May
15
El Universo, a su manera, también es un “Ente Vivo”
por Emilio Silvera ~
Clasificado en El Universo y... ¿nosotros? ~
Comments (2)
Todo lo que vemos en la imagen son pequeños o grandes conjuntos que tienen una finalidad que no parece que sea diseñada por el Azar, muchos son los parámetros que en cada uno de esos objetos se tienen que dar para que cumplan la misión encomendada.
¿Qué es lo que plantea esta teoría?
“La teoría sugiere que el Universo podría ser una red neuronal, un sistema de nodos interconectados similar a las estructuras neuronales del cerebro humano. Según Vanchurin, “la dinámica del Universo está gobernada por las leyes de la mecánica cuántica y la teoría de la gravedad, que son muy similares a las leyes que gobiernan las redes neuronales”. Si es posible considerar al Universo como una red neuronal, se puede unificar la teoría de la relatividad de Einstein con la mecánica cuántica, ya que estos dos comportamientos son altamente compatibles dentro de las redes neuronales.
Red neuronal del Universo que está conectada por los “nervios” (hilos invisibles) de la Gravedad. Al observar las cosas que pasan en el Cosmos, poder comprobar como las estrellas transforman elementos sencillos en otros más complejos, de los que está hecha la Vida… ¡Da mucho en que pensar!
Azarian cita a la física teórica Sabine Hossenfelder, quien apoya la idea de que el Universo puede ser una entidad pensante, ya que, según ella, existe un creciente número de evidencias científicas que apuntan a una interconexión entre nodos cósmicos y parte de la evidencia de un estudio realizado por Frontiers in Physics. De acuerdo con el estudio, aunque las interacciones físicas relevantes entre el cerebro y los filamentos cósmicos son totalmente distintos, su observación a través de técnicas microscópicas y telescópicas ha capturado una morfología similar, ya que son mecanismos parecidos que podrían permitir al Universo comportarse como una red neuronal. Esto sugiere que el Universo podría comportarse como una computadora cósmica capaz de transmitir información, aprender y evolucionar.”
El inexorable paso del Tiempo le concede a la Entropía el margen que necesita para degradarlo todo
No pocas veces hemos explicado aquí que la Entropía mide la cantidad de Orden de un Sistema, y, si el desorden aumenta, también lo hace la Entropía. Es un Principio hace tiempo conocido: El Universo tiende al desorden ya que necesita menos energía para su mantenimiento. Nosotros y todos los organismos vivos, por el contrario, necesitamos energía para el mantenimiento. La energía nos asegura la supervivencia y hace posible la reproducción que garantiza la perpetuidad de la especie. Todos los seres vivos que conocemos están inmersos en la dinámica de un intercambio constante con el medio al que se tiene que adaptar, cuando se producen cambios frásticos, las consecuencias son fatales para la vida.
Conoció tiempos mejores
Sí, es la misma persona, como fue y como llegó a ser
La misma estrella 4.500 M. de años más tarde
La misma estrella 10.000 M. de años después: Nebulosa Planetaria y enana blanca.
En nuestro Universo no existe la Eternidad, todo tiene un principio y un final, y, como decía aquel pensador:
“…Con el paso de los Eones, hasta la muerte morirá!
Nosotros, imitando a la Naturaleza, también tratamos de cambiar algunas cosas
Sabemos que en el mundo real el desorden crece en todo sistema cerrado (las cosas se desgastan, los jóvenes envejecen, lo que se rompe nunca vuelve a recomponerse), a medida que pasa el Tiempo es inevitable que la Entropía aumente y que defina una dirección del tiempo, es la flecha que parte del pasado más ordenado y rauda corre hacia un desordenado futuro. Dado que este futuro parecía inevitable y universal, los especialistas en termodinámica de la era victoriana preveían un destino último del universo en el que toda la energía útil se habría convertido en calor y todo sería una mezcla templada de materia a temperatura uniforme, una situación desoladora que llamaban la “muerte térmica” del Universo.
Delia Steninberg, una gran pensadora, nos dice:
“El Universo es un gran Ser vivo -Microbios. que surgen de la Deidad Absoluta. Toma cuerpo cada vez que se manifiesta, y lo pierde cada vez que se resume en su Principio Esencial.
Lo cierto es que, el tenebroso pronóstico que hacían los victorianos de la muerte térmica del Universo, ahora sabemos que no será posible, ha quedado descartado. El hecho irrebatible de que el Universo se expande, como se descubrió en 1920, altera en todos los contextos tal predicción, y la constatación de que la Gravedad tiene de hecho energía negativa (como se descubrió en 1940) descarta en esencia ese tipo de muerte térmica que imaginaron los victorianos. Llegados a este punto y hablando de Entropía, no podemos dejar fuera del trabajo a un personaje que tiene mucho que decir de todo esto.
“A finales del siglo XIX, Ludwig Boltzmann desarrolló una teoría cinética de los gases. Propuso que las propiedades de un gas, como su temperatura y presión, se debían al movimiento y las interacciones de átomos y moléculas. Esto tenía varias ventajas. Por ejemplo, cuanto más caliente estaba un gas, más rápido rebotaban los átomos y las moléculas; por lo tanto, la temperatura era una medida de la energía cinética (de movimiento) de los átomos. La presión de un gas se debe a que los átomos y las moléculas rebotan contra las paredes del recipiente. Si el gas se calienta, los átomos se mueven más rápido y rebotan contra las paredes del recipiente con mayor fuerza y frecuencia. Esto explica por qué la presión de un gas encerrado aumenta al calentarlo.
La teoría cinética de Boltzmann no solo explicaba la conexión entre el calor, el trabajo y la energía, sino que también proporcionaba una definición clara de la entropía. La presión, la temperatura y el volumen de un gas se conocen como estado del gas. Dado que estos están determinados por las posiciones y velocidades de todos los átomos o moléculas del gas, Boltzmann los denominó microestado del gas (el estado de todas las partículas microscópicas). Para un estado dado del gas, existen muchas maneras en que los átomos podrían moverse y rebotar. Mientras el movimiento promedio de todos los átomos sea aproximadamente el mismo, la presión, la temperatura y el volumen del gas serán los mismos. Esto significa que existen numerosos microestados equivalentes para un estado dado del gas.
Boltzmann propuso una conexión entre la entropía de un sistema y el número de microestados equivalentes, como se observa en la ecuación anterior. En la ecuación, S es la entropía del sistema, K es la constante de Boltzmann, W es el número de microestados equivalentes y LOG representa el logaritmo natural. La ecuación indica que la entropía de un sistema en un estado particular depende del número de microestados equivalentes que tenga dicho estado.
Pero, ¿Cómo se relacionan los microestados equivalentes con el flujo de calor de caliente a frío? Imagine un cubo de hielo en una taza de agua tibia. Las moléculas de agua en el cubo de hielo están congeladas en una estructura cristalina. Esta estructura es bastante rígida, por lo que no hay muchas maneras de que las moléculas de agua se muevan. Esto significa que el número de microestados equivalentes es bastante pequeño. A medida que el hielo se derrite, la estructura cristalina se rompe y las moléculas de agua tienen mucha más libertad para moverse. Esto significa que hay muchos más microestados equivalentes para el agua que para el hielo. Por lo tanto, el calor fluye hacia el hielo, lo que aumenta el número de microestados equivalentes y, por lo tanto, la entropía del sistema aumenta. La segunda ley de la termodinámica se aplica en ambos sentidos.
Esto tiene una consecuencia muy clara para el universo. En los primeros momentos del universo, inmediatamente después del Big Bang, el número de estados posibles que podían describirlo era probablemente muy pequeño. Esto significa que la entropía del universo era muy baja. Dado que la segunda ley de la termodinámica establece que la entropía nunca puede disminuir (pero puede aumentar), con el tiempo la entropía del universo ha aumentado y seguirá aumentando. Pero una consecuencia de esto es que todo proceso cósmico hace lo que hace a costa de aumentar la entropía del universo. La gravedad puede fusionar nubes de hidrógeno y helio en estrellas, pero se desperdicia parte de la energía térmica. Las estrellas pueden fusionar hidrógeno en elementos superiores, pero lo hacen liberando luz y calor al cosmos. Parte de esa luz y calor puede calentar planetas. La vida puede usar esa luz y calor para evolucionar, pero la estrella eventualmente consumirá su energía útil. Algunas estrellas explotarán y se formarán nuevas estrellas a partir de las cenizas, pero nada de esto es perfectamente eficiente. La entropía del universo seguirá aumentando. Las estrellas se enfriarán, el universo se expandirá. Con el tiempo, incluso los agujeros negros irradiarán su masa hacia un universo vasto, oscuro y frío. La entropía no puede disminuir. La segunda ley de la termodinámica significa que llegará un momento en que la luz de la última estrella se desvanecerá. La muerte de la luz.
La segunda ley también dice que el calor fluye de lo caliente al frío. La taza de café caliente en mis manos me dice no solo que la vida es buena, sino también que es corta. La física que impulsa el calor del café hacia mis manos también nos impulsa a mí, a ti, al Sol y al universo hacia su inevitable fin.
Este final se conoce como la muerte térmica del universo. Aún se debate si es una descripción precisa del destino del universo. Aún desconocemos mucho sobre la entropía, y mucho menos sobre el universo en su conjunto. Pero es una posibilidad real. El universo tiene un principio y bien podría tener un fin.
A veces, lo que descubrimos sobre el universo puede ser inquietante, incluso aterrador. El universo es enorme, complejo y sutil. Es fácil contemplar su majestuosidad y desesperanzarse.
O podemos estar juntos en nuestro pequeño planeta y contemplar la noche con asombro. Podemos reconocer que nosotros, los pocos, los afortunados, tenemos una verdadera comprensión de lo que es el universo.”
El universo es una cosa maravillosa.
Boltzmann
Cuando algo nos gusta y nos atrae, cuando es la curiosidad la que fluía nuestros deseos por saber sobre las cosas del mundo, del Universo y las fuerzas que lo rigen, cuando la Física se lleva dentro y nos dará el poder reconocer que es el único camino que nos dará esas respuestas deseadas, entonces, amigos míos, los pasos te llevan a esos lugares que, por una u otra razón tienen y guardan los vestigios de aquellas cosas que quieres y admiras. Así me pasó cuando visité el Fermilab, la tumba de Hilbert en Viena, donde no pude resistir la tentación de ver, con mis propios ojos esa imagen de arriba y, desde luego, pensar en lo mucho que significaba la escueta S = k log W que figura en la cabecera de la lápida de Boltzmann como reconocimiento a su ingenio.
La sencilla ecuación (como todas las que en Física han tenido una enorme importancia (E=mc2, por ejemplo), es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.
Todo lo grande está hecho de cosas pequeñas, desde un virus a una galaxia: ¡Quarks y Leptones
La entropía de un sistema es el desgaste que el sistema presenta por el transcurso del tiempo o por el funcionamiento del mismo. Los sistemas altamente entrópicos tienden a desaparecer por el desgaste generado por su proceso sistémico. Es una medida de desorden o incertidumbre de un sistema. El paso del Tiempo todo lo cambia. Lo que hoy es una estrella fulgurante, dentro de algunos miles de millones de años podrá ser una inmensa Nebulosa de la que surgirán por mecanismos de la Gravedad, nuevas estrellas y nuevos mundos. La Energía positiva de la Entropía destruye y la Energía Negativa de la Gravedad crea.
Como todas las ecuaciones sencillas de gran trascendencia en la física, hay un antes y un después de su formulación: sus consecuencias son de un calado tan profundo que han cambiado la forma de entender el mundo y, en particular, de hacer Física, a partir de ellas. De hecho, en este caso al menos, la sutileza de la ecuación es tal que hoy, más de cien años después de la muerte de su creador, se siguen investigando sus nada triviales consecuencias:
S = k log W ¡Que maravilla del Intelecto Humano!
La energía libre no es libre.
- La energía de un sistema cerrado se mantendrá constante.
- La entropía de un sistema cerrado se mantendrá constante o aumentará.
Estos son los dos principios de la Termodinámica. Son, quizás, las leyes más sólidas y mejor demostradas de la naturaleza sostenidas por miles de observaciones experimentales y deducciones teóricas. Son estas misma leyes las que se pretenden violar una y otra vez cuando y charlatanes y embusteros tratan de separar a la gente de su dinero. Este es el caso de las Máquinas de Movimiento Perpetuo (MMP). La historia de estas máquinas es impresionante, la más antigua siendo una rueda diseñada por un astrónomo/astrólogo indio llamado Bhäskara II. Al principio los intentos para crear energía de la nada eran honestos; todavía no teníamos conocimientos como para entender cuán imposible era esto, cuan fundamental era el principio de que la energía no se crea ni se destruye. Intelectuales respetables como Pascal, Boyle y hasta Leonardo da Vinci diseñaron al menos una MMP.
Una de las consecuencias más importantes de la Entropía es, el principio de irreversibilidad del mundo macroscópico. Si las leyes de la Mecánica son reversibles, ¿Cómo es posible que haya una dirección temporal definida en el mundo que nos rodea, en la cual observamos que un vaso cae y se rompe pero nunca hemos podido observar que los añicos se recompongan para reconstruir el vaso original?
En una Revista de Física de las emitidas por la Real Sociedad Española de Física, pude leer un magnifico artículo que firmaba Joel Lebowitz (una autoridad mundial en la materia) en el cual, nos explicaba como la ecuación S = k log W podía dar una explicación satisfactoria del fenómeno.
Los signos de la Entropía son comunes en nuestras vidas cotidianas y, como tantas otras cosas, forman parte de nuestro mundo en nuestro quehacer del día a día en el que, siempre estamos tratando de combatir a la entropía destructora. Al menos, nosotros, siempre que pensamos en la entropía la asociamos al desorden. Cosas que se hacen viejas y se rompen, habitaciones que se llenan de polvo, muebles deteriorados por el paso del tiempo, y, nosotros mismos que vemos marcadas en las arrugas del cuerpo la inexorable huella de la entropía.
Maldita Entropía
De la célebre ecuación podemos derivar que: a mayor desorden mayor cantidad de microestados, es decir, mayor entropía. Los sistemas evolucionan siempre hasta alcanzar su estado máximo de entropía. ¿Si es así, como algunos hablan de la entropía como creadora de orden?
