Ene
16
¡La Naturaleza! Siempre misteriosa
por Emilio Silvera ~ Clasificado en Naturaleza misteriosa ~ Comments (0)
En unas minas de uranio en Oklo, Gabón, hace 1.700.000.000 años, se produjeron reacciones en cadena moderadas por agua, y de forma natural se formaron pequeños reactores nucleares. Estudiando este fenómeno podemos aprender algo sobre cómo almacenar residuos nucleares a larguísimo plazo. En relación a este hecho histórico se me ha ocurrido buscar más información y ponerla aquí para ustedes con el título de:
Un Reactor Nuclear Prehistórico
Habiendo leído uno de los libros de John D. Barrow, recordé que en él, por alguna parte, venía recogido un suceso muy interesante que paso a transcribiros corroborando así que, nunca llegamos a conocerlo todo y, en este caso, es la Tierra la que nos ha dado la sorpresa.
“El 12 de Junio de 1972 el doctor Bouzigues, hizo un descubrimiento preocupante, el tipo de descubrimiento que podía tener incalculables explicaciones políticas, científicas e incluso delictivas. Bouzigues trabaja en la planta de procesamiento de combustible nuclear de Pierrelatte, en Francia. Una de sus tantas rutinas consistía en medir la composión de menas procedentes de minas de Uranio próximas al río Oklo, en la antigua Colonia francesa ahora conocida como la República Africana Occidental de Gabón, a unos 440 km de la costa Atlántica.
Una y otra vez comprobaba la fracción de mineral natural que estaba en forma de isótopo de uranio-235 comparada con la fracción en forma de isótopo de Uranio-238, para lo que realizaba análisis de muestras de hexafluoruro de uranio gaseoso. La diferencia entre los dos isótopos es crucial. El Uranio que se da en forma natural y que extraemos del interior de la Tierra está casi todo en forma de Isótopo 238. Esta forma de Uranio no producirá una cadena de reacciones nucleares autosostenidas. Si lo hiciera, nuestro planeta habría explotado hace mucho tiempo.
Para hacer una bomba o una reacción en cadena productiva es necesario tener trazas del isótopo activo 235 de Uranio. En el Uranio Natural no más de una fracción de un 1 por 100 está en forma 235, mientras que se requiere aproximadamente un 20 por 100 para iniciar una cadena de reacciones nucleares. El Uranio “enriquecido” contiene realmente un 90 por 100 del isótopo 235. Estos números nos dejan conciliar un sueño profundo por la noche con la seguridad de que por debajo de nosotros no se va a iniciar espontáneamente una interminable cadena de reacciones nucleares que convierta la Tierra en una bomba gigantesca. Pero ¿quién sabe si en algún lugar habrá más 235 que la media?
Boziguez midió con gran precisión la razón de isótopo 235 frente a 238. Eran comprobaciones importantes de la calidad de los materiales que en última instancia se utilizarían en la industria nuclear francesa. El suyo era un trabajo rutinario, pero ese día de Junio de 1972 su atención a los detalles se vio recompensada. Advirtió que algunas muestras presentaban una razón 235 a 238 de 0,717 por 100 en lugar del valor normal de 0,720 por 100 que se encuentra normalmente en todas las muestras terrestres, en incluso en meteoritos y rocas lunares. Tan exactamente se conocía el valor “normal” a partir del experimento, y tan exactamente estaba reflejado en todas las muestras tomadas, que esta pequeña discrepancia hizo sonar los timbres de alarma. ¿Dónde estaba el 0,003 por 100 que faltaba de Uranio 235? Era como si el Uranio ya hubiese sido utilizado para alimentar un reactor nuclear de modo que la abundancia de 235 se había reducido antes de haber sido extraído de las minas.
La Comisión de Energía Atómica de Francia consideró todo tipo de posibilidades. ¿Quizá las muestras habían sido contaminadas por algún combustible ya utilizado procedente de la planta de procesamiento? Pero no había ninguna prueba de la intensa radiactividad que habría acompañado al combustible usado, y ningún hexafluoruro de Uranio reducido faltaba en el inventario de la Planta.
Pero a poco las investigaciones descubrieron que la fuente de la discrepancia estaba en los propios depósitos naturales del Uranio. Había una baja razón 235 a 238 en las vetas de la mina. Se estudio todo el proceso y recorrido del Uranio desde su extracción hasta su transporte al lugar de destino, y, todo era correcto, nada extraño podía influir en la discrepancia descubierta. El Uranio procedente de la Mina de Oklo era simplemente distinto del que se encontraba en cualquier otro lugar.
Cuando se investigó con detalle el emplazamiento de la Mina pronto quedó claro que el Uranio 235 que faltaba había sido destruido dentro de las vetas de la Mina. Una posibilidad era que algunas reacciones químicas lo hubiesen eliminado mientras dejaban intacto el 238. Por desgracia, las abundancias relativas de Uranio 235 y 238 no se ven afectadas de forma diferente por procesos químicos que hayan ocurrido en el interior de la Tierra. Tales procesos pueden hacer que algunas partes de la Tierra sean ricas en mineral de Uranio a expensas de otras partes al disolverlo y transportarlo, pero no alteran el balance de los dos isótopos que constituyen el mineral disuelto o en suspensión. Sólo las reacciones y desintegraciones nucleares pueden hacerlo.
Los subproductos de Oklo han sido usados para realizar varios experimentos científicos. Quizás el más famoso sea uno en que se intentó comprobar si las velocidades de desintegración de los isótopos hace 1.700 millones de años eran diferentes a las de ahora (parece que no, pero los resultados no fueron concluyentes).
Poco a poco, la insospechada verdad salió a la luz ante los investigadores. Las vetas bajas en Uranio-235 contenían las pautas características de otros 30 o más elementos atómicos que se forman como subproducto de las reacciones de fisión nuclear. Sus abundancias eran completamente diferentes de las que se dan en forma natural en rocas donde no hubieran ocurrido reacciones de fisión. La reveladora firma de los productos de fisión nuclear se conoce a partir de los experimentos en reactores construidos por el hombre. Seis de estas vetas características de la actividad de un Reactor Nuclear Natural fueron finalmente identificadas en Oklo. Algunos de los elementos presentes, como el neodimio, tienen muchos isótopos pero no todos son productos de la fisión. Los que no son productos de fisión proporcionan por consiguiente una calibración de la abundancia de todos los isótopos antes de que empezaran las reacciones naturales y de este modo nos permite determinar los efectos y tiempos característicos de dichas reacciones.
Sorprendentemente, parecía que la Naturaleza había conspirado para producir un Reactor Nuclear Natural que había generado reacciones nucleares espontáneas bajo la superficie de la Tierra hace dos mil millones de años. Fue este episodio de la historia geológica de Gabón lo que había llevado a la acumulación de productos de fisión en el emplazamiento actual de la misma.
Las primeras reacciones nucleares producidas por el hombre se produjeron el 2 de diciembre de 1942 como parte del famoso Proyectro Manhattan que culminó con la fabricación de las primeras bombas atómicas.”
Después de leer el relato histórico del suceso que, sin ninguna duda, nos revela la certeza y posibilidad de que, en cualquier momento, se pueda producir otro suceso similar de cuyas consecuencias nadie puede garantizar nada, uno se queda preocupado y puede pensar que, aquel suceso, no llegó a más debido a una serie de circunstancias que concurrieron y, desde luego “el ambiente oxidante necesario que aportase el agua requerida para concentrar el uranio fue originado por un importante cambio de la biosfera de la Tierra. Hace dos mil millones de años ocurrió un cambio en la atmósfera, producido por el crecimiento de algas azul-verdosas, los primeros organismos de producir fotosíntesis.”
Claro que eso, sería entrar en otras historias. Sin embargo, no debemos olvidar que, en nuestro planeta, todo está relacionado y por lo tanto, los cambios y mutaciones que se puedan producir en la Naturaleza de la misma, influyen, de manera irreversible, en todo lo demás.
Esperemos que ningún Reactor Nuclear Natural se vuelva a poner en marcha, ya que, de ser así, no sabemos si se darán las precisas condiciones necesarias para que no continúe indefinidamente su actividad y nos mande a todos al garete.
¡La Naturaleza! que no nos avisa con el tiempo suficiente de lo que piensa hacer mañana y, el ejemplo más cercano lo tenemos con el terrible terremoto acaecido en el territorio de los antiguos mayas.
emilio silvera
Ene
4
Fuerzas invisibles que inciden en nuestras vidas
por Emilio Silvera ~ Clasificado en Naturaleza misteriosa ~ Comments (7)
Las corrientes de convección son movimientos que describen los fluidos. Cuando éstos se calientan, se dilatan y ascienden. Al llegar esos materiales a la corteza terrestre se enfrían debido a que esta capa tiene una baja temperatura. Al enfriarse los materiales, se contraen y descienden hasta alcanzar el núcleo de la Tierra, donde el proceso volverá a comenzar.
Toda esta energía térmica actúa sobre los materiales provocando el movimiento de estos, generando elevadas presiones que llevan a transformaciones en la estructura de los materiales. En ocasiones, estas presiones se liberan bruscamente. Todos hemos podido contemplar las consecuencias devastadoras de tales acontecimientos.
El placer de Descubrir: Aventurarse por nuevos caminos.
“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma forma”.
Marco Aurelio
Claro que él, quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, el hombre y la mujer, el frío y el calor, el río muerto por la sequía o aquel que, cantarino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad…Así ha sido siempre y, así continuará siendo por toda la eternidad.
Sólo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Klein original:
El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.
Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnético surgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.
Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).
Por otra , la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.
Las grandes tormentas solares inciden sobre nosotros y nuestras obras
Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.
La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.
En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.
Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).
La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.
- La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
- La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
- Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.
Lo podríamos representar de cualquier manera, ya que, su cara nos es desconocida. El Gravitón es la única partícula mediadora de una fuerza (en este caso de la Gravedad), que no ha sido encontrada en ningún experimento. Sin embargo, todos los físicos creen que existe… ¡Dónde se esconde el puñetero!
La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.
La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.
Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.
Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio da a entender, no hay carga eléctrica; es neutro.
La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.
La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10–15 metros, o lo que es lo mismