martes, 19 de octubre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Felicidades Chile!

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Copa América 2015: Chile gana a Argentina en los penaltis

 

Bueno, aunque esto no sea lo nuestro, por una vez y sin que sirva de precedente, felicitamos al equipo chileno que, con pundonor y un terrible esfuerzo, hicieron su trabajo y conquistaron el trofeo que llena de orgullo a todo el país, sean futboleros o no.

También aquí, en acontecimientos como estos, están presentes los principios de la Física, es decir, en este caso ¡la causalidad! El triunfo de Chile es la consecuencia del gran esfuerzo desarrollado por todo un equipo.

¡Felicidades!

 

¿El Universo? ¡Una maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

universo

En lugares como este, los astrofísicos encuentran un lugar ideal para estudiar sus componentes como si de un Laboratorio natural se tratara. Moléculas de diversos pelajes y elementos aquí presentes que sorprenden en no pocas ocasiones al ver que, en este medio inhóspito de radiación y viento estelares, pueden surgir los ingredientes necesarios para la vida. Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varian entre unos pocos cientos de miles hasta diez millones de masas solares.

 Foto: Dr. Naoki Yoshida, Nagoya University, Japón, vía Science-AAAS

                     Las primeras estrellas aparecieron después de cientos de millonesde años

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras evolucionar a partir de la “materia inerte”,  apareciéramos nosotros.

Todo en el Universo tiene un principio y un final y, el mismo universo tuvo que nacer y evolucionar para que hoy podamos contemplar, mediante nuestros sofisticados telescopios, un universo en expansión lleno de galaxias que contienen estrellas nuevas y viejas estrellas, muchas de ellas rodeadas de mundos que, aún no hemos podido determinar de qué criaturas estarán poblados muchos de ellos.

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen rápidamente.

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo es más denso que las otras (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias y si el Big Bang, el modelo de universo que hemos adoptado, es cierto. Es decir, si fue realmente lo que ocurrió aquí para que naciera nuestro universo, o, por el contrario, este pudo surgir de una fluctuación de vacío que rasgo el espacio-tiempo en otro universo. Pero, sigamos con la historia.

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la materia como si no existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

Decaimiento β- de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón que a la vez que emite un electrón  (β-) y un antineutrino electroníco. Es un proceso mediante el cual un nucleido o núcleo inestable  emite una partícula beta (un electrón o positrón) para compensar la relación de neutrones y protones del núcleo atómico.  Esta desintegración viola la paridad.

De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

        Sólo una sustancia cósmica lo invadía todo antes de que formara la materia

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark. La asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.

Estas partículas –las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil– son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacioban, producían calor y formaron las primeras estrellas.

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

Del otro lado de esa puerta está la época de Plank, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parece que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven a las mil maravillas.

A partir del momento en que se formaron los primeros átomos, estos se unieron para formar moléculas y cuerpos. Pasados cientos de miles de años, millones y millones que el Universo necesitó para forjarse como un un Sistema cerrado coherente, lleno de materia situada en grandes espacios vacíos, donde las cuatro fuerzas fundamentales lo regían todo. Desde entonces, el universo se pobló de fantásticas configuraciones surgidas de la energía devastadoras de las primeras supernovas y colisiones de agujeros negros y un sin fin de fenómenos que ahora podemos observar con los grandes telescopios.

                 Galaxias que atraídas por la fuerza de gravedad se fusionan

Bellas Nebulosas que son el resultado de grandes explosiones de estrellas moribundas que lanzan sus materiales al espacio interestelar.

http://img.irtve.es/imagenes/hs-2010-22-a-large-web/1278435787749.jpg

       Formaciones en cúmulos de estrellas que producen  el asombro de los Astrónomos

Monstruos cósmicos que, en forma de agujeros negros, enguyen a las estrellas vecinas para hacerse más y más grande

     Miles y millones de galaxias que se reparten por todas las regiones del Universo “infinito”

La Humanidad forma parte indisoluble, indistinguible del cosmos. Todo lo que somos surgió con el mismo universo y en el corazón de las estrellas. En palabras de Sagan, somos polvo de estrellas.

Y pasado más de 13.000 millones de años, en un planeta rocoso de escasa importancia en el contexto del universo inmenso, aparecímos nosotros, unas criaturas egoistas e instintivas que, caminamos por el planeta durante milenios forjando Civilizaciones, inventando la escritura y las matemáticas, logrando forjar un saber encomiable sobre la Astronomía que nos cuenta, lo que pudo pasar desde el comienzo del Tiempo.