¿Cómo puede la entropía crear orden, si a mayor entropía mayor desorden? Claro que, la ecuación que es el “personaje principal” de este trabajo, es mucho más sutil que cualquier interpretación heurística que pueda hacerse de ella, y se puede llegar a ver que, de acuerdo con esta ecuación, pueden simultáneamente en un sistema aumentar la entropía y crearse estructuras ordenadas.
El Tiempo siempre camina en la misma dirección, mientras todo se destruye a su paso
Los efectos de la Entropía conviven con nosotros, en las tres generaciones de arriba lo podemos constatar. El Tiempo pasa y la flecha del Tiempo en su inexorable caminar lleva a la abuela hasta sus últimos momento, el testigo lo recoge la hija que, para perpetuarse, se reproduce y tiene a su vez descendencia, y, en esa cadena sin fin, tratamos los humanos y otros seres vivos de luchar contra la Entropía destructora de todo lo que existe, inanimado o vivo.
Estamos en un Universo dinámico y cambiante, nada permanece, todo muere
En las galaxias espirales tenemos un buen ejemplo de que, luchan contra la entropía destructora de estrellas que al llegar al final de sus vidas (máximo nivel de entropía), se valen de las explosiones supernovas para crear Nebulosas que, a su vez, con la ayuda de la interacción gravitatoria, hacen posible que surjan a la vida nuevas estrellas, creando así, Entropía Negativa. ¡Algo muere para que algo surja a la vida!
En un texto profético sobre la era del ADN, en What is Life? de Erwin Shródinger, las nociones del código genético y metabolismo celular aún eran discutidas juntas. En su libro, Schrödinger adelantó la idea que el cromosoma contenía un “cristal aperiódico” en la forma de un “code-script”, inspirando posteriormente el descubrimiento de la forma de doble-hélice del ADN. Sin embargo aún es raro que los “genetistas populares” y los “teóricos de la vida” recuerden la teoría de la entropía negativa articulada en el mismo texto.
Todos los seres vivos nos valemos de la reproducción para burlar a la Entropía destructura, y, aunque no podamos esquivarla a nivel individual, si que lo podemos hacer en el ámbito de la Civilización que, al reproducirse perdura. Aquí es donde entra la frase: “mientras haya muerte hay esperanza”. ¿Podríamos considerar como entes vivos a las Galaxias y a los mundos que, como el planeta Tierra se regenera mediante explosiones surper-novas, terremotos, erupciones volcánicas y otros fenómenos naturales? Creo que sí, de todos esos “desastres” surgen nuevas cosas, nacen nuevas plantas, se crean cursos de ríos, valles y montañas que no existían pasan a formar parte de un nuevo y renovado paisaje y, entre todo eso, también surgen nuevas formas de vida dispuestas a evolucionar como es su destino.
Y pensar que la Entropía acabará algún día con nuestro Universo…Es duro de asimilar y, sin embargo…
La cuestión sobre la flecha del tiempo intriga a los científicos porque la mayor parte de las leyes fundamentales de la física no separan el pasado del futuro. El concepto de entropía, a su vez, se basa en el flujo del tiempo, ya que establece que el desorden o caos aumenta con el paso del tiempo, tal como señaló el físico Ludwig Boltzmann hace ya más de un siglo.
Espacio y tiempo son conceptos que no tienen sentido antes de la aparición de la materia en el Universo, por lo que en el modelo cosmológico actual se considera que el espacio y el tiempo aparecen con la materia en el mismo momento del Big-Bang.
Según este modelo cosmológico, a medida que el tiempo fluye, la entropía global del Universo también aumenta. Como la flecha del flujo del tiempo es irreversible, la flecha de flujo de la entropía también es irreversible. En el Universo, la cantidad de energía útil disminuye paulatinamente y aumenta la forma degradada de energía.
Dado que la entropía global siempre está en constante aumento, causará en algún momento el desplome térmico de todos los biosistemas en el Universo conocido, fenómeno conocido como Muerte Térmica del Bio-cosmos. Fin del Universo, de la vida, del tiempo y también de la entropía, según el actual modelo cosmológico. El espacio se expande cada vez más, las galaxias se alejan las unas de la otras, la temperatura del Universo es muy baja y cada vez se irá reduciendo más y más, y, cuando alcance el Cero Absoluto, -273,15 ºC… ¡Todo habrá acabado, ni los átomos se moverán!
Claro que, hablamos y hablamos de la Entropía pero, no caemos en la cuenta de que, en el Universo, todo está relacionado. Existen hilos invisibles que atan unas cosas a las otras e inciden sobre los comportamientos y, si eso es así (que lo es), deberíamos pensar en eso que llamamos “vacío cuántico” y preguntar: ¿Qué incidencia podría tener sobre esa entropía destructora?
En el vacío, la existencia del cuanto de acción que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas obliga a que su estructura sea discontinua, escalonada, fractal (pre-fractal), lejos de la continuidad clásica, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver. Pero las fluctuaciones cuánticas de energía del vacío no son simples variaciones sobre un fondo absoluto y estático. Las fluctuaciones determinan la propia geometría del espacio, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. La forma en que se puede proceder a analizarlas es idéntica a como se determina la dimensión fractal de una costa o cualquier figura fractal sencilla. La pauta que nos guia, en nuestro caso, es la variación de la energía virtual de las fluctuaciones con la distancia.
Desde distancias astronómicas hasta la Longitud de Planck la energía asociada está siempre en proporción inversa a dicha distancia: si para una distancia D se le asocia una energía E, para una distancia 2D se le asocia una energía E/2.A pesar de lo intrincadas e irregulares que son las fluctuaciones cuánticas su dependencia con el inverso de la distancia permite al vacío cuántico que se nos presente de forma, prácticamente, similar al vacío clásico a pesar de las tremendas energías a las que se encuentra asociado. En este efecto tuvo mucho que ver la particular geometría que adoptó nuestro Universo : 3 dimensiones espaciales ordinarias y 6 compactadas. Esta geometría y la propia naturaleza del cuanto de acción están íntimamente ligadas. Con otra geometría diferente las reglas de la mecánica cuántica en nuestro universo serían completamente diferentes.
La estabilidad del espacio-tiempo, de la materia y de la energía tal como los conocemos sería imposible y, a la postre, tampoco sería posible la belleza que esta estabilidad posibilita así como la propia inteligencia y armonía que, en cierta forma, subyace en todo el Universo.
Así que, entre el espacio que podemos ver, ese vacío que sabemos que está ahí y no podemos más más que algunas consecuencias de su existencia, lo que llamamos “materia oscura” que es la mayor concentración de “ese algo” que existe, y, que, bien podrían ser las semillas a partir de las cuales surge la materia normal o luminosa una vez que, con el tiempo y a partir de esa “semilla” se transforma en materia “normal”, Bariónica y, ahora sí, sujeta al electromagnetismo…Todo eso, amigos, no podría incidir de alguna manera en esa Entropía destructora que, sin que lo sepamos está siendo combatida por todos esos parámetros que ignoramos…a ciencia cierta.
Una ley científica es un fenómeno universal observado experimentalmente y que puede verificarse mediante el método científico. Algunas de leyes establecidas mediante el método científico que confirman la creación son:
Leyes de la Termodinámica y otras que hemos podido descubrir pero… esa sería otra historia.
Laboratorio estelar, la cuna de los mundos
Cuando me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese nuevo éter que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y que, de momento, sólo sabemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.
En estas Nebulosas moleculares surgen moléculas esenciales para la vida
También ahí se han detectado la formación de nuevos sistemas planetarios
Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro se tratara, y, hasta objetos de enormes masas y densidades infinitas que no dejan escapar ni la luz que es atrapada por su fuerza de gravedad.
Ya nos gustaría saber qué es, todo lo que observamos en nuestro Universo
Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe también una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.
Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.
Isaac Asimov en uno de sus libros nos explicó que, los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.
Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.
Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.
El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.
El Universo es asombroso
¿Imagináis lo que podría suceder si una de estas reacciones energéticas del sol llegaran a la Tierra?
El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas. Hay estrellas que se componen casi por entero de tales átomos destrozados. La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.
Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.
Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.
El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del tipo magnetar, de las que se conocen seis. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.
La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!
Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envíe luz y calor que la haga posible tal como la conocemos.
Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).
Los rayos del Sol que envían al planeta Tierra su luz y su calor, también forma parte del Universo, al mismo tiempo que hace posible la vida en un planeta maravilloso que es el hábitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar.
Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.
Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.
Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.
Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra para ubicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.
Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá
Las estrellas, como todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa, las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.
Espero que al lector de este trabajo (obtenido principalmente de uno original de Asimov), encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, les esté entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas cuyas respuestas seguramente querrían conocer.
La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.
Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).
La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.
Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación. Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.
Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.
Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.
Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.
En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en trabajo cuando dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.
El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo hasta el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).
Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un trabajo. El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.
Esta imagen que lleva el nombre de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en (Huelva) España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters
Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún trabajo, por muy alta que sea aquella.
El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 para representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es cada vez menor. Todo se deteriora con el paso del tiempo.
Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.
Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados entre sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.
Considerado como Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre
Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y trabajo recibió el nombre de “termodinámica”, que en griego significa “movimiento de calor”.
Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. Esta regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía puede quedar congelada e inservible. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no menos básica, y que denomina “segundo principio de la termodinámica.”
Según este segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más trabajo, ni pueden producirse cambios.
¿Está degradándose el universo?
Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación: S = k log W que, aunque pequeña y sencilla, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.
Pero esa, es otra historia.
Sin ambargo, nunca debemos olvidar que el Universo es inmenso, en realidad, “infinito” para nosotros que no podemos recorrrer sus distancias en las que, bellas formaciones, como la que arriba podemos contemplar, sólo pueden ser captadas por ingenios modernos y sofisticados telescopio que atrapan la luz que viaja desde miles de millones de kilómetros de distancia para poder así mostrarnos, objetos de una belleza que ningún pintor podría reproducir por su dinámica constante ni tampoco, nuestra imaginación podría mentalizar por el desconocimiento que tenemos de que maravillas así pudieran existir en un vasto Universo que, en gran parte, es aún un gran desconocido.
Emilio Silvera V.
May
14
¿De dónde venimos?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Si nos retrotraemos en el tiempo, si nos detenemos a pensar, a observar, a tratar de comprender lo que los paleontólogos (que son son los científicos que estudian los fósiles de los seres vivos del pasado), han descubierto a lo largo de todos sus estudios e investigaciones, podremos contemplar escenarios que han ido evolucionando a través del paso del tiempo, y, distintas especies cada vez más evolucionadas e inteligentes, hasta que, pasados algunos cientos de miles de años, llegamos nosotros, los Humanos.
Los expertos dicen:
“El ADN de chimpancés y humanos es extremadamente similar, compartiendo aproximadamente un 98% o 99%. La diferencia del 1% o 2% es la base de las diferencias fenotípicas y comportamentales entre ambas especies. “
Parece según algunos estudios que el Chimpancé y el Hombre, tuvieron un Ancestro Común que no era ni Homo ni Pan, y, lo que no se ha llegado a saber, es por qué los Chimpancés siguen en la copa de los árboles, mientras que los hombres tratan de llegar a las estrellas.
Si, tienen mucho en común con nosotros
Los humanos y los chimpancés evolucionaron de un ancestro común, pero se dividieron en linajes diferentes hace millones de años. Los humanos experimentaron cambios evolutivos, como la postura erguida, el lenguaje complejo y el desarrollo de herramientas, que los diferenciaron de los chimpancés. Pero esta explicación es insuficiente, tenía que haber algo más que no hemos podido llegar a comprender.
Texto: BBC News
Una nueva investigación concluye que los chimpancés también son humanos.
El nuevo árbol de la evolución coloca a los grandes monos en la familia de los homínidos y a los chimpancés dentro del género homo.
Una nueva investigación que comparó 97 genes humanos con los de otras cinco especies ha determinado que el hombre y el chimpancé son prácticamente idénticos desde el punto de vista genético, con una afinidad del 99,4%. Esta constatación lleva a sus artífices a proponer que los chimpancés sean incluidos dentro del género humano, una idea que ha despertado polémica en el seno de la comunidad científica.
Por Eduardo Martínez.
Los chimpancés no son monos como los demás, sino que están genéticamente más próximos a nuestra especie que los gorilas y otras familias afines, por lo que deberían ser incluidos en el seno del género humano, según un equipo de investigadores dirigido por el profesor Morris Goodman de la Universidad Wayne en Detroit.
Lo han descubierto comparando 97 genes humanos con los de cinco otras especies, los chimpancés, los gorilas, los orangutanes, los monos y los ratones.
Apoyándose en las mutaciones genéticas que afectan a la producción de proteínas, construyeron un árbol evolutivo que mide el grado de proximidad entre las especies estudiadas, constatando así que el hombre y el chimpancé son prácticamente idénticos desde el punto de vista genético, con una mínima diferencia del 0,6%.
Doscientos años después del nacimiento de Charles Darwin, y pese a los avances en genética y neurofisiología, la ciencia aún carece de una respuesta a qué nos define como especie.
“La pregunta más difícil es: ¿Qué nos hace humanos? El grado de variación fenotípica [entre humanos y chimpancés] no está estrictamente relacionado con el grado de variación en la secuencia”. Con estas palabras se abría la discusión del estudio, publicado en Nature en 2005, en el que se analizaba el primer borrador del genoma del chimpancé. Los investigadores hacían notar así que, comparando los genes de humanos y simios, sería difícil predecir especies tan distintas. Cuatro años después, otro trabajo en el último número de Nature, encabezado por el español Tomás Marqués-Bonet, recalca que “las proteínas [de humanos y chimpancés] son virtualmente idénticas”.
Recordemos aquel trabajo que dejé aquí para ustedes:
Desde la materia “inerte”… ¡Hasta los pensamientos!
Lo mismo que desconocemos la auténtica naturaleza de la Luz, que según creo encierra muchos secretos que tenemos que desvelar para conocer la realidad de la Naturaleza y del Universo, de la misma manera, tenemos que llegar a desvelar los secretos que se encierra en esa esencial y sencilla sustancia que llamamos Agua, ya Tales de Mileto nos hablaba de la importancia que esa sustancia tenía para la vida.
Sin Luz y sin Agua… ¿Qué sería de la Vida?
¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros puedan pensar? Que cosa mágica se pudo producir en el corazón de las estrellas para que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno…, muchos miles de millones de años más tardes, en mundos perdidos en sistemas planetarios como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia
formas de vida superiores?
Los sentidos: las herramientas que utiliza el cerebro para
estar comunicado con el exterior. Y, no deberíamos olvidarnos de la intuición. No pocas veces, algunos Físicos famosos, la aplicaron y consiguieron grandes éxitos.
La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.
El cerebro humano ¿es especial?, su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la Naturaleza.
Aquí se fraguan los pensamientos como en las galaxias se crean estrellas
Nuestro cerebro adulto, con poco más de 1 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número
posible de circuitos neuronales, tendremos que habérnoslas con cifras hiper-astronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!
Ramificaciones neuronales que transmiten los datos, fogonazos que crean ideas
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.
Con tan enorme cantidad de circuitos neuronales, ¿Cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuándo podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento? Algunas veces hemos oído comentar: “Sólo utilizamos un diez por ciento del cerebro…” En realidad, la frase no indica la realidad, se refiere al hecho de que, aunque utilizamos el cerebro en su totalidad, se estima que está al diez por ciento de su capacidad real que, será una realidad a medida que evolucione y, en el futuro, esa capacidad de hoy será un 90 por ciento mayor.
Aún no conocemos bien la direccionalidad de los circuitos neuronales
El límite de lo que podremos conseguir tiene un horizonte muy lejano. Y, llega un momento en el cual, se puede llegar a pensar que no existen limites en lo que podemos conseguir: Desde hablar sin palabras sonoras a la auto-transportación. Si -como pienso- somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.
Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!
A veces me pregunto sino será más “grande” el cerebro humano que el mismo Universo, si lo supeditamos a su ilimitado contenido o ilimitada capacidad
“Durante siglos el hombre ha intentado responder a una de las más complicadas inquietudes: ¿Es el cerebro humano más grande que el universo? Y si bien la respuesta aún no ha llegado, muchos expertos a lo largo de los años han intentado esbozar sus teorías.
Precisamente, con el fin de poder acercar una somera respuesta a esta gigantesco interrogante, el periodista Robert Krulwich ha publicado recientemente en la página web NPR.org una completa compilación de este gran e interminable. Una compilación que incluye teorías de ambos bandos, y entre las cuales existen muchas que son realmente convincentes.”
Mirando ambas imágenes… ¿Quién podría decir, si no se les explicara, que son “mundos” diferentes”
La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas que, sin embargo y en sentido figurado, podríamos decir que son tan grandes como el universo mismo.
Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para que eso pueda llegar a ocurrir, aún falta mucho tiempo. Sin embargo, si el Universo no lo impide y nuestro transcurrir continúa, todo lo que podamos imaginar… podrá ser posible. Incluso imposibilidades físicas de hoy, dejarán de existir mañana y, ¡la Mente! posiblemente (al igual que hoy ordena a las distintas partes del cuerpo que realice esta o aquella función), se encargará de que todo funcione bien, erradicará cualquier enfermedad que nos pueda atacar y, tendrá el conjunto del “sistema” en perfectas condiciones de salud, lo cual me lleva a pensar que, para cuando eso llegue, los médicos serán un recuerdo del pasado.
Veamos, por ejemplo, la Ecuación de Schrödinger dependiente del Tiempo general
Ecuación de Schrödinger dependiente del Tiempo (Partícula simple no relativista)
Ecuación de Schrödinger independiente del Tiempo (general)
Ecuación de Schrödinger independiente del Tiempo (partícula simple no relativista)
¿Qué dice?
La ecuación modela la materia no como una partícula, sino como una onda, y describe cómo estas ondas se propagan.
¿Por qué es importante?
La ecuación de Schrödinger es fundamental para la mecánica cuántica, que junto con la relatividad general constituyen en la actualidad las teorías más efectivas del universo físico.
¿Qué provocó?
Una revisión radical de la física del mundo a escalas muy pequeñas, en las cuales cada objeto tiene una «función de onda» que describe una nube de probabilidad de posibles estados. A este nivel el mundo es incierto intrínsecamente. Intentos de relacionar el mundo microscópico cuántico con nuestro mundo macroscópico clásico llevaron a temas filosóficos que todavía tienen eco. Pero experimentalmente, la teoría cuántica funciona maravillosamente bien y los láseres y chips de los ordenadores actuales no funcionarían sin ella.
Las ecuacion3es en Física son aquellas herramientas que nos explican cuestiones a las que no alcanzan las palabras
Es curioso y sorprendente la evolución alcanzada por la Mente Humana. El mundo físico se representa gobernado de acuerdo a leyes matemáticas. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales que aún no hemos podido llegar a comprender y, ni que sabemos que puedan existir.
Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, o, Ramanujans… que, con sus nuevas ideas transformarán el pensamiento matemático para hacer posible que podamos, al fin, comprender lo que realmente somos.
Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido descubrir que existen “números misteriosos” dentro de los cuales subyacen mensajes que tenemos que desvelar.
Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo -, de la constante de Planck (h) – el cuando
te acción – y de la luz (c) – la relatividad -.
Y, mientras tanto, nuestras mentes siguen su camino, siempre queriendo ir más allá y siempre profundizando en los secretos de la Naturaleza de lo que tenemos muchos ejemplos, tales como nuestras consideraciones sobre los dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.
Mediante la combinación de diversas observaciones de telescopios, y la ayuda del trabajo de modelación avanzada, el equipo de Emanuele Farina, de la Universidad de Insubria en la provincia de Como, Italia, y Michele Fumagalli del Instituto Carnegie de Ciencia, en Washington, D.C., Estados Unidos, fue capaz de captar como tal el trío de quásares, llamado QQQ J1519+0627. La luz de esos quásares ha viajado 9.000 millones de años-luz para
llegar hasta nosotros, lo que significa que dicha luz fue emitida cuando el universo tenía sólo un tercio de su edad actual.
Todo es finito, es decir, que tiene un fin, y la velocidad de la luz no podía ser una excepción
Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1.638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco (otro ejemplo de la evolución que, con el tiempo, se produce en nuestras mentes). Él no tenía forma
alguna de anticipar la extraordinaria velocidad de la luz.
Tratando de medir la velocidad de la luz
Parece que tanto Galileo como Newton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida y, si consideramos que esa fuerza que hace posible la unión de la materia reside en el corazón de los átomos (en sus núcleos), podemos hacernos una clara idea de lo ilimitado que puede
ser el pensamiento humano que, ya en aquellos tiempos -en realidad mucho antes- pudo llegar a intuir las fuerzas que están presentes en nuestro Universo.
En los núcleos atómicos reside la fuerza (nuclear fuerte) que hace posible la existencia de la materia que comienza por los átomos que, al juntarse y formar células, hace posible que éstas se junten y formen moléculas que a su vez, se reunen para formar sustancias y cuerpos.
Pero la comprensión adecuada de estas ideas tuvo que esperar hasta el siglo XX, cuando se reveló la verdadera naturaleza de las fuerzas químicas y de las fuerzas que mantienen unidos los átomos individuales. Ahora sabemos que tales fuerzas tienen un origen fundamentalmente electromagnético (que vincula y concierne a la implicación del campo electromagnético con partículas cargadas) y que la teoría del electromagnetismo es también la teoría de la luz.
Para entender los átomos y la química se necesitan otros ingredientes procedentes de la teoría cuántica, pero las ecuaciones básicas que describen el electromagnetismo y la luz fueron propuestas en 1.865 por el físico escocés James Clark Maxwell, que había sido inspirado por los magníficos descubrimientos experimentales de Michael Faraday unos treinta años antes y que él plasmó en una maravillosa teoría.
El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo.
Esta teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que en unidades ordinarias es aproximadamente 3 × 108 metros por segundo. Maxwell, guiado por los experimentos de Faraday, hizo posible un hecho que cambió la historia de la humanidad para siempre. Un hecho de la misma importancia que el descubrimiento del fuego, la rueda o los metales. El matemático y poeta escocés unificó los campos eléctrico y magnético a través de unas pocas ecuaciones que describen como
estos campos se entretejen y actúan sobre la materia.
Claro que, estos importantísimos avances han sido simples escalones de la “infinita” escalera que tenemos que subir y, la misma relatividad de Einstein no ha sido (después de un siglo) aún comprendido en su plenitud y muchos de sus mensajes están escondidos en lo más profundo de nuestras mentes que, ha sabido parcialmente descubrir el mensaje de Einstein pero
, seguimos buscando.
Sin embargo, esto nos presenta un enigma si queremos conservar el principio de relatividad. El sentido común nos diría que si se mide que la velocidad de la luz toma el valor concreto c en el sistema de referencia del observador, entonces un segundo observador que se mueva a una velocidad muy alta con respecto al primero medirá que la luz viaja a una velocidad diferente, aumentada o disminuida, según sea el movimiento del segundo observador.
Estaría bueno que, al final se descubriera que alfa (α) tuviera un papel importante en la compleja teoría de cuerdas, ¿Por qué no? En realidad alfa, la constante de estructura fina, nos habla del magnetismo, de la constante de Planck y de la relatividad especial, es decir, la velocidad de la luz y, todo eso, según parece, emergen en las ecuaciones topológicas de la moderna teoría de cuerdas. ¡Ya veremos!
Pero el principio de relatividad exigiría que las leyes físicas del segundo observador (que definen en particular la velocidad de la luz que percibe el segundo observador) deberían ser idénticas a las del primer observador. Esta aparente contradicción entre la constancia de la velocidad de la luz y el principio de relatividad condujo a Einstein (como
de hecho, había llevado previamente al físico holandés Hendrick Antón Lorentz y muy en especial al matemático francés Henri Poincaré) a un punto de vista notable por el que el principio de relatividad del movimiento puede
hacerse compatible con la constancia de una velocidad finita de la luz.
¿Cómo funciona esto? Sería normal que cualquier persona creyera en la existencia de un conflicto irresoluble entre los requisitos de una teoría como la de Maxwell, en la que existe una velocidad absoluta de la luz, y un principio de relatividad según el cual las leyes físicas parecen las mismas con independencia de la velocidad del sistema de referencia utilizado para su descripción.
¿No podría hacerse que el sistema de referencia se moviera con una velocidad que se acercara o incluso superara a la de la luz? Y según este sistema, ¿no es cierto que la velocidad aparente de la luz no podría seguir siendo la misma que era antes? Esta indudable paradoja no aparece en una teoría, tal como la originalmente preferida por Newton (y parece que también
por Galileo), en la que la luz se comporta como partículas cuya velocidad depende de la velocidad de la fuente. En consecuencia, Galileo y Newton podían seguir viviendo cómodamente con un principio de relatividad.
La velocidad de la luz en el vacío es una constante de la Naturaleza y, cuando cientos de miles de millones de millones salen disparados de esta galaxia hacia el vacío espacial, su velocidad de 299.792.450 metros por segundo, es constante independientemente de la fuente que pueda emitir los fotones y de si ésta está en reposo o en movimiento.
Así que, la antigua imagen de la naturaleza de la luz entró en conflicto a lo largo de los años, como era el caso de observaciones de estrellas dobles lejanas que mostraban que la velocidad de la luz era independiente de la de su fuente. Por el contrario, la teoría de Maxwell había ganado fuerza, no sólo por el poderoso apoyo que obtuvo de la observación (muy especialmente en los experimentos de Heinrich Hertz en 1.888), sino también por la naturaleza convincente y unificadora de la propia teoría, por la que las leyes que gobiernan los campos eléctricos, los campos magnéticos y la luz están todos subsumidos en un esquema matemático de notable elegancia y simplicidad.
Las ondas luminosas como las sonoras, actúan de una u otra manera dependiendo del medio en el que se propagan.
En la teoría de Maxwell, la luz toma forma de ondas, no de partículas, y debemos enfrentarnos al hecho de que en esta teoría hay realmente una velocidad fija a la que deben viajar las ondas luminosas.
El punto de vista geométrico-espaciotemporal nos proporciona una ruta particularmente clara hacia la solución de la paradoja que presenta el conflicto entre la teoría de Maxwell y el principio de relatividad.
Este punto de vista espaciotemporal no fue el que Einstein adoptó originalmente (ni fue el punto de vista de Lorentz, ni siquiera, al parecer, de Poincaré), pero, mirando en retrospectiva, podemos ver la potencia de este enfoque. Por el momento
, ignoremos la gravedad y las sutilezas y complicaciones asociadas que proporciona el principio de equivalencia y otras complejas cuestiones, que estimo aburrirían al lector no especialista, hablando de que en el espacio-tiempo se pueden concebir grupos de todos los diferentes rayos de luz que pasan a ser familias de líneas de universo.
Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.
El Universo está dentro de nuestras Mentes
¡La Mente! Qué caminos puede recorrer y, sobre todo ¿Quién la guía? Comencé este trabajo con la imagen del ojo humano y hablando de los sentidos y de la consciencia y mira donde he finalizado…Sí, nos falta mucho camino por recorrer para llegar a desvelar los misterios de la Mente que, en realidad, es la muestra más alta que el Universo nos puede mostrar de lo que puede surgir a partir de la sencillez de los átomos de hidrógeno que, evolucionados, primero en las entrañas de las estrellas y después en los circuitos de nuestras mentes, llega hasta los pensamientos y la imaginación que…son palabras mayores de cuyo alcance, aún no tenemos una idea que realmente refleje su realidad.
En el Universo todo es dinámico, nada permanece y todo cambia
Pero, ¿existe alguna realidad?, o, por el contrario todo es siempre cambiante y lo que hoy es, mañana no existirá. Si “realmente” es así, ocurre igual que con el tiempo. La evolución es algo que camina siempre hacia adelante, es inexorable, nunca se para y, aunque como el tiempo pueda ralentizarse, finalmente sigue su camino hacia esos lugares que ahora, sólo podemos imaginar y que, seguramente, nuestros pensamientos no puedan (por falta de conocimientos) plasmar en lo que será esa realidad futura.
No estaría mal que si podemos intuir de donde venimos, si sabemos lo que estamos haciendo aquí, y, si conjeturamos hacia donde vamos…
¿No deberíamos cambiar algunos comportamientos?
¿No tendríamos que ser más conscientes de que, en nuestra Sociedad, algo no funciona?
¿No tendríamos que ser más humildes y menos pre-potentes, al saber de nuestro origen?
¿No estamos construyendo un mundo equivocado para nuestros hijos?
¿No deberíamos construir leyes que realmente se cumplieran, sin mirar quién sea el que las vulnera?
¿No deberíamos implantar un sistema de la meritocracia plena. Que los puestos los ocupen aquellos que están preparados para ello, no los hijos de, ni los amigos de políticos, o, de afiliados al Partido?
En fin amigos, el Futuro es incierto pero… ¡ Si seguimos por donde vamos, vislumbro uno que no me gusta nada! Esto no va bien, el camino que hemos tomado (en muchos sentidos y en muchas perspectivas), no nos llevará a un buen puerto.
Emilio Silvera Vázquez
May
14
Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)

El premio nobel 2004, Frank Wilczek como un gran creativo de la física, nunca decepciona. Este profesor, famoso por sus trabajos en cromodinámica cuántica (QCD), la teoría que explica el micro-mundo existente dentro de las llamadas partículas elementales, puso las leyes de la Física patas arriba con su más reciente teoría, en la que presenta un sorprendente tipo de cristal –time crystal- que a diferencia de los cristales convencionales no ofrece regularidad en el espacio, sino en el tiempo. Sería una nueva organización de la materia en la que la estructura se repite periódicamente en el tiempo, a diferencia de la periodicidad espacial de los cristales convencionales.
Como veis, todos los días aparecen ideas nuevas que bien desarrolladas pueden ser el futuro pero de momento, parece que son las leyes de Newton y Einstein y Maxwell las que gobiernan el macro-mundo y, las de Planck el micro-mundo.
Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho , ¿Cómo habríamos aprendido lo que sabemos?
Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería existir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.
Se nos escurre de entre los dedos, no lo podemos retener
¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez? Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales, pensaremos como nos enseño Einstein, a una mayor escala, en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.
Hay en todas las cosas un ritmo que es parte de nuestro Universo.
“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”
De “Frases escogidas de Muad´Dib”, por la Irulan.
hemos imaginado estar en otros niveles
Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí. Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes. En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.
Siempre nos ha gustado imaginar como serán otros mundos
Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.
Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.
“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”
Douglas Adams
Los hay que creen, que la vida, es única en la Tierra
Incluso en la Tierra las tenemos más raras, el pulpo es un buen ejemplo
Lo cierto es que, siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?
En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!
Nuestro Universo es como es las constantes son las que son
Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nociva para la vida.
Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!
La hipotética energía oscura
Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .
En nuestro planeta, como en otros, en cualquier charca caliente surgir la vida
Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener.
Todo dependerá de cual sea el de la densidad de materia.
De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.
Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!
Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.
No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).
Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.
Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.
Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el , cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.
Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión-
Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolucioón en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.
Siatuada a 12.900 M de años-kuz, descubren la Galaxia lejana y, seguramente, de la primeras
Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.
Emilio Silvera V.
May
14
Un paseo por la vecindad galáctica
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
Nuestra vecina galáctica la Pequeña Nebe de Magallanes
Hoy dejaré una pincelada de la preciosa Galaxia Irregular que es la más pequeña de las dos que tienen el mismo nombre y que acompañan a nuestra Galaxia, La Vía Láctea; es también conocida como Nubecula Minor. Tiene unos 9 ooo años-luz de longitud y se encuentra a 190 000 años-luz, visible a simple vista como una mancha brumosa de unos 3º en Tucana. Su masa visible es menor que el 25% de nuestra Galaxia, y contiene relativamente más gas y menos polvo que la Gran Nube de Magallanes, aunque menos cúmulos y Nebulosas. Su estructura puede estar alargada en la dirección de la Tierra.
El cúmulo globular de estrellas 47 Tucanae. Maravillas como esta están presentes en la pequeña Nube de Magallanes. Este brillante cúmulo de estrellas es 47 Tucanae (NGC 104), en una imagen captada por el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy) de ESO, instalado en el Observatorio Paranal, en Chile. Este cúmulo se encuentra a unos 15.000 años luz de nosotros y contiene millones de estrellas, algunas de las cuales son bastante inusuales y exóticas. Esta imagen fue captada como parte del sondeo “Magellanic Cloud” de VISTA, un proyecto que sondea la región de las Nubes de Magallanes, dos pequeñas galaxias muy cercanas a nuestra Vía Láctea.
Gran Nube de Magallanes
Al igual que la Gran Nube de Magallanes, la pequeña que hoy nos visita, presenta evidencia de una etapa de formación de estrellas en su historia remota, seguida de un tiempo sin ninguna actividad, y luego otra etapa de formación de estrellas más recientes. Las estrellas y la materia interestelar tienen una abundancia de elementos pesados menor (entre un cuarto y un décimo) que las estrellas de las regiones vecinas al Sol de la Galaxia.
En este cúmulo estelar llamado NGC 602, cerca de la Pequeña Nube de Magallanes, millones de estrellas jóvenes emiten radiación y energía en forma de ondas que erosionan el material que las rodea creando formaciones visualmente interesantes. El tamaño de lo que se ve en la foto abarca 200 años luz de lado a lado. Foto: NASA / Hubble ST.
“NGC 602 es un grupo joven, brillante abierto de estrellas situadas en la Nube Menor de Magallanes (SMC), una galaxia satélite de la Vía Láctea. Ondas de radiación y el choque de las estrellas han apartó mucho del encendedor de gas circundante y el polvo que componen la nebulosa conocida como N90, y esto a su vez ha dado lugar a la formación de nuevas estrellas en las crestas (o “trompas de elefante”) de la nebulosa. Estos jóvenes, incluso pre-principales estrellas de la secuencia siguen envueltos en polvo, pero son visibles para el Telescopio Espacial Spitzer en longitudes de onda infrarrojas. [5] El grupo es de particular interés ya que se encuentra en el ala del SMC que conduce al Puente de Magallanes . Por lo tanto, mientras que sus propiedades químicas deben ser similares a las del resto de la galaxia, está relativamente aislado y tan fácil de estudiar. Un número de otras galaxias más distantes también aparecen en el fondo de las imágenes del Hubble de NGC 602″
En esta impresionante visión de la Vía Láctea, arriba a la derecha y más abajo y a la izquierda, podemos contemplar a las dos Nubes de Magallanes, la Grande y la Pequeña que, en la lejanía del cielo, parecen dos pequeños borrones azulados que, a ojos vista, no dicen todo lo que tienen que enseñar.
Cerca de la imponente franja de la Vía Láctea vista desde el hemisferio Sur, las dos Nubes de Magallanes parecen fragmentos desprendidos de nuestra galaxia. Hasta hace poco los astrónomos creían que siempre habían orbitado en torno a la Vía Láctea más o menos a la misma distancia, al igual que las otras galaxias satélites menores, atrapadas en el campo gravitatorio de la Vía Láctea. Pero nuevos datos parecen indicar que han pasado gran parte de su existencia bastante más lejos y que actualmente están experimentando una inusual cercanía con nuestra galaxia. De ser así, estaríamos siendo testigos del inicio de una danza que puede alterar la compostura de las galaxias y crear miles de millones de estrellas y planetas nuevos, y también catapultar otros hacia fuera, para perderse en las profundidades del espacio interestelar.
Esta Nebulosa, 30 Doradus, sigue formando estrellas a un ritmo vertiginoso, de hecho, se trata de la región de formación estelar más intensa de todas las galaxias que posee el Grupo Local de Galaxias:
“No conocemos otra nebulosa ni en la Vía Láctea, ni en la Galaxia de Andrómeda o en la Galaxia del Triángulo en donde se estén formando más estrellas en la actualidad. Precisamente por eso se trata de una de las regiones de formación estelar más estudiadas por los astrofísicos. Localizada a una distancia de unos 170.000 años luz de la Tierra, 30 Doradus es tan luminoso que si estuviese a la distancia a la que se encuentra la Gran Nebulosa de Orión (unos 1,300 años luz) podría producir sombras.
Se forman anomalías gravitatorias y vórtices que atraen más y más material para formar estrellas nuevas en éstos arabescos paisajes que se forman con el gas y el polvo de la Nebulosa.
Los astrónomos que usan los datos del Hubble de la NASA, el Telescopio Espacial ha detectado dos cúmulos de estrellas masivas que pueden estar en las primeras etapas de la fusión. Los racimos son de 170.000 años luz de distancia en la Gran Nube de Magallanes, una pequeña galaxia satélite de nuestra Vía Láctea. Lo que al principio se pensaba que era solo grupo, en el centro de la enorme región de formación estelar 30 Doradus (también conocida como la Nebulosa de la Tarántula) se ha encontrado que un compuesto de dos grupos que difieren en la edad de aproximadamente un millón de años.
Las dos Galaxias Irregulares que son satélites de la Vía Láctea, y, cuyo destino futuro es fundirse con nuestra Galaxia, son fácilmente distinguibles a simple vista en el hemisferio Sur como partes separadas de la Vía Láctea. Se llaman así en honor del explorador portugués Fernando Magallanes (1480-1521), quien las descubrió durante su viaje alrededor del mundo. Se cree que ambas nubes orbitan en torno a nuestra Galaxia en un plano casi perpendicular a su disco, y que, como he dicho antes, finalmente caerán en espiral hacia ésta.
Cúmulos de estrellas masivas en 30 Doradus
Los modernos Telescopios de la clase de 8-10 m permiten el estudio espectroscópico de las estrellas masivas que, de manera abundante, están presentes en ésta pequeña galaxia que, no por pequeña, deja de exhibir orgullosa una riqueza inmensa de materiales y nuevas estrellas de increíble fulgor y belleza.
Otra de las propiedades de esta pequeña galaxia es su elevada metalicidad que la hace rica en elementos complejos muy necesarios para la biología-química de la vida. La población de estrellas masivas aquí es abundante y nos habla de un futuro plagado de explosiones supernovas que sembraran el espacio circundante de materiales para nuevas estrellas y mundos. Las estrellas variables Azul Luminosa (LBV) no son aquí extrañas en esta galaxia que, no por pequeña es menos importante en nuestro Grupo Local.
Una curiosidad hallada en esta Galaxia es que se ha encontrado una estrella de luminosidad tan Alta que se sitúa por encima del limite de estabilidad conocido como limite de Eddintong (donde la presión de radiación iguala la Gravedad), y constituye por tanto un reto a la teoría. Ya sabéis que, estrellas masivas superiores a 120 masas solares, según la teoría no son posibles, ya que, serían destruidas por su propia radiación.
El cúmulo central de muchas galaxias (así pasa en la nuestra) contiene un gran número de estrellas masivas, por tanto jóvenes, formadas cerca del Agujero Negro Supermasivo que está, generalmente, en el centro de las grandes galaxias, y, cómo puede haber un episodio tal de formación de estrellas masivas en las cercanías de un Agujero Negro, es todavía una incognita. Más incognita puede resultar que, en una Galaxia pequeña como la de Magallanes, surjan estrellas masivas con tante intensidad y fuerza. En la Imagen de arriba podemos contemplar la exuberancia insultante de las azuladas estrellas OB con su inusitada fuerza de radiación ultravioleta que ioniza toda la región enmarcándola en un cuadro de suaves formas y colores que nos hace soñar.
https://www.google.com/search?
Creo…¡¡Que no estamos solos!! : Blog de Emilio Silvera V.
La Pequeña Nube de Magallanes es un rico Laboratorio situado en el Espacio Interestelar que ha servido para que la Física asociada al desarrollo y evolución de Super-vientos galácticos sean de una gran trascendencia para entender la formación y evolución de las galaxias. Allí, hemos podido saber que, brotes estelares violentos -mucho más de lo que podemos ver ahora- fueron muy frecuentes en el Universo en épocas pasadas. Sin embargo, y a pesar de su trascendencia, no conocemos en detalle la génesis de un starburst nuclear y tampoco su evolución.
Con todo esto quiero significar que, siendo muchos los avances logrados en el estudio de las galaxias y de las estrellas que allí se forman y nacen, aún nos queda un largo camino para el estudio y la observación, y, desde luego, este que hoy tenemos con nosotros, La Pequeña Nube de Magallanes, es un lugar privilegiado para que, con buenos aparatos, podamos avanzar en el saber del Universo.
Claro que existen otras galaxias más espectaculares que, como la que vemos arriba -comparable a la Vía Láctea-, aunque al verla nos pueda parece que esté aquí al lado, en realidad, esta galaxia espiral típica, conocida como Messier 66, se encuentra a más de 36 millones de años luz. Su tamaño es tan inmenso que es difícil de imaginar: 96.000 años luz de lado a lado, lo cual quiere decir que ese es el tiempo que se tardaría en cruzarla viajando a la velocidad de la luz: 300.000 kilómetros por segundo. Foto: NASA, ESA y el Hubble Heritage Team (STScI/AURA).
La misma galaxia desde otras perspectivas
En estas pequeñas galaxias encontramos lugares maravillosos
Hoy nos quedamos con las dos pequeñas galaxias: La Pequeña y la Gran Nube de Magallanes que, relativamente cercanas a nuestra Galaxia, parece que finalmente se unirán para formar un sólo conjunto mayor y, en el evento, se producirán cambios espectaculares que a todos nos gustaría ver… ¡Acierta distancia de seguridad!
El Universo amigos, siempre será, para nosotros, ¡Una maravilla!
Emilio Silvera V.
May
14
¡El Origen de la Vida! ¿Quién puede saber eso?
por Emilio Silvera ~
Clasificado en La vida ~
Comments (2)

Un largo recorrido

La vida está presente en muchos ecosistemas de la Tierra






Los animales unicelulares han descubierto el método más corto para comer las plantas. La muerte y el sexo han de crearse para que los organismos pluricelulares sean capaces de envejecer y dejar de funcionar como una cooperativa colonial de células. Los animales han descubierto como comerse a otros animales. Por encima de todo, ha evolucionado una especie inteligente, una especie tan lista que ha llegado a descubrir una vía para poder salir de la Tierra y llevar todo el proceso de la evolución hasta el extremo.
Claro que, si creemos que la vida es ciudadana del universo sin fronteras, no debemos perder de vista la Panspermia, esas esporas viajeras que llegan a los mundos y en ellos, se posan y dejan pasar el tiempo para que, las condiciones locales, las radiaciones exteriores y propias del lugar, hagan su trabajo para que, con el tiempo suficiente por delante, puedan emerger y crecer hasta llegar a conformar seres con ideas y pensamientos.
Una cosa si que la tenemos clara, cuando se formaron aquellos primeros mecanismos que hicieron posible la vida, no estaba allí presente ningún cronista que nos pudiera contar, de manera verdadera, lo que pasó. Y, desde entonces, perseguimos una respuesta. Sí, una respuesta investigando, teorizando, construyendo modelos…
Emilio Silvera Vázquez