May
10
¿Cuándo seremos libres?
por Emilio Silvera ~
Clasificado en El Origen de las cosas ~
Comments (0)


Arriba tenéis el Mal del Mundo: Por el se mata y se traiciona, se roba, se engaña y se cometen los peores actos que el ser humano pueda imaginar. Claro que, si lo pensamos bien… Aquello del trueque en esta época no parece que fuese lo mejor.




Algunos se dan golpes en el pecho y (de palabra), protestan por el hambre en el mundo. Sin embargo, cuando vemos como viven y las riquezas que poseen… Nos hacen dudar de su pregón, no hacen lo que predican.
Hay cuestiones de las que no debemos quedar en la sombra de la ignorancia. El conocimiento de lo que pasa en el mundo es muy conveniente para poder saber, dónde estamos y qué maquinaciones se han venido y se vienen realizando para que, las criaturas del mundo “libre”, no sean tan libres y estén supeditadas a unas minorías sin escrúpulos que que lo quieren dirigir… ¡Hasta el destino Humano! está en sus manos.
A la derecha de la página del Blog, en el lugar que se denomina Enlaces, aparece: ¡Maldito Capital! – Se describe lo que es la realidad del mundo. Merece la pena que le dediquéis un rato para saber, de qué van las cosas.

Si nos detenemos en la política… ¡Es para echarse a llorar!
Salid todos a la calle hoy, de alguna manera tenemos que acabar con todo esto.
Emilio Silvera Vázquez
May
10
El “universo” cuántico y…, sus alrededores
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comentarios desactivados en El “universo” cuántico y…, sus alrededores

Se cuenta que una vez Albert Einstein alagó al actor Charles Chaplin diciéndole:
“Lo que siempre he admirado de Usted es que su arte es universal, todo el mundo le comprende a admira”.
A esto Chaplin respondió a Einstein:
“Lo suyo es mucho más digno de respeto, todo el mundo le admira y prácticamente nadie le comprende”.
Es cierto lo que Chaplin decía, todos admiraban a Einstein y pocos comprendían sus postulados. De hecho, cuando estaba buscando la teoría de Todo, la gente se amontonaban, literalmente, ante los escaparates de la Quinta Avenida para ver las Ecuaciones que pocos entendían…¡Así somos los Humanos! Lo que no comprendemos nos produce temor o admiración, o, las dos cosas a la vez.

El premio Nobel Gerad ´t Hooft
Hace ya algún tiempo que me desplace a Madrid, invitado para asistir a una Conferencia que sobre el LHC y el Bosón de Higgs, la impartía el físico y premio Nobel de Física Gerad ´t Hooft.




La charla de ‘t Hooft se inscribía en el ciclo La ciencia y el cosmos, y, entre otras cosas nos decía a los presentes que, la física, en concreto la física de partículas, ha sido siempre su gran pasión. “Cuando era joven, la física estaba cambiando el mundo radicalmente: la Energía Nuclear, la Televisión, los Ordenadores, las primeras Misiones Espaciales….yo quería formar parte de todo eso”.
Y las partículas elementales “eran el mayor misterio de todos”, y añade:
“En cierto modo aún lo son, aunque ahora sabemos de ellas muchísimo más que entonces. Hoy los ordenadores siguen siendo emocionantes, la biología y el código del ADN, la astronomía y los vuelos espaciales… Sigue habiendo muchas cosas capaces de estimular la imaginación de jóvenes deseosos de aprender cosas nuevas impulsados por el deseo de estar ahí, en el momento en que se están haciendo los descubrimientos que cambian el mundo”.
Gerard ‘t Hooft explicó lo que significa, en los modelos teóricos, el famoso bosón: “El campo de la partícula de Higgs actúa como una especie de árbitro; proyectado contra otras partículas, este campo determina su comportamiento, si tienen carga o masa y hasta qué punto se diferencian de otras partículas. Si no encontramos el Higgs, si realmente no está, necesitaremos algo más que haga ese papel de árbitro”. Eso significaría, continuaba el Nobel, que “nuestras teorías ya no funcionan, y han funcionado tan bien hasta ahora que eso es difícil de imaginar”.
La espera fue enorme y todos esperaban las noticias sobre el dichoso Bosón
Cuando comenzó la búsqueda se decía:
Sí al LHC se le resiste el Bosón de Higgs…, bueno, si es que anda por ahí.
Fue en 1999 cuando ‘t Hooft recibió el premio Nobel de Física (junto con su colega y director de tesis Martinus Veltman), por “dilucidar la estructura cuántica de las interacciones electro-débiles” -según palabras de la Academia sueca- de la física de las partículas elementales.
Acerca del Gran Colisionador de Hadrones (el acelerador LHC situado en el Laboratorio Europeo de Física de partículas, CERN, junto a Ginebra), el científico holandés explica que se trata “de una máquina única en el mundo” y continúa: “Esperamos descubrir nuevas cosas con él y poner a prueba teorías que, hasta donde hemos podido comprobar hasta ahora, funcionan muy bien, pero necesitamos ir más allá”.
El descubrimiento de la partícula de Higgs, o bosón de Higgs, fue el objetivo número uno del LHC, y tras un largo período de funcionamiento del acelerador, los miles de físicos que trabajan en los detectores, han logrado acotar el terreno de búsqueda, aunque, insisten, seguramente necesitarán tomar muchos más datos para descubrirlo. O tal vez descubrir que no existe, lo que supondría una revolución en la física de partículas, al obligar a replantear el llamado Modelo Estándar, que describe todas las partículas elementales y sus interacciones, y que hasta ahora funciona con altísima precisión aunque, dicen los expertos, está incompleto.

Gerard ‘t Hooft, uno de los grandes físicos teóricos de partículas elementales, considera que será muy difícil desarrollar una teoría del todo, un cuerpo teórico capaz de explicar todas las fuerzas que actúan en la naturaleza aunando la Relatividad General de Einstein y la Mecánica Cuántica, tan eficaces por separado en la descripción del macrocosmos y el microcosmos, respectivamente. “Mi impresión es que esta teoría unificadora, una teoría del todo, aún requerirá el trabajo de muchas nuevas generaciones de investigadores jóvenes y listos”, afirma. “No llegaremos a ella de un momento a otro por la simple razón de que el universo es demasiado complejo para que una única teoría lo abarque todo. Vale, no digo que sea imposible, pero me parece muy improbable. Y mientras llega, queda mucho por descubrir, incluso hallazgos espectaculares”.

Muchas son las actividades desconocidas para el público que se desarrollan en el LHC, como la terapia de hadrones y otras
Por otra parte, el científico holandés ha señalado que el LHC realiza más actividades que intentar encontrar el bosón de Higgs. En este sentido, ha destacado que se buscan también partículas que podrían construir la materia oscura, un tipo de materia de la que los físicos tienen la certeza de que es cinco veces más abundante que el universo que la materia ‘normal’, pero que no absorbe, refleja ni emite luz, lo que hace muy difícil su detección y, por tanto, estudiar su naturaleza. Del mismo modo, también se está desarrollando una teoría capaz de unificar la teoría de la relatividad general de Einstein y la mecánica cuántica que, según ha explicado Hooft, “permitiría descubrir lo que ocurre dentro de los átomos”.
De vez en cuando lo consulto
Recuerdo un pasaje escrito por él al principio de su interesante e instructivo libro “Partículas Elemetales”, que decía:
“Mi intención es narrar los últimos 25 años de investigación sobre las partículas más pequeñas que constituyen la materia. Durante esos 25 años, yo empecé a ver la Naturaleza como un test de inteligencia para toda la Humanidad en su conjunto, como un gigantesco puzle con el que podemos jugar. Una y otra vez, nos tropezamos con nuevas piezas, grandes y pequeñas, que encajan maravillosamente con las que ya tenemos. Yo quiero compartir con ustedes la sensación de triunfo que sentimos en esos momentos.”
Tenía la intención (si se presentaba la oportunidad), de preguntarle sobre “su Principio Holográfico” pero, no pudo ser. Sólo pude saludarlo e intercambiar unas breves palabras junto con Ignacio Cirac presente también en el evento.
“En la década de los 90, los físicos Gerard ‘t Hooft, y Leonard Susskind postularon una hipótesis que sacudió por igual a la ciencia y a la opinión pública. Se la conoce como Principio Holográfico, y defiende la idea de que el universo puede ser interpretado como un holograma.”


Publicó el principio holográfico, el cual explica que la información de una dimensión extra es visible como una curvatura del espacio tiempo con una menos dimensiones. Por ejemplo, los hologramas son imágenes de 3 dimensiones colocadas en una superficie de 2 dimensiones, el cual da a la imagen una curvatura cuando el observador se mueve. Similarmente, en relatividad general, la cuarta dimensión esta manifestada en 3 dimensiones observables como la curvatura de un sendero de un movimiento de partícula (criterio) infinitesimal. Hooft ha especulado que la quinta dimensión es realmente la fábrica del espacio-tiempo.

Acordaos de que, a mediados del año 2,003 apareció la noticia de que la “información sería el componente fundamental de la naturaleza” postulada por un grupo de físicos entre los que se incluyen el Premio Nóbel danés Gerard t´Hooft y el físico de la Universidad de California Raphael Bousso, basadas en el “Principio Holográfico”. Esta teoría, por singular y chocante que pareciese en su momento ha tenido a lo largo de estos siete años una influencia notable tanto en la sociedad científica como en los círculos alternativos.
Personajes tan influyentes como Deepak Chopra sin ir más lejos habla del ámbito cuántico como el campo de información de donde parte todo lo conocido, materia, emociones, pensamientos. El controvertido joven físico Nassam Haramein defiende un universo basado en el holograma. Científicos japoneses -al igual que del resto del mundo- investigan con hologramas creando imágenes 3D o explican el funcionamiento del mundo físico basado en los campos de energía e información. Hay hasta “farmacología holográfica” a cargo de empresas farmacéuticas. El año pasado el físico Craig Hogan tras la detección de un extraño ruido en el detector de ondas gravitacionales el GEO 600, afirma que podría probar que, efectivamente, vivimos en un holograma.

La información sería el componente fundamental de la naturaleza. Es la que especifica el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia. El Big Bang que dio lugar al nacimiento del Universo tendría más que ver con una gigantesca “bajada” de bytes de información por parte de un superordenador, que con una explosión masiva de materia, según una nueva teoría que establece que en su origen la naturaleza está formada únicamente por pequeños paquetes de información pura que son los que especifican el cuándo, dónde, cómo y cuánto del espacio, del tiempo y de la materia.
Emilio Silvera Vázquez
May
9
Confundir la realidad con la Ilusión
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Dicen haber detectado 234 señales enviadas por extraterrestres
Publicado por el Diario de prensa ABC

Dos astrónomos canadienses creen que otras civilizaciones están enviando hacia la Tierra pulsos de láser. El Instituto SETI, la gran autoridad en la materia, es escéptico y va a investigar las mismas estrellas para comprobar qué está ocurriendo.
No una, sino 234 señales inteligentes de un solo golpe. Y todas ellas emitidas por civilizaciones extraterrestres desde el mismo número (234) de estrellas diferentes. Esa es la extraordinaria conclusión de Ermanno F. Borra y Eric Trottier, dos astrónomos del Departamento de Física de la Universidad de Laval, en Quebec, tras analizar más de dos millones y medio de estrellas registradas en el Sloan Digital Survey en busca de un tipo de señal muy concreta. Una afirmación que otros astrónomos se han apresurado a calificar de “prematura” y que, en efecto, resulta como mínimo arriesgada.

“Lo que yo hago podría cambiar el destino de la Humanidad”
Ya en 2012, el propio Borra publicó un artículo en The astronomical Journal en el que sugería que los extraterrestres podrían estar utilizando un láser para sus comunicaciones interestelares. De esta forma, si los ET enviaran hacia la Tierra un haz de láser como si fuera una luz estroboscópica, podríamos descubrir los destellos periódicos de esa luz ocultos en el espectro luminoso de su estrella anfitriona. Los destellos serían muy débiles y se sucederían muy rápidamente, pero podrían ser identificados utilizando la tecnología y el análisis matemático adecuados.
“Además, la cantidad necesaria de energía para emitir esas señales no sería exagerada”, afirma Borra. De hecho, incluso nosotros, en la Tierra, podríamos hacerlo utilizando instalaciones como el láser Helios del Lawrence Livermore National Laboratory, con el que podríamos enviar señales que revelaran nuestra presencia en el Universo.

Así que Borra y Trottier se pusieron a buscar esa clase de señal en más de dos millones y medio de estrellas. Y la encontraron exactamente en 234 de ellas. Además, se da la circunstancia de que la inmensa mayoría de esas 234 estrellas son del mismo tipo espectral que nuestro Sol, lo cual, según los investigadores, refuerza su hipótesis de que se trata de señales emitidas de forma intencionada. En un artículo aparecido hace unos días en arxiv.org, Borra y Trottier aseguran sin tapujos que 234 civilizaciones diferentes están enviando hacia la Tierra pulsos de láser con una periodicidad que ronda los 1,65 picosegundos (un picosegundo es la billonésima parte de un segundo).
Por supuesto, los dos científicos consideran otras posibles explicaciones, como por ejemplo las rápidas pulsaciones de las atmósferas de las estrellas emisoras, o la rotación de determinadas moléculas. “Debemos seguir un enfoque científico, no emocional -asegura Borra-. “Pero intuitivamente, tengo la firme sospecha de que se trata de señales ET“.
Sospechas del SETI

Las reacciones de otros astrónomos no se han hecho esperar. Y son muchos los que consideran que Borra y Trottier se han precipitado demasiado en su anuncio, sin tener en cuenta todas las posibles explicaciones. Incluso Andrew Siemion, director del Instituto SETI en la Universidad de California, institución científica enteramente dedicada a buscar señales inteligentes en el Universo, asegura que “no se pueden hacer anuncios tan drásticos sin haber agotado antes todas y cada una de las posibilidades”. Por supuesto, el SETI utilizará sus propios medios para “echar un vistazo” a algunas de las estrellas señaladas por Borra.
El investigador se muestra encantado con la idea de que otros intenten comprobar sus datos y conclusiones. De hecho, afirma que la señal procedente de esas 234 estrellas es tan extraña que “si bien nuestro análisis parece indicar que se trata de algo muy real, su autenticidad debe ser validada con más trabajo”.
Algunos confunden su propia ilusión de que pasen las cosas a la auténtica realidad
Pero los investigadores del SETI no comparte este entusiasmo, y barajan incluso la posibilidad de que los patrones espectrales detectados por Borra y Trottier estén causados por errores de calibración o en el análisis de los datos. Es decir, que se trate de una simple ilusión provocada por errores humanos. Solo queda, pues, esperar a que los expertos emitan su dictamen definitivo. Si todo va bien, pronto conoceremos los resultados.
May
9
¿Dónde están las respuestas?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)


¡Son posibles tantas cosas!
Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”
Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.
“Inicialmente, el término se usó con una connotación irónica, para referirse a varias teorías sobre-generalizadas. Después se popularizó en la física cuántica al describir una teoría que podría unificar o explicar a través de un modelo simple de teorías todas las interacciones fundamentales de la Naturaleza.”
Sus ecuaciones eran expuestas en los escaparates de la Quinta Avenida y la gente se agolpaba para verlas sin entender nada. Pero así somos. El hombre tenía el suelo de encontrar ese Santo Grial de la Física… ¡No lo pudo conseguir!
“La teoría del Todo o teoría Unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasión los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo. Claro que, Einstein no sabía que las matemáticas para plasmar esa Teoría mágica… ¡No se habían inventado en su tiempo ni tampoco en el nuestro!
La teoría del todo debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar relatividad y cuántica, algo hasta ahora no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.”
Einstein se pasó los últimos treinta años de su vida en la búsqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían, se arremolinaban ante el cristal para verlas.
Casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la psicología, la biología, la geología, la química, y también la física, hubieran resuelto todos sus problemas.
El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas. Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.
:format(jpg)/f.elconfidencial.com%2Foriginal%2F68c%2Fe14%2Fc51%2F68ce14c519946fca88d27a853ea6ce98.jpg)
Los últimos 30 años de su vida se desconectó del mundo para buscar esa Teoría del Todo
La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.
Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber, y, la importancia de las medidas… ¡también es relatividad! Porque, ¿podríamos valorar la importancia de los electrones. La existencia de los fotones, o, simplemente la masa del protón? Si alguno de esos objetos fuese distinto, el Universo también lo sería.
La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.
Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.
Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.
Accede al artículo original espacioprofundo.es/2013/01/11/einstein-tenia-razon-el-espacio-tiempo-es-una-estructura-suave/ © Espacio Profundo
Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.
La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.
Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.
El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273,15 ºC, ni los átomos se moverán.
Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.
Pero… ¿somos en verdad tan insignificantes
Emilio Silvera Vázquez
May
9
¡Las Galaxias! ¡La Entropía! ¡El Universo! ¡La Vida!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

La Vía Láctea (como otras galaxias espirales) es una zona de reducción de entropía…, así se deduce de varios estudios realizados y se puede argumentar que, las galaxias deben ser consideradas, por su dinámica muy especial, como sistemas vivos. En planteamiento más prudente se señala que el test de Lovelock constituye lo que se llama una condición “necesaria, pero no suficiente” para la existencia de vida. Si un sistema se encuentra en equilibrio termodinámico -si no supera el test de Lovelock-, podemos tener la seguridad de que está muerto. Si está vivo, debe producir una reducción de la entropía y superar dicho test.
Pero un sistema podría producir emtropía negativa sin estar vivo, como en el caso de contracción por efecto de la gravedad que hemos comentado a lo largo de otros trabajos. Desde este punto de vista, no hay frontera claramente definida entre los objetos vivos y la materia “inerte”. Yo, por mi parte creo que, la materia nunca es inerte y, en cada momento, simplemente ocupa la fase que le ha tocado representar en ese punto del espacio y del tiempo.

James y Sandy Lovelock
El mero hecho de que la frontera entre la vida y la ausencia de vida sea difuso, y que el lugar en el que haya que trazar la línea sea un tema de discusión, es, sin embargo, un descubrimiento importante. Contribuye a dejar claro que en relación con la vida no hay nada insólito en el contexto del modo en que funciona el Universo.
Como ya hemos visto en las explicaciones de otros trabajos expuestos aquí, es natural que los sistemas simples se organicen en redes al borde del caos y, una vez que lo hacen, es natural que la vida surja allí donde hay “una pequeña charca caliente” que sea adecuada para ello. Esto es parte de un proceso más o menos continuo, sin que haya un salto repentino en el que comience la vida. Desde ese punto de vista, lo más importante que la ciencia podría lograr sería el descubrimiento de, al menos, otro planeta en el que haya surgido la vida.

Gracias a la teoría de Lovelock sobre la naturaleza de la vida estamos a punto de poder conseguirlo, y es posible que antes de los próximos 50 años se lance al espacio un telescopio capaz de encontrar planetas con sistemas como el de Gaia, nuestra Tierra. Aunque hemos descubierto muchos planetas extrasolares, y, algunos de ellos es muy similar a nuestra “casa”, nos queda esa confirmación final de las condiciones ideales.

Hay dos etapas del descubrimiento de estas otras Gaías. En primer lugar debemos ser capaces de detectar otros planetas del tamaño de la Tierra que describan órbitas alrededor de otras estrellas; luego tenemos que analizar la atmósfera de esos planetas para buscar pruebas de que los procesos de reducción de la entropía están en marcha. Los primeros planetas “extrasolares” se detectaron utilizando técnicas Doppler, que ponían de manifiesto unos cambios pequeñísimos en el movimiento de las estrellas alrededor de las cuales orbitaban dichos planetas. Este efecto, que lleva el nombre del físico del siglo XIX Christian Doppler, modifica la posición de las líneas en el espectro de la luz de un objeto, desplazándolas en una cantidad que depende de lo rápido que el objeto se mueva con respecto al observador.

Zonas habitables, los astrónomos han ignorado las enanas blancas en su búsqueda de exoplanetas. Esto puede haber sido un error, de acuerdo con un nuevo estudio de zonas habitables en enanas blancas. Aunque los agujeros negros y las estrellas de neutrones captan toda la atención como destinos finales de las estrellas, la mayor parte nunca llegarán a ese extremo. Aproximadamente el 97 por ciento de las estrellas de nuestra galaxia no son lo bastante masivas para acabar en ninguna de esas dos opciones.
En lugar de eso, los astrónomos creen que terminarán sus vidas como enanas blancas, densos y calientes trozos de materia inerte en los que las reacciones nucleares terminaron hace mucho. Estas estrellas tienen aproximadamente el tamaño de la Tierra y se mantienen en contra del colapso gravitatorio mediante el Principio de Exclusión de Pauli, el cual evita que los electrones ocupen el mismo estado al mismo tiempo. Pero, a todo esto, hay que pensar en el tirón gravitatoria que una de estas estrellas podría incidir sobre cualquier planeta.
Para hacernos una idea de lo que es este tipo de observaciones, pensemos que el tirón gravitatorio que Júpiter ejerce sobre el Sol produce en éste un cambio de velocidad de unos 12,5 metros por segundo, y lo desplaza (con respecto al centro de masa del Sistema solar) a una distancia de 800.000 kilómetros, más de la mitad del diámetro de este astro, cuando el Sol y Júpiter orbitan en torno a sus recíprocos centros de masa. La velocidad de este movimiento es comparable a la de un corredor olímpico de 100 metros lisos y, para un observador situado fuera del Sistema solar, esto, por el efecto Doppler, produce un pequeñísimo desplazamiento de vaivén en la posición exacta de las líneas del espectro de luz emitida por el Sol.
Se trata del tipo de desplazamiento que se ha detectado en la luz a partir de los datos de algunas estrellas de nuestro entorno, y demuestra que en torno a ellas orbitan cuerpos celestes similares a Júpiter. Como ilustración diremos que la Tïerra induce en el Sol, mientras orbita alrededor de él, un cambio de velocidad de tan sólo 1 metro por segundo (la velocidad de un agradable paseo), y desplaza al Sol únicamente 450 kilómetros, con respecto al centro de masa del Sistema solar. No se dispone aún de la tecnología necesaria para medir un efecto tan pequeño a distancias tales como las de nuestras estrellas, y, pensemos que, la más cercana (Alfa Centauri), está situada a 4,3 años luz de la Tierra, esta es la razón por la cual no se han detectado aún planetas similares a la Tierra (últimamente para que sí lo encontraron).
El Sistema alfa centauri está formado por tres estrellas, llamadas Alfa Centauri A (Rigil Kent), Alfa Centauri B y Alfa Centauri C o Próxima Centauri. … La distancia al Sol de Alfa Centauri A y B es de 4,37 años luz, mientras que la de Próxima Centauri es de 4,22 años luz.
Hay otras técnicas que podrían servir para identificar planetas más pequeños. Si el planeta pasa directamente por delante de su estrella (una ocultación o un tránsito), se produce una bajada en la luminosidad regular de la luz procedente de dicha estrella. Según las estadísticas, dado que las órbitas de los planetas extrasolares podrían estar inclinadas en cualquier dirección con respecto a nuestra posición, sólo el 1 por ciento de estos planetas estará en órbitas tales que podríamos ver ocultaciones y, en cualquier caso, cada tránsito dura sólo unas pocas horas (una vez al año para un planeta que tenga una órbita como la de la Tierra; una vez cada once años para uno cuya órbita sea como la de Júpiter.

Cuando los humanos miramos al espacio y pensamos en sus increíbles distancias, es inevitable imaginar que sería posible encontrar algún sitio como nuestra casa. No sería lógico creer que sólo en la Tierra se han dado las condiciones para la vida. En nuestra misma Galaxia, planetas como la Tierra los hay a miles o cientos de miles.

Existen, sin embargo, proyectos que mediante el sistema de lanzar satélites al espacio que controlaran el movimiento (cada uno de ellos) de un gran número de estrellas con el fin de buscar esas ocultaciones. Si se estudian 100.000 estrellas, y 1.000 de ellas muestran tránsitos, la estadística resultante implicaría que prácticamente
toda estrella similar al Sol está acompañada por planetas. Sin embargo, aunque todas las búsquedas de este tipo son de un valor inestimable, la técnica Doppler es la que, de momento, se puede aplicar de manera más general a la búsqueda de planetas similares a la Tierra. De cualquier manera, independientemente de los planetas de este tipo que se descubran, lo que está claro es que, de momento, carecemos de la tecnología necesaria para dicha búsqueda.
La mejor perspectiva que tenemos en el momento inmediato, es la que nos ofrece el satélite de la NASA llamado SIM (Space Interforometry Mission) que mediante la técnica de interferometría (combinar los datos de varios telescopios pequeños para imitar la capacidad de observación de un telescopio mucho mayor) ver y medir la posición de las estrellas con la exactituid necesaria para descubrir las oscilaciones que delaten la presencia de planetas como la Tierra que describen orbitas alrededor de cualquiera de las 200 estrellas más cercanas al Sol, así como por cualquiera de los planetas similares a Júpiter hasta una distancia del Sol que podría llegar hasta los 3.000 años luz.
Hacia el final de la década presente (si todo va bien), la Agencia Espacial Europea lanzará un satélite cuyo nombre será GAIA y que tendrá como misión principal, no precisamente buscar otras Gaías, sino trazar un mapa con las posiciones de los mil millones de objetos celestes más brillantes. Dado que GAIA tendrá que observar tantas estrellas, no mirará cada una muchas veces ni durante mucho tiempo, por lo que no podría detectar las oscilaciones ocasionadas por planetas similares a la Tierra; pero si podría detectar planetas del tamaño de Júpiter y, si estos planetas son tan abundantes como parece indicar los datos obtenidos hasta ahora, no es descabellado pensar que, puedan estar acompañados, como en nuestro propio Sistema solar, por otros planetas más pequeños.

En las grandes alturas naturales están situados los telescopios

Dentro de los próximos 10 años, deberíamos tener localizados decenas de miles de sistemas planetarios extrasolares en las zonas de la Vía Láctea próxima a nosotros. Sin embargo, seguiría tratándose de observaciones indirectas y, para captar los espectros de algunos de esos planetas, se necesita dar un salto más en nuestra actual tecnología que, como he dicho, resulta indeficiente para realizar ciertas investigaciones que requieren y exigen mucha más precisión.
Los nuevos proyectos y las nuevas generaciones de sofisticados aparatos de alta precisión y de IA avanzada, nos traerán, en los próximos 50 años, muchas alegrías y sorpresas que ahora, ni podemos imaginar.
Cambiemos de tema: ¿Qué es una partícula virtual?
Diagrama de Feynman.
No pocas veces hemos dicho que, en una partícula virtual las relaciones que normalmente existen entre las magnitudes físicas de cualquier partícula no tienen por qué cumplirse. En particular, nos interesan dos magnitudes, que seguro que conocéis de sobras: energía y momento.
Por partícula-antipartícula que aparece de la “nada” y luego se aniquila rápidamente sin liberar energía. Las partículas virtuales pueblan la totalidad del espacio en enormes cantidades, aunque no pueden ser observadas directamente.

Rejilla de partículas virtuales
En estos procesos no se viola el principio de conservación de la masa y la energía siempre que las partículas virtuales aparezcan y desaparezcan lo suficientemente rápido como para que el cambio de masa o energía no pueda ser detectado. No obstante, si los miembros de una partícula virtual se alejan demasiado como para volverse a juntar, pueden convertirse en partículas reales, según ocurre en la radiación Hawking de un agujero negro; la energía requerida para hacer a las partículas reales es extraída del agujero negro.

En el Gran Colisionador de Hadrones (LHC) a las 14:22 del día 23 de Noviembre del 2009, el detector ATLAS registro la primera colision de protones en el LHC, seguido del detector CMS, y mas tarde los detectores ALICE y LHCb. Estas primeras colisiones solo son para probar la sincronización de las colisiones de haces de protones con cada uno de los detectores, lo cual resultó con éxito en cada uno de los experimentos y, marca un avance muy alentador hacia la tan esperada etapa (pasada en parte) de toma de datos donde se pueda buscar la partícula dadora de masas a las demás partículas, Super Simetría, Dimensiones Extras, y tantas otras cosas mas que surgen de la inmensa imaginación del intelecto humano.

Es sin duda un momento para recordar, especialmente para aquellos que han invertido parte de su vida en un proyecto tan grande e importante como este con la esperanza de alcanzar el conocimiento sobre la materia, la Naturaleza y el Universo mismo que, nunca pudimos soñar.

Sabemos que “la materia puede convertirse en energía pero no sabemos cómo ocurre y sabemos que 1 milmillonésima de segundo después del Bing Bang la materia no existía en forma de protones y electrones sino en un estado completamente diferente también sabemos la gravedad era sumamente importante en ese evento pero no sabemos cómo funcionaba exactamente, tal vez la realidad exterior se parezca mucho a la ciencia ficción, así el LHC es como una nave espacial adentrándose hacia lo desconocido, buscando respuestas a todas estas cuestiones, para esto se realizan 4 grandes experimentos denominados ATLAS, ALICE, CMS, LHCb para ello se han construido 4 detectores gigantes a lo largo del anillo del LHC que capturan el instante de la colisión de las partículas y que son utilizada para avanzar en la comprensión de los misterios del Universo” aclara Brian Cox, profesor de la Royal Society de la Universidad de Manchester y partícipe del programa ATLAS del CERN, en el documental del LHC del CERN.

Pero, continuemos con la virtualidad de las partículas. La vida media de una partícula virtual aumenta a medida que disminuye la masa o energía involucrada. Así pues, un electrón y un positrón pueden existir durante unos 4×10-21 s, aunque un par de fotones de radio con longitud de onda de 300.000 km pueden vivir hasta un segundo.
En realidad, lo que llamamos espacio vacío, está rebosante de partículas virtuales que bullen en esa “nada” para surgir y desaparecer continuamente en millonésimas de segundo. ¡los misterios del Universo!

En la teoría del Big Bang, fugaz periodo de tiempo entre el propio Big Bang y el llamado Tiempo de Planck, cuando el Universo tenía 10-43 segundo de edad y la temperatura era de 1034 K.
Durante este periodo, se piensa que los efectos de la Gravitación cuántica fueron dominantes. La comprensión teórica de esta fase es virtualmente inexistente.
Plasma.
El plasma forma las estrellas y otros objetos estelares que podemos ver, es la mayor concentración de materia del universos visible. Según algunos el cuarto estado de la materia que consiste en electrones y otras partículas subatómicas sin ninguna estructura de un orden superior a la de los núcleos atómicos.
Se trata de un Gas altamente ionizado en el que el número de electrones libres es aproximadamente igual al número de iones positivos. Como dije antes, a veces descrito como el cuarto estado de la materia, las plasmas aparecen en el espacio interestelar, en las atmósferas de las estrellas (incluyendo el Sol), en tubos de descarga y en reactores nucleares experimentales.
El plasma está bien presente en todos los remanentes de supernovas
Debido a que las partículas en un plasma están cargadas, su comportamiento difiere en algunos aspectos a un gas. Los plasmas pueden ser creados en un laboratorio calentando un gas a baja presión hasta que la energía cinética media de las partículas del gas sea comparable al potencial de ionización de los átomos o moléculas de gas. A muy altas temperaturas, del orden de 50.000 K en adelante, las colisiones entre las partículas del gas causan una ionización en cascada de este. Sin embargo, en algunos casos, como en lámparas fluorescentes, la temperatura permanece muy baja al estar las partículas del plasma continuamente colisionando con las paredes del recipiente, causando enfriamiento y recombinación. En esos casos la ionización es solo parcial y requiere un mayor aporte de energía.
En los reactores termonucleares, es posible mantener una enorme temperatura del plasma confinándolo lejos de las paredes del contenedor usando campos electromagnéticos.
El estudio de los plasmas se conoce como física de plasmas y, en el futuro, dará muy buenos beneficios utilizando en nuevas tecnologías como la nanotecnología que se nos viene encima y será el asombro del mundo.
Pluralidad de mundos.

Muchos mundos, como la Tierra, estarán situados en la zona habitable de sus estrellas y, el agua líquida correrá por los riachuelos, meandros y ríos en busca del Mar. Si eso es así (que lo será), muchos mundos estarán habitados y, algún día lejano en el futuro, podremos saber de ellos con precisión antes de que se produzca el contacto.
Desde tiempos inmemoriales, grandes pensadores de los siglos pasados, dejaron constancia de sus pensamientos y creencia de que, allá arriba, en los cielos, otras estrellas contenían mundos con diversidad de vida, como en el planeta Tierra. Tales ideas, han acompañado al hombre que, no en pocas oportunidades, fueron tachados de locos.
Hoy, con los conocimientos que poseemos, lo que sería una locura es precisamente pensar lo contrario. ¡que estamos solos!
La Vía Láctea (una sola Galaxia de los cientos de miles de millones que pueblan el Universo), tiene más de 100.000 millones de estrellas. Miles de millones de Sistemas Solares. Cientos de miles de millones de planetas. Muchos miles y miles de estrellas como el Sol de tamaño mediano, amarillas de tipo G.
¿Cómo podemos pensar que solo el planeta Tierra alberga vida?

Protogalaxia.
Galaxia en proceso de formación. A pesar de la enorme técnica y sofisticación de los aparatos con que contamos para la observación del cosmos, no se ha podido encontrar ninguna proto-galaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo. Por otra parte, los científicos pensaban que no existía nada mas pequeño que un protón. En 1968 se descubrieron nuevas partículas dentro del protón, las cuales fueron llamadas quarks. Existen tres quarks dentro de cada protón, estos quarks se mantienen unidos entre sí mediante otras partículas llamadas gluones.
Partícula masiva del Grupo o familia de los Hadrones que se clasifica como Barión. Esta hecho por dos quarks up y un quark down y es, consecuentemente una partícula masiva con 938,3 MeV, algo menos que la del neutrón. Su carga es positiva y su lugar está en el núcleo de los átomos, por lo que se les llama de manera genérica con los neutrones con la denominación de nucleones.

Este diagrama esquemático de un púlsar ilustra las líneas de campo magnético en blanco, el eje de rotación en verde y los dos chorros polares de radiación en azul. Un Pulsar es… Una fuente de radio desde la que se recibe un tren de pulsos altamente regular. Ha sido catalogado más de 600 púlsares desde que se descubriera el primero en 1.976. Los púlsares son estrellas de neutrones en rápida rotación, con un diámetro de 20-30 km. Las estrellas se hallan altamente magnetizadas (alrededor de 108 teslas), con el eje magnético inclinado con respecto, al eje de rotación. La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a un faro.
Los periodos de los pulsos son típicamente de 1 s., pero varían desde los 1’56 ms (púlsares de milisegundo) hasta los cuatro con tres s. Estos periodos rotacionales van decreciendo a medida que la estrella pierde energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas.

Las medidas precisas de tiempos en los púlsares han revelado la existencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado de objetos de masa planetaria. Han sido detectado objetos ópticos (destellos) procedentes de unos pocos púlsares, notablemente los púlsares del Cangrejo y Vela.
Se crean en explosiones de supernovas de estrellas supergigantes y otros a partir de enanas blancas, se piensa que puedan existir cien mil en la Vía Láctea.
![]()
Quásarks
Objeto con un alto desplazamiento al rojo y con apariencia de estrella, aunque es probablemente el núcleo activo muy luminoso de una galaxia muy distante. El nombre es una contracción del ingles quasi stellar, debido a su apariencia estelar. Los primeros quasars descubiertos eran intensos fuentes de radio. Debido a las grandes distancias indicadas por el desplazamiento al rojo del núcleo debe ser hasta 100 veces más brillante que la totalidad de una galaxia normal. Además algunos quasars varían en brillo en una escala de tiempo de semanas, indicando que esta inmensa cantidad de energía se origina en un volumen de unas pocas semanas-luz de longitud. La fuente puede, por tanto, ser un disco de acreción alrededor de un agujero negro de 107 o 108 masas solares.
![]()
Imagen de 3C273 recogida por el telescopio Hubble
El primer quasar en ser identificado como tal en 1.963 fue la radiofuente 3c 273 con un desplazamiento al rojo de 0,158, siendo todavía el quasar más brillante, óptimamente hablando, observado desde la Tierra, con magnitud 13. Miles de quasar han sido descubiertos desde entonces. Algunos tienen desplazamiento al rojo tan grandes como 4,9, implicando que lo vemos tal como eran cuando el Universo tenía sólo una décima parte de la edad actual.
En esta brevísima reseña no puede dejarse constancia de todo lo que se sabe sobre quásars, sin embargo, dejamos los rasgos más sobresalientes para que el lector obtenga un conocimiento básico de estos objetos estelares. Para finalizar la reseña diré que, algunas galaxias aparentemente normales pueden contener remanentes de actividad quásar en sus núcleos, y algunas galaxias Seyfert y galaxias Markarian tienen núcleos que son intrínsecamente tan brillantes como algunos quásars. Existen algunas evidencias de que los quásars aparecen en los núcleos de los espirales, y es esa interacción con una galaxia vecina la que proporciona gas o estrellas al núcleo formado por un agujero negro masivo, alimentando así la emisión del quásar. Salvo mejor parecer.
Antes, hemos comentado por alguna parte que, se trata de emisión radio de microondas proveniente de todas las direcciones (isotrópica) y que corresponde a una curva de cuerpo negro. Estas propiedades coinciden con las predichas por la teoría del Big Bang, como habiendo sido generada por fotones liberados del Big Bang cuando el Universo tenía menos de un millón de años (Universo bebé) de antigüedad.
La teoría del Big Bang también supone la existencia de radiaciones de fondo de neutrinos y gravitatoria, aunque aun no tenemos los medios para detectarlas. Sin embargo, los indicios nos confirman que la teoría puede llevar todas las papeletas para que le toque el premio.
Últimamente se ha detectado que la radiación cósmica de fondo no está repartida por igual por todo el Universo, sino que, al contrario de lo que se podía esperar, su reparto es anisotrópico, el reparto está relacionado con la clase de materia que produjo tal radiación, su densidad. ¡Ya veremos!
De todas las maneras, ¿No es una maravilla todo el Universo? El que nosotros, estemos aquí para contarlo así lo testifica.
Emilio Silvera Vázquez
















Totales: 83.652.090
Conectados: 71


