Sí, es cierto que, si somos sinceros, hay que reconocer que andamos un poco perdidos y que las preguntas, son infinitamente más que las pocas respuestas que podemos dar. Nuestra ignorancia es grande pero, nuestra imaginación es mayor y, poco a poco, ésta última le está ganando la batalla a la primera, ese peso que la Humanidad lleva sobre sus hombros desde la noche de los tiempos.

emilio silvera

¿Cuánta materia vemos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Densidad Crítica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                          La constante de Hubble en función de la Densidad Crítica

La cantidad total de Materia del Universo se da generalmente en términos de una cantidad llamada Densidad Crítica, denotada por Ω. Esta es la densidad de la materia que se necesita para producir un universo plano. Si Densidad efectivamente observada es menor o mayor que ese , en el primer caso el Universo es abierto, en el segundo es cerrado. La Densidad Crítica no es muy grande; corresponde aproximadamente a un protón por metro cúbico de espacio. Puede que no parezca mucho, dado el número inmenso de átomos en un metro cúbido de lodo, pero no debemos olvidar que existe una gran cantidad de espacio “vacío” las galaxias.

Algunos números que definen nuestro Universo:

  • El de fotones por protón
  • La razón densidades de Materia Oscura y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

 

 

”distribución_materia_oscura_y_materia_bariónica”

En las últimas medidas realizadas, la  Densidad crítica que es la densidad necesaria que la curvatura del universo sea cero, ha dado el resultado siguiente:  r0 = 3H02/8pG = 1.879 h2 10-29 g/cm3, que corresponde a una densidad tan baja la de la masa de 2 a 3 átomos de hidrógeno por metro cúbico (siempre, por supuesto obviando la incertidumbre en la constante de Hubble).

Estimar la cantidad de materia luminosa del universo es una cosa muy fácil de hacer. Sabemos el brillo que tiene una estrella media, así que podemos hacer una estimación del de estrellas de una galaxia distante. Podemos contar entonces el número de galaxias en un volumen dado de espacio y sumar las masas que encontramos. Dividiendo la masa por el volumen del espacio obtenemos la densidad media de materia en ese volumen. Cuando llevamos a cabo esta operación, obtenemos que la densidad de la materia luminosa es aproximadamente entre el uno o dos % menor de la densidad crítica; es decir, menos de lo que se necesita cerrar el universo.

Por otro lado, está lo bastante cerca del valor crítico para hacer una pausa. Después de todo, esta fracción podría haber sido en principio de una billonésima o trillonésima, y también podría haber sucedido que fuese un millón de veces la materia necesaria para el cierre. ¿Por qué, entre todas las masas que podría tener el universo, la masa de materia luminosa medida está cerca del valor crítico?

 

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso, la fe de creer en lo que no podemos ver ni tocar y, la Ciencia, amigos míos, es otra cosa.

http://esamultimedia.esa.int/images/dtos/mission/C2_goce.jpg

Tendremos que imaginar satélites y sondas que, de alguna manera, puedan detectar grandes halos galácticos que encierren la tan buscada materia oscura y que, al parecer, hace que nuestro Universo sea lo conocemos y, es la responsable del ritmo al que se alejan las galaxias, es decir, la expansión del Universo.

Esos halos, tendrían muchas veces las masas que podemos ver en la Materia luminosa de las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su presencia en cúmulos y supercúmulos ha sido “descubierta” (o inventada tapar nuestra ignorancia) en época relativamente cercana para que prevalezca entre los astrónomos la uninimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos, está implicada la Materia oscura.

La más abarrotada colisión de cúmulos galácticos ha sido identificada al combinar información de tres diferentes telescopios. El resultado brinda a los científicos una posibilidad de aprender lo que ocurre algunos de los más grandes objetos en el universo chocan en una batalla campal cósmica.

MACSJ0717.5+3745

Usando del Observatorio de rayos-X Chandra, el Telescopio Espacial Hubble y el Observatorio Keck de Hawai, los astrónomos fueron capaces de determinar la geometría tridimensional y el movimiento en el sistema MACSJ0717.5+3745 localizado a 5.4 mil millones de luz de la Tierra. Los investigadores encontraron que cuatro distintos cúmulos de galaxias están envueltos en una triple fusión, la primera vez que un fenómeno así es documentado.

MACSJ0717.5+3745 etiquetado

La composición de imagen (arriba de todo) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y “materia oscura” -conocida filamento- de 13 millones de años luz.

