleza los hace rotar. Las esferas pueden Hacerse rotar en cualquier eje y en cualquier grado sin que cambie su perfil, lo cual hace que sea más simétrica.
La clave de la belleza está en la simetría
La simetría por rotación se encuentra en los pétalos de una flor o en los tentáculos de una medusa: aunque sus cuerpos roten, permanecen iguales. La simetría bilateral que hace que los lados derecho e izquierdo sean iguales y se presenta en casi todos los animales, incluido nosotros. Pero es uniendo estos aspectos se obtienen figuras realmente armoniosas. Si se trata de desplazamiento y rotación en un mismo plano hablamos de una espiral, mientras que en el espacio sería una hélice, aunque ambas se encuentran por todas partes en la naturaleza.
Las simetrías se generan mediante las fuerzas que actúan sobre los cuerpos, descritas por leyes rigurosas e inequívocas, como una fórmula matemática y dependen de la existencia de fuerzas distintas que actúan en diversas direcciones. Si éstas permanecen en equilibrio, no hay preferencia alguna hacia arriba o abajo, a la derecha o a la izquierda, y los cuerpos tenderán a ser perfectamente esféricos, como suele ocurrir en el caso de virus y bacterias, las estrellas y los mundos… las galaxias. Además, cuando el aspecto no es el de una esfera perfecta, la Naturaleza hará todo lo posible para hacercarse a esta.
La simetría también están prtesentes en nuestros cerebros
¿Sería posible que la simetría material tuviera un paralelismo en la abstracción intelectual que son las leyes físicas? luego hace falta un esfuerzo mental considerable para pasar de lo material a lo intelectual, pero cuando se profundiza en ellla, la conexión aparece. En la naturaleza existen muchas cosas que nos pueden llevar a pensar en lo complejo que puede llegar a resultar entender cosas que, a primera vista, parecían sencillas.
Me explico:
Fijémonos, por ejemplo, en una Flor de Girasol y en las matemáticas que sus semillas conllevan. Forman una serie de números en la que cifra es la suma de las dos precedentes (por ejemplo 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…) se denomina, en términos matemáticos, sucesión de Fibonacci, una ley que se cumple incluso en el mundo vegetal, como hemos podido comprobar en las semillas del girasol, dispuestas en espiral y que respetan ésta fórmula. La podemos ver por todas partes.
Lo mismo ocurre con otros ejemplares de la diversidad del mundo de las plantas
En el mundo inorgánico las leyes de la cristalización del agua congelada, determinadas por las fuerzas que actúan entre las moléculas, hacen que los cristales adopten formas que son infinitas y varían con respecto a un tema común: la estrella de seis puntas. Sin embargo, los planetas son esféricos porque han nacido en la primordial que rodeaba al Sol, atrayendo materia indiferentemente de todas partes.
Claro que, en la Naturaleza, nada ocurre porque sí, todo tiene su por qué, y, todo lo que en ella podemos contemplar posee una funcionalidad que está directamente relacionada con su mecánica, con el medio en el que habita, con lo que el Universo espera que haga en su medio y, para ello, dota a figura con aquellos “trajes” que mejor les permita realizar aquello para lo que están destinados.
Vamos a generalizar un paso más el concepto de simetría, planteándonos si es posible que una ley física se cumpla en cualquier lugar. ¿En cualquier lugar… de dónde?, ¿de nuestra ciudad?, ¿de nuestro planeta? No: del universo. Una ley que fuera válida en cualquier lugar del universo sería una ley simétrica respecto al espacio. Se cumpliría dondequiera que se hiciese un experimento para comprobarla.
Fíjense que nuestra idea de simetría se va haciendo más compleja y más profunda. no nos detenemos en ver si la forma material de un objeto es simétrica, ni de si la escritura de una fórmula matemática es simétrica. Ahora nos preguntamos si una ley física es válida en todo el Universo.
La otra simetría interesante para una ley física es la que se refiere al tiempo. Cierta ley física se cumple ; ¿antes también?, ¿se cumplirá pasado algún tiempo? Una ley que fuera cierta en cualquier instante de la historia del universo sería una ley simétrica respecto al tiempo.