Se han obtenido Imágenes (MACSJ0717) que muestran cómo cúmulos galácticos gigantes interactúan con su entorno en escalas de millones de años luz. Es un sistema hermoso para estudiar cómo los cúmulos crecen mientras el material cae en ellos a lo largo de filamentos. Simulaciones por ordenador muestran que los cúmulos de galaxias más masivos deben crecer en regiones donde filamentos de gran escala de gas intergaláctico, galaxias, y materia desconocida intersectan, pero…

¿Cuál debe ser la Masa del Universo?

Alan Guth's photo

                  Alan Guth

claro que la idea de masa perdida se introdujo porque la densidad observada de la materia del universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no se tuvo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido numerosas modificaciones técnicas, pero los puntos centrales no han cambiado.

nuestra conversación de hoy, diremos que el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. los otros muchos procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.

Abell 370: Lente gravitacional de un cúmulo de galaxias

Abell 370 La lente gravitacional distorsiona la Imagen y nos enseña, a la derecha, algo que nos parece una inmensa cuerda cósmica , ¿que podrá ser en realidad? la materia a lo largo y ancho del universo se reparte de manera que, se ve concentrada en cúmulos de galaxias y supercúmulos que son las estructuras más grandes conocidas y, dentro de ellas, están todos los demás objetos que existen. Claro que, deajndo a un lado esas fluctuaciones de vacío y, la posible materia desconocida.

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. el agua se convierte en hielo, se expande; una botella de leche explotará si la dejamos en el exterior en una noche de invierno de gélido frío. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El expectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo que la luz salió de su fuente.

Lo que es sorprendente es la enorme amplitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1050. Este es tan inmenso que virtualmente no tiene significado para la mayoría de la gente, incluido yo mismo que, no pocas veces me cuesta asimilar esas distancias inconmensurables del Cosmos. Dicho de otra manera, pongamos, por ejmplo, que la altura de los lectores aumentara en un factor tan grande como ese, se extenderían de un extremo al otro del Universo y, seguramente, faltaría sitio. Incluso un sólo protón de un sólo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el mismo universo. En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo como el tamaño de una naranja grande. No es extraño que el inflación esté ligado a este proceso.

Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.

Cuando ( mucho tiempo ya) leí por primera vez acerca del universo inflacionario, experimenté dificultades para poder asimilar el índice de inflación. ¿No violaría un crecimineto tan rápido las reglas impuestas por la relatividad de Eintien que marcaban el límite de la velocidad en el de la luz en el vacío? Si un cuerpo material viajó de un extremo de una naranja a otro en 10-35 segundos, su velocidad excedió a la de la luz en una fracci´çon considerable.

Claro que, con esto pasar como ha pasado hace unos días con los neutrinos que, algunos decían haber comprobado que corrían más rápidos que la luz, y, sin embargo, todo fue un error de cálculo en el que no se tuvieron en algunos parámetros presentes en las mediciones y los aparatos que hacían las mismas. Aquí, podría pasar algo parecido y, la respuesta la podemos encontrar en aquella analogía con la masa de pan. Durante el período de inflación es el espacio mismo -la masa de pan- lo que está expandiéndose. Ningún cuerpo material (acordaos que en aquella masa estaban incrustadas las uvas que hacían de galaxias y, a medida que la masa se inflaba, las uvas -galaxias- se alejaban las unas de las otras pero, en realidad, ninguna de estas uvas se mueven, es la masa lo que lo hace.

                     El Universo se expande

Las reglas contra los viajes a mayor velocidad que la de la luz sólo se aplican al movimiento del espacio. Así no hay contradicción, aunque a primera vista pueda parecer que sí. Las consecuencias del período de rápida expansión se pueden describir mejor con referencia a la visión einsteniana de la gravitación. de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribucón de la materia. A cauda de esa materia, el espacio-tiempo tendrá alguna forma característica. Supongamos que la superficie estaba arrugada antes de que se produjera la inflación. Y, de esa manera, cuando comenzó a estirarse, poco a poco, tomó la forma que podemos detectar de “casi” plana conforme a la materia que contiene.

La Galaxia NGC 4388 y su Inmensa Nube de Gas

En todo esto, hay un enigma que persiste, nadie sabe contestar cómo, a pesar de la expansión de Hubble, se pudieron formar las galaxias. La pregunta sería: ¿Qué clase de materia estaba allí presente, que, la materia bariónica no se expandiera sin rumbo fijo por todo el universo y, se quedara el tiempo suficiente para formar las galaxias? Todo ello, a pesar de la inflación de la que hablamos y que habrái impedido su formación. Así que, algo tenía que existir allí que generaba la gravedad necesaria para retener la materia bariónica hasta que esta, pudo formar estrellas y galaxias.

No me extrañaria que, eso que llaman materia oscura, pudiera ser como la primera fase de la materia “normal” que, estándo en una primera fase, no emite radiaciones ni se deja ver y, sin embargo, sí que genera la fuerza de Gravedad para que nuestro Universo, sea tal como lo podemos observar.

      En imagenes como , los “expertos” nos dicen cosas como:

“La materia oscura en la imagen de varias longitudes de onda de arriba se muestra en un falso color azul, y nos enseña detalles de como el cúmulo distorsiona la luz emitida por galaxias más distantes. En de gas muy caliente, la materia normal en falso color rojo, son fruto de los rayos-X detectados por el Observatorio de Rayois X Chandra que orbita alrededor de la Tierra.”

 

Algunas galaxias individuales dominadas por materia normal aparecen en colores amarillentos o blanquecinos. La sabiduría convencional sostiene que la materia oscura y la materia normal son atraídas lo mismo gravitacionalmente, con lo que deberían distribuirse homogéneamente en Abell 520. Si se inspecciona la imagen superior, sin embargo, se ve un sorprendente vacío de concentración de galaxias visibles a lo largo de la materia oscura. Una respuesta hipotética es que la discrepancia causada por las grandes galaxias experimentan algún de “tirachinas” gravitacional.

Una hipótesis más arriesgada sostiene que la materia oscura está chocándo consigo misma de alguna forma no gravitacional que nunca se había visto antes..? (esto está sacado de Observatorio y, en el texto que se ha podido traducir podemos ver que, los astrónomos autores de dichas observaciones, tienen, al , unas grandes lagunas y, tratándo de taparlas hacen aseveraciones que nada tienen que ver con la realidad).

http://farm6.static.flickr.com/5146/5653032414_c8e6085f98.jpg

Lo cierto es que, en el Universo, son muchas las cosas que se expanden y, pienso yo…¿Por qué no tratamos todos de expandir nuestras mentes? De esa manera, posiblemente podríamos llegar a comprender esos fenómenos que nos atormentan y a los que no podemos encontrar una explicación  que podamos constatar.

¿Materia Oscura?  Sí, entonces… Unicornios y Gárgolas, también.

emilio silvera

La ruta onubense de los ingleses

Autor por Emilio Silvera    ~    Archivo Clasificado en Los Ingleses en Huelva    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

manuel capeloabcdesevilla / sevilla
Día 03/07/2015 – 21.35h

Huelva conserva aún muy viva en sus entrañas los vestigios de la llegada de los ingleses a mediados del siglo XIX

 

 

La ruta onubense de los ingleses

En el suroeste de Europa, donde deberíamos encontrar casas blancas, calles estrechas, y vestigios musulmanes, el viajero se sorprenderá con algunos barrios que parecen transportados de la campiña inglesa y con restos de arquitectura industrial más propio de Manchester que de una ciudad andaluza. Es Huelva que conserva aún muy viva en sus entrañas los vestigios de la llegada de los ingleses a mediados del siglo XIX y que han dejado una impronta en la provincia onubense que vale la pena recorrer.

La ruta onubense de los ingleses
Minas de Riotinto

En esta ruta inglesa por la provincia de Huelva deberíamos empezar donde comenzó todo. Fue a mediados del siglo XIX cuando los ingleses compraron las minas de Riotinto, en el municipio del mismo nombre. Pero la historia de las Minas de Riotinto es mucho más antigua, y se traslada en el tiempo a las primeras civilizaciones organizadas, ya en la Edad del Cobre el desarrollo de la mina, estaba unido al de las propias civilizaciones: tartesos, fenicios… Pero el desarrollo minero en esta época llegó con los romanos. Y en 1873, un consorcio británico compró las minas al estado español por 92 millones de pesetas y fundó la Rio Tinto Company Limited. La Compañía empezó a producir el resurgir de Riotinto: se abrieron cortas de explotación, se desarrolla la minería interior y se reurbanizó esta población que se convirtió no solo en la cabecera de la comarca sino en la más importante de la provincia. Los ingleses montaron sus propios barrios, tanto para los dirigentes de la compañía, como para los obreros. Eso sí, bien diferenciado, y sin mezclarse como bien relata el escritor natural de la localidad, Juan Cobos Wilkins en su novela “El corazón de la tierra” y que fue llevado al cine en 2007.

La ruta onubense de los ingleses
Barrio Obrero

La arquitectura victoriana de los ingleses aún se conserva en Riotinto en el barrio de Bella Vista, que se envuelve en un clima de exclusividad y lujo, y que fue construido para albergar al denominado staff inglés. Dirigentes de la empresa tenían su residencia aquí. La Casa nº 21 fue construida hacia 1895, y gracias a una respetuosa restauración, en sus casi 600 metros se evoca con todo lujo de detalle la vida cotidiana de una familia británica afincada en la Cuenca Minera. Además, se han habilitado dos espacios expositivos dedicados a los avatares de la colonia británica.

Se ha montado un museo, en el antiguo hospital de la Compañía, para recordar la importancia que tuvo esta explotación. Una pieza única del museo es, sin duda, el denominado vagón del Maharajá, el vagón de vía estrecha más lujoso del mundo, construido para la reina Victoria de Inglaterra y traído a la Cuenca Minera de Riotinto para una visita del Rey Alfonso XIII. En la zona de la mina, es visitable parte de la Corta, un inmenso cráter de 1.200 metros de diámetro y 345 de profundidad que constituye la seña de identidad de esta comarca. Llegó a albergar en sus terrazas a más de doce mil obreros, convirtiéndose en una revolucionaria forma de extraer el mineral, en forma de “corta”, que generó la mayor explotación minera a cielo abierto de Europa, y una de las mayores del mundo. Esta imponente brecha en la tierra, por la que entraron prosperidad económica y avances tecnológicos al resto de la provincia onubense, encierra una belleza agreste, donde contrasta el rojo sangre del mineral con el esmeralda de las balsas de aguas sulfurosas de su subsuelo. Asomarse a su interior provocará al visitante una sensación difícil de olvidar.

El Muelle del Tinto y el barrio Obrero onubense

 

La ruta onubense de los ingleses
Muelle de Hierro

De Riotinto salía una vía férrea en la que se trasladaba el material hasta el embarcadero en la ría de Huelva. Para las tareas de desembarco del cobre se construyó a finales del siglo XIX un muelle de hierro, de más de un kilómetro que desgraciadamente se partió para permitir el paso de los camiones hacia el Polo Industrial onubense. Sin embargo quedan aún los dos extremos y nos sirven de base para iniciar la ruta de los ingleses por la capital onubense. En una de las zonas altas de la ciudad, como ocurrió en Riotinto, los ingleses construyeron un barrio de estilo victoriano, el Barrio Obrero, para alojar a los trabajadores de la compañía, que afortunadamente si se conserva tal y como lo idearon los arquitectos contratados por la compañía.

La ruta onubense de los ingleses
Casa Colón

Pero como los obreros no podían convivir con los dirigentes, un poco más abajo, en la llamada Alameda Sundhein, aún se conservan algunos vestigios de la zona residencial de la alta burguesía y una placa nos recuerda que allí, justo en la plaza que hace el Hotel Luz y el Palacio de Justicia, se construyó el velódromo, el primer campo de fútbol de España y donde nació el Real Club Recreativo de Huelva, el decano de los clubes españoles de fútbol. Al final de la avenida nos encontramos con otro de los importantes restos de la arquitectura colonial inglesa en Huelva. El hotel Colon, construido en 1883 y que hoy en día alberga un moderno centro de exposiciones y congresos.

Pero un lugar tan privilegiado como Huelva, bañada por el Atlántico y con más de cien kilómetros de playas, no podía faltar en esta ruta de los ingleses donde pasaban sus ratos de ocio. Para ello justo enfrente de la ría onubense, en las playas de Punta Umbría, hoy en día una de las playas punteras y más conocidas del litoral onubenses, hay aún restos de la zona balneario que los ingleses construyeron en lo que era un pequeño poblado de marineros. En la zona más alta, algunas casas de madera y ladrillo, sobre pilares para evitar a humedad de la arena, nos recuerdan que aquella playa tiene su origen en aquellos directivos de la Compañía que durante el verano buscaron un lugar más fresco y agradable para pasar el calor del estío.

La ruta onubense de los ingleses
Feria del marisco de Punta Umbría

Por supuesto el recorrido, aunque no sean herencia de los ingleses, habrá que amenizarlo con los productos estrella de la tierra: la gamba blanca, la coquina, el choco frito y el jamón de Jabugo. ¿Quién da más…?