Lo que nos preguntamos es: ¿son simétricas o no las leyes de la física?
Hasta donde alcanzan nuestras medidas, las leyes físicas (y, por tanto, la interacción gravitatoria) sí son simétricas respecto al espacio y respecto al tiempo. En cualquier lugar y momento temporal del universo, la Naturaleza se comporta igual que aquí y ahora en lo que se refiere a estas leyes.
Esta simetría es un arma muy poderosa para investigar hacia el pasado y hacia el futuro, ya que nos permite suponer (y, en la medida en que confiemos en la seguridad de la simetría,conocer) locales donde jamás podremos llegar por la distancia espacial y temporal que nos separa de muchas partes del universo. Así, por ejemplo, gracias a esta simetría, podemos calcular que el Sol lleva 5.000 millones de años produciendo energía y que le quedan, probablemente, otros 5.000 millones hasta que consuma toda su masa. Esto lo podemos aventurar suponiendo que en ese enorme tramo de 5.000 + 5.000 = 10.000 millones de años las leyes físicas que determinan los procesos mediante los cuales el Sol consume su propia masa como combustible (las reacciones nucleares que le permiten producir energía), fueron, son y serán las mismas aquí en el Brazo de orión donde nos encontramos como en los arrabales de la Galaxia Andrómeda donde luce una estrella como nuestro Sol que, también envía luz y calor a sus planetas circundantes, y, por muy lejos que podamos mirar, siempre veremos lo mismo.
Por tanto, en cierto modo, la simetría se vuelve tan importante o más que la propia ley física.
La regularidad de las formas de la Naturaleza se refleja incluso en la cultura humana, que desde siempre intenta inspirarse en el mundo natural conformar su propio mundo. Existen hélices en las escaleras de palacios, castillos y minaretes y en las decoraciones de esculturas y columnas. Las espirales abundan en los vasos, en los bajorrelieves, en los cuadros, en las esculturas en los collares egipcios, griegos, celtas, precoolombinos e hindúes e, incluso, en los tatuajes con los que los maoríes neozelandeses se decoran el rostro.
¿Tenía en mente Leonardo la proporción áurea a la hora de realizar su obra maestra? Afirmarlo resultaría aventurado. Menos polémico es aseverar que el genio florentino concedía gran importancia a la relación entre la estética y la matemática. Dejaremos la cuestión en el aire por el momento, no sin antes mencionar que Leonardo realizó las ilustraciones de una obra de contenido estrictamente matemático, escrita por su buen amigo Luca Pacioli, llamada “De divina proportione”, es decir, “La divina proporción”.
Fuente de esta imagren y texto: Fernando Corbalán
La búsqueda de la perfección geométrica y de las propiedades matemáticas pueden ser una guía importante en el estudio científico del mundo. Paul Dirac, una de los padres de la moderna mecánica cuántica, solía decir que “si una teoría es bella desde el punto de vista matemático, muy probablemente es también verdadera”.
A todo esto, no debemos olvidar que todo, sin excepción, en nuestro Universo, está sometido a la Entropía que nos trae el paso inexorable de eso que llamamos “Tiempo”, y que, convierte perfectas simetrias de joven belleza, en deteriorados objetos o entidades que, nos viene a recordar que nada es perpetuo, que todo pasa y se transforma. Claro que, de alguna manera, todo vuelve a resurgir.
La belleza que atrae, rara vez coincide con la belleza que enamora
Un dolor que llevo dentro de mí es el no poder contemplar la verdadera belleza que estándo presente en los seres vivos inteligentes, en la mayoría de los casos, se nos queda oculta a nuestra percepción, toda vez que esa clase de belleza, que no podemos ver pero sí percibir, sólo la podemos captar con el trato y la convivencia y, verdaderamente, tengo que admitir que, algunas bellezas que he tenido la suerte de poder “ver con los ojos del espíritu”, llegan a ser segadoras, deslumbrantes, su explendor es muy superior al de la estrella más brillante del cielo, y, seguramente (estoy seguro) como a muchos de ustedes les pasa, tengo la suerte de tenerla junto a mí desde hace muchos años. y, si pienso en ello en profundidad y detenimiento, no tengo más tremedio que concluir que es ese brillo y esplendor el que me da la fuerza para seguir cada dia en la dura lucha que nos ha participar.
¡Sí que es importante la Belleza! Dirac tenía toda la razón. Y, no digamos las Simetrías que indican con el dedo de la Naturaleza el camino a seguir a muchos físicos que quieren desvelar sus secretos.
emilio silvera
Feb
14
¿Somos nosotros acaso, una especie elegida?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

Para cada especie, la tasa con la que se pierde carbono está determinada principalmente por el tipo de fotosíntesis. Así, existen diferencias sustanciales entre las plantas C3 y C4. La respiración a escala de una comunidad o ecosistema depende del estado de crecimiento, y varía entre menos del 20 por ciento en plantas jóvenes en rápido crecimiento, hasta más del 90 por ciento en bosques maduros.
el 99 por ciento de las especies que aquí vivieron ya no están, se exinguieron. Ahora se estima que son más de 9 millones de especies las que habitan el planeta y, desde luego, la mayor parte de ellas nos son desconocidas. Para no saber no sabemos ni quiénes son los que ocupan nuestra propia casa. Vecinos muy cercanos que no pocas veces, inciden en el devenir de nuestras vidas de mil maneras diferentes y, nosotros, estamos ajenos a ello. No creo que seámos especiales en ningún sentido de la palabra y, si somos la especie dominante en la Tierra, seguramente en otros planetas, el dominio lo tendrán otras expecies muy diferentes a nosotros.
Hoy se admite que el 99 por ciento de todas las especies que han vivído sobre la Tierra se han extinguido, ¿somos nosotros acaso, algo especial? Si nos detemos y observamos detenidamente el estado actual de la creación de seres vivos, la comparamos con la del pasado e indagamos si se ha hecho fija y estacionaria, descubriremos que, por el contrario, se halla en un continuo flujo, que hay muchos mecanismos en acción que son causas de extinción de espacies, y dan prueba concluyentes contra el pensamiento de la duración ilimitada.
Este ejemplar y su especie hace mucho tiempo que dejó de exisitr
Todos los seres vivos que han estado y que están y que estarán en ente planeta en el futuro lejano, todos ellos sin excepción, son parientes, nacidos de la misma cuna y, un lazo nos vincula a nosotros con todos los demás. Hay muchas diferencias y, nuestra especie ha tenido la suerte de saber comunicarse, evolucionar e indagar para escribir su propia historia desde los tiempos más remotos hasta nuestros días. Sin embargo, en el origen…¡iguales!
¿De qué materiales están hechos estos seres vivos? ¿Acaso son diferentes sus componentes a los nuestros? Y, la escena que nos muestran, ¿no os resulta familiar? Podría ser la de cualquier madre protegiendo a sus pequeños. En eso, también parece que somos iguales. ¡El instinto de preservar la especie!
Charles Darwin
Es inevitable, hablar de las especies es recordar a Darwin, y, nos llega a la memoria que en Diciembre de 1831, cuando era un joven estudiante en prácticas que viajaría más lejos por las profundidades del tiempo y se aprestaba a comenzar una aventura navegando en el Beagle para dar la vuelta al mundo y, al preparar su mochila, metió en ella el libro de Lyell Principles of Geology. Y pienso yo…
Frontispicio del primer volumen del libro. Dibujo del Macellum de Pozzuoli.
¿No es acaso un libro, un mundo en sí mismo? ¿Qué maravillas nos puede contar?
¿Que duda nos puede caber?
¿Acaso no es un libro el mejor compañero de viaje?
No molesta, te distrae y te enseña.
Si alguna vez viajas,
No olvides esta reseña.
He comenzado ésta página sin rumbo fijo y, sin saber el motivo, escribí sobre las extinciones del pasado y de la actualidad de los seres vivos sobre la Tierra y su posible futuro, no creo que seamos nada especiales y, el ritmo de la naturaleza quita y pone, destruye y construye y su evolución natural es la que marcará, en todo momento, el devenir de todas las cosas…nosotros no seremos una excepción y nuestro día llegará.
Claro que es inevitable, al pensar en esa verdad, que se nos venga a la mente todo el largo y doloroso camino recorrido por nuestra especie para llegar al punto en el que estamos situados, y, si eso es así, no podemos evitar preguntarnos: Entonces, ¿Para qué tanto dolor y sacrificio? Miramos hacia atrás en la Historia de la Humanidad y, un escalofrío nos recorre el cuerpo…¿Habrá sido todo en vano?
Stonehenge es uno de los miles de artilugios antiguos para el cálculo del tiempo cuyas cuyas partes en movimiento estaban todas en el cielo. Stonehenge está conformado por grandes bloques de piedra distribuidos en cuatro circunferencias concéntricas. La exterior, de treinta metros de diámetro, está formada por grandes piedras rectangulares de arenisca que, originalmente, estaban coronadas por dinteles, también de piedra, quedando hoy en día sólo siete en su sitio. Dentro de esta hilera exterior se encuentra otro círculo de bloques más pequeños de arenisca azulada. Éste encierra una estructura con forma de herradura construida con piedras de arenisca del mismo color. En su interior permanece una losa de arenisca micácea conocida como «el Altar».
Distribución de rocas según se encuentran a principios del siglo XXI.
Todo el conjunto está rodeado por un foso circular que mide 104 m de diámetro. Dentro de este espacio se alza un bancal en el que aparecen 56 fosas conocidas como los «agujeros de Aubrey». El bancal y el foso están cortados por «la Avenida», un camino procesional de veintitrés metros de ancho y tres kilómetros de longitud, aproximadamente. Cerca se halla la «Piedra del Sacrificio». Enfrente se encuentra la «Piedra Talón». Está compuesto de un gran círculo de grandes megalitos cuya construcción se fecha hacia el 2500 a.C.El círculo de arena que rodea los megalitos está considerado la parte más antigua del monumento, habiendo sido datada sobre el 3100 a.C.
Panorámica de las tres pirámides de Guiza
La Gran Pirámide de Gizeh fue alineada con la estrella Polar, y era posible leer las estaciones por la posición de la sombra de la pirámide.
La meseta de Gizet, donde se aprecia al fondo la Gran Pirámide y a media distancia la Gran Esfinge. ¿Cómo consiguieron los antiguos egipcios montar el inmenso entramado de bloques que componen el edificio que ocpua una superficie de 5,3 Ha y parece incorporar complicadas fórmulas matemáticas? No tenemos datos que ayuden a despejar ese interrogante.
Los constructores debían tener medios y conocimientos científicos, porque las medidas y las proporciones de la Pirámide muestran una exactitu asombrosa. Sus cuatro caras están orientadas hacia los cuatro puntos cardinales, con un error inferior a una décima de grado. La longitud de la cara más larga y la más corta difieren en menos de 20 cm. El Pavimento que rodea la Gran Pirámide está perfectamente nivelado. Esta precisión hubo de ser lograda con medios muy sencillos, utilizando las posiciones del Sol y las estrellas para alineaciones, y quizás niveles de agua para definir las horizontales. Pero el modo con el que se consiguió construirlas…mera conjetura.
Los mayas del antiguo Yucatán inscribieron en monumentos de piedra fórmulas útiles para predecir eclipses solares y la salida helíaca de Venus (esto es, su aparición al oeste del Sol, como “estrella matutina”.
¿Quién sabe lo que sería de aquella Civilización si nosotros nunca hubiéramos puesto el pie en sus tierras?
Antes de la (desgraciada) llegada de los españoles a la península de Yucatán, el nombre de ésta era el Mayab. En idioma maya, ma ya’ab que significa unos pocos (ma significa no y ya’ab, muchos). Era el lugar que los mayas habían seleccionado en su peregrinar y calificado para unos cuantos. Había sido y era todavía, a la llegada de los europeos, una región muy importante para la civilización maya, que había encontrado ahí el reducto en el que se desarrolló, muy particularmente durante el denominado período clásico, aunque los asentamientos de la civilización maya, más remotos en la región se estiman hacia el siglo III d. de C. y aún antes (se afirma tras las determinaciones relativamente recientes en yacimientos arqueológicos como Komchén, Dzibilchaltún y Tuipikal.) Fue en ese entonces que las primeras migraciones provenientes del Petén, se establecieron primero en la región de Bacalar. Más adelante, hacia el Siglo V, empezaron a trasladarse hacia el poniente de la península, fundando entre otras ciudades Chichén Itzá, Izamal. Ek Balam e Ichaaaaacaanzihóo(también llamada T´Hó), actualmente Mérida, la capital del estado en nuestros días.
El Templo de Kukulcán en la zona arqueológica de Chichén Itzá.
Las ciudades mayas de la zona continuaron existiendo después del colapso de las ciudades de la región maya original y algunas de ellas seguían siendo habitadas a la llegada de los españoles a principios del siglo XVI. En la actualidad, se conservan en extraordinario estado un gran número de sitios arqueológicos que abarcan diversos períodos del desarrollo de la civilización maya.¿Que sería ahora de los Mayas sin la inombrable presencia de los españoles? Hay cosas que mejor…no olvidar para que no se repitan.
Se dice que al momento de la muerte del bisonte, el cazador amerindio se acercaba a inhalar su último aliento como forma de absorber espiritualmente sus virtudes. Fue conocido como “Dador de vida”, pues todo de éste ser era utilizado. Los usos incluían alimentación, abrigo, indumentaria religiosa, combustible (se secaban las deyecciones al sol) y materiales de construcción.
Siguiendo con nuestro crucero del recuerdo, pensemos ahora en las ruedas mágicas de piedra de los indios de las llanuras de América del Norte que señalaban los puntos de salida de las estrellas más brillantes del cielo, informando a sus arquitéctos nómadas cuando llegaba la fecha de emigrar a tierras de pastoreo estacionales. Se dice que los veintiocho postes de los recintos mágicos de los Cheyennes y los Sioux eran usados para selañalar los días del mes lunar: “Establecer el recinto de la danza del sol, en realidad hace una representación del Universo” -decía Black Elk, un sacerdote de los siouz ogdala-.
El 12 de octubre de 1492, Cristóbal Colón desembarcó en una pequeña isla del Caribe. Su histórico viaje inició la era de la exploración (explotación) y la expansión trasatlántica por partes de los colonos europeos. ¡Siempre la misma Historia! El Abuso de los fuertes contra los inocentes.
Presumiblemente el poder político influyó en los primeros esfuerzos para identificar los movimientos periódicos del cielo, en la medida en que los hombres pueden pretender controlar lo que pueden predecir. El manejo del calendario dio a los sacerdotes una ventaja en la dura política de los mayas, y Cristobal Colón logró intimidar a los indios de La Española para que avituallasen a su tripulación hambrienta, advirtiéndoles que, “al salir la luna”, la verían aparecer llena de ira, inflamada, denotando el mal que Dios quería enviarles”
Todo aquello, me pone enfermo, cuántas injusticias se cometieron en el nombre de Dios, del Progreso y del Rey…Nunca me perdonaré ser descendiente de aquellos que tal felonía cometieron. Claro que, si miramos el recorrido de la Humanidad, ¿no fue siempre de esa amanera?
Es posible que aluna vez os hayais preguntado cuando empieza la Historia. Para resolver esta difícil cuestión habría que entender primero cuáles son los conceptos básicos que definen el cambio de la prehistoria neolítica a la Historia. De una manera sencilla se puede decir que los elementos esenciales para la transición son la creación de núcleos urbanos y la aparición de la escritura como método de comunicación. Así hubo un primer pueblo que se destacó sobre las demás culturas de su época, esta fuen la civilización de Sumer, cuna de la Historia.
hoy día es considerable la cantidad de conocimientos adquiridos sobre los antiguos sumerios. Prácticamente sabemos cómo era la vida diaria del sumerio medio, puesto que ellos lo consignaban todo en unas tablillas de arcilla fresca, marcando con un punzón símbolos triangulares en forma de cuña. Estas tablillas cuneiformes, que se han descubierto en cantidades ingentes, recorren todos los aspectos de la vida de los antiguos sumerios: no sólo listas de reyes, epopeyas religiosas o himnos a dioses, también y sobre todo, cuestiones administrativas, tratos comerciales, leyes y disposiciones jurídicas, correspondencia personal y diplomática, incluso manuales de caligrafía, matemática y enseñanza básica (e incluso un curioso y entrañable texto donde un padre muestra sus preocupaciones sobre su hijo y le da consejos para la vida).
Tablilla sumeria con escritura cuneiforme.
Estas tablillas muestran que los sumerios ya habían desarrollado ampliamente todos aquellos campos y muchos otros; no en vano, su civilización se preciaba, antes de ser finalmente asimilada por los persas y otros pueblos, de tener una existencia de al menos cinco mil años, e incluso más. Veamos, se habla de que la proto-ciudad neolítica de el Ubaid existió más o menos entre el 6000 y el 4500 adC. De la cultura de Uruk, predecesora directa de la plenamente sumeria, se sitúa más o menos en el 3500 adC. A partir de ahí empiezan a florecer numerosas ciudades en la zona llamada el Fértil Creciente, o como la conocían los griegos antiguos, Mesopotamia: el país entre ríos. Babilonia, Nínive, Ur, Kish, Lagash, todas se desarrollan y tienen su momento de esplendor, su momento de auge y su caída. Babilonia fue arrasada consecutivamente por numerosos reyes e imperios, hasta que finalmente Alejandro Magno la destruyó por completo, y sembró su tierra de sal, haciéndola desaparecer para siempre.
Muchos años más tarde, llegaron los Griegos con sus Escuelas (Sócrates, Platón, Aristóteles, Pitágoras y tantos otros que, cogiendo todos aquellos saberes antiguos, de Sumerios, Babilonios, Egipcios, Chinos…etc. Construyeron una Sociedad más moderna y crearon las Polis, se implantaron las primeras democracias y, el mundo, desde entonces comenzó una nueva andadura que llega al Renacimiento y hasta nuestros días que, desgraciadamente (dicho sea de paso) no ha mejorado, en muchos aspectos, lo que aquellos construyeron.
El presente trabajo ha sido un poco atípico, no ha seguido una línea previamente pensada, y, ha viajado por rumbos inconexos aunque pretendiendo llevar siempre una idea común a todos: nuestra presencia aquí desde los primeros tiempos considerados (de alguna manera) civilizados y, desde luego, enlazando con el principio, podemos llegar a la conclusión de que, a pesar de tantos avatares, de tantas luchas y costosos logros (con pérdidas irreparables), al final del camino, nada está en nuestras manos, la última palabra la tiene…
La madre Naturaleza que, si da un suspiro a destiempo, nos podría alejar de la faz de la Tierra para siempre y, ahí se acabó nuestro histórico recorrido por el este Valle de Lágrimas que, aunque nos ha dado la posibilidad de conocer la Belleza, algo de Felicidad, el Amor y el placer de Descubrir para Saber…no nos han entregado un Certificado de Garantías de nuestra permanencia para siempre en este bello planeta que, no siempre hemos sabido tratar como se merece.
Esta aurora se arquea de horizonte a horizonte y nosotros la podemos admirar
Nuestra Vía Láctea, su franja, es espectacular y, ahí están todas las cosas vecinas nuestras, todos los objetos bellos y exóticos que en este pequeño “universo” conviven regidos por las fuerzas de la Naturaleza, sus constantes y sus continuos cambios que, nos llevan a presenciar la evolución de todas las cosas y, como, a partir de los más sencillos elementos, se transforman en otros más complejos mediante las transiciones que se producen en el seno de las estrellas que, al final de sus días, explotan como super o hipernovas para formar ricas Nebulosas cargadas de materiales que formaran los nuevos mundos y las nuevas estrellas del cielo.
Todo eso hemos podido llegar a saber, y, al pensar en todo lo que aquí hemos estado tratando, nos podríamos preguntar:
¿Habrá valido la pena?
emilio silvera
Feb
14
Cúmulo abierto M67
por Emilio Silvera ~
Clasificado en Astrofísica ~
Comments (0)
Planetas mayores que Júpiter orbitan algunas de sus estrellas
M67 (también conocido como NGC 2682) es un cúmulo abierto situado en la constelación de Cáncer.
M67 tiene aproximadamente 500 componentes. Contiene 11 estrellas gigantes de tipo espectral K con magnitud absoluta entre +0.5 y +1.5, así como algunas estrellas en la zona más azul de la Secuencia Principal, la más brillante de ellas de tipo espectral B8 o B9. También posee 200 enanas blancas (esto quiere decir que doscientos soles murieron para que ellas existieran) y 100 estrellas parecidas a nuestro sol. La magnitud aparente de sus estrellas más brillantes es alrededor de 10ª.
Debido al alto número de estrellas, de tipos tan distintos, ha sido estudiado intensamente: Harlow Shapley (1917) realizó los primeros trabajos sobre sus colores y magnitudes, Barnard (1931) midió la posición de sus principales componentes (para determinar sus movimientos propios), Popper (1954) los espectros de sus brillantes estrellas, mientras que Johnson y Sandage (1955) elaboraron el primer Diagrama HR preciso de alrededor de 500 estrellas, descubriendo su elevada edad y su estado tan evolucionado.
Estas binarias se pueden fusionar para formar una estrella de Neutrones
Hasta la fecha (2.016) se han descubierto la presencia de 45 fuentes de Rayos X en el cúmulo, la mayoría de ellas estrellas binarias ellas (presumiblemente del tipo RS CVn), con períodos orbitales de 10 días o menos.
En su parte sur, prácticamente en la zona occidental, aparece un pequeño agrupamiento de nueve estrellitas conocido como Dipper: tiene forma de pequeña cometa con la cola curvada; una de sus estrellas componentes es la variable S 999.
Contiene bastantes variables del tipo binaria eclipsante y binaria espectroscópica; algunas de estas estrellas, fácilmente visibles para telescopios de aficionado dotado de cámara CCD son:
- AH Cnc: de magnitud 13.33, es una binaria del tipo UW UMa descubierta en 1960; su período es igual a 0.360452 días, su amplitudes próxima a 0.40 magnitudes.
- EV Cnc: de magnitud 12.78, también es una binaria de tipo UW UMa; fue descubierta en 1991, tiene un período igual a 0.44144 días y una amplitud igual a 0.18 magnitudes.
- AG Cnc: con magnitud 13.77 presenta un período igual a 2.84 días y una amplitud de 0.20 magnitudes.
- S 999: de magnitud 12.60 es una variable de largo período (9.2 días) que presenta una amplitud fotométrica igual a 0.07 magnitudes; está situada en la parte norte del Dipper.
- S 1063: también conocida como NSV 4274, es un astro de magnitud 13.79 con un período de variación muy largo, comprendido entre los 17 y 18 días (hasta el año 2006 no está bien determinado), con una amplitud de 0.18 magnitudes.
- ES Cnc: con magnitud 11.19 es una de las más brillantes del cúmulo; se trata de una estrella del tipo blue straggler (errante azul) que resulta ser también una variable eclipsante con un período igual a 1.0677978 días.
En 2004 se publicó un estudio del cúmulo en el que se midieron las magnitudes de sus estrellas con una precisión de diezmilésimas de magnitud: (0.0001 magnitud).
Fuente de datos de Wikipedia.
Feb
14
Moléculas Quirales y otras maravillas
por Emilio Silvera ~
Clasificado en El Universo y la Química de la Vida ~
Comments (0)
Artículo publicado por Lori Dajose el 14 de junio de 2016 en Caltech News
Las moléculas quirales – compuestos que aparecen en variaciones que son imágenes especulares unas de otras, como un par de manos humanas — son cruciales para la vida tal como la conocemos. Los seres vivos son selectivos sobre qué tipo de “orientación” de una molécula usan o producen. Por ejemplo, todos los seres vivos usan exclusivamente la forma dextrógira de la ribosa (el armazón del ADN), y las uvas exclusivamente sintetizan la forma levógira de la molécula del ácido tartárico. Aunque la homoquiralidad — el uso de sólo una orientación de una molécula dada — es ventajoso evolutivamente hablando, no se sabe cómo elige la vida la orientación molecular que vemos en la biosfera.
Así comenzó el artículo publicado en Caltech News.
Lo podemos continuar con otros datos e ingredientes que nos llevan a saber, cómo se vale la naturaleza de su “magía” para conseguir lo que quiere. Todo esto es bastante complejo y podemos hallar en Nubes Moleculares algunas moléculas que son esenciales para la vida, así que, podríamos decir que muchos de los ingredientes de los que están hechos los seres vivos se hicieron y formaron en el Espacio Interestelar.
La catálisis asimétrica hace referencia a la catálisis efectuada por catalizadores quirales que además de acelerar una reacción, inducen la formación preferente de uno o varios estereoisómeros de todos los posibles. Este proceso implica una “multiplicación” de la quiralidad y es, por tanto, el método ideal para la síntesis de compuestos ópticamente puros.
En función de la naturaleza metálica o no metálica del catalizador, la catálisis asimétrica puede dividirse en catálisis organometálica (utiliza como especies catalíticas complejos metal-ligando orgánico quiral) y organocatálisis (utiliza como especies catalíticas moléculas orgánicas pequeñas, de bajo peso molecular).
ISÓMEROS (Compuestos con la misma fórmula molecular, pero presentan diferentes propiedades químicas debido a que su estructura es distinta) ISOMERÍA ESTRUCTURAL (Presentan diferente estructura debido a que presentan distintos tipos de enlaces en la cadena o en la unión entre átomos) ISOMERÍA ESPACIAL ESTEREOISOMERÍA (Presentan diferente orientación espacial de algunos de sus átomos) Isomería de cadena (Forman cadenas carbonadas distintas) Isomería de posición (La localización de las ramificaciones, insaturaciones o grupos funcionles son distintas) Isomería de función (Tienen grupos funcionales distintos) Isomería geométrica Diastereoisomería (Se debe a las posibles orientaciones cuando los átomos de carbono están unidos por enlaces que no pueden rotar) Isomería óptica Enantiomería (Se debe a las posibles orientaciones cuando los átomos de carbono están unidos por enlaces que no pueden rotar).
ISÓMEROS ESTRUCTURALES
ISÓMEROS DE CADENA
ISÓMEROS DE POSICIÓN
ESTEREOISÓMEROS L
Cada una de estas modalidades y otras que se conocen tiene un cometido distinto pero, al final del camino, se ellas se vale la Naturaleza para alcanzar sus logros
Un grupo de investigadores internacionales estudian la forma en que se podría desarrollar en el espacio un tipo particular de moléculas orgánicas en una nebulosa, las cuales son materia prima para la vida.
Las moléculas llevan por nombre Hidrocarburo Aromático Policíclico (PAHs, por sus siglas en inglés), y se tratan de elementos planos que constan de átomos de carbono dispuestos en un patrón de panal, rodeadas de hidrógeno.
Dicha información ayudaría a los científicos a comprender mejor la manera en que se pudo generar la vida en la Tierra, informó en su página de Internet, la Administración Nacional de Aeronáutica y del Espacio (NASA, por sus siglas en inglés).
De acuerdo con la agencia estadounidense, los PAHs representan 10 por ciento del carbono en el universo, los cuales se pueden encontrar en la Tierra al momento de la combustión de material orgánico, como la carne, la caña de azúcar y la madera, entre otros.
Como todos saben, en las Nebulosas están presentes muchas moléculas necesarias para la vida. En comentarios anteriores, ya nos referimos a los elementos más idóneos para formarlas y, cuando en esas Nebulosas el material allí presente se transforma en Mundos, allí aparecen y se juntan para evolucionar y conseguir maravillas que, como la Vida, nos llevan al Asombro.
Lo cierto es que no podemos contestar algunas pregunta con propiedad. Sabemos lo que son los seres vivos e incluso, es posible que existan algunas especies que estando vivas ni lo podamos saber ni las podemos detectar. Sabemos de los materiales que son necesarios para que la vida esté presente en nuestro Universo y, en éstas mismas páginas hemos expuestos amplios trabajos sobre el tema de la vida, su posible origen, de cómo se “fabrican” los materiales necesarios para su existencia en las estrellas… Se podría decir, sin andar muy lejos de la verdad, que la vida, es la materia evolucionada hasta el nivel de la consciencia (si nos referimos ala vida en su más alta expresión).
Pero llegar más lejos… ¡No podemos! de momento.
Artículo híbrido rematado por emilio silvera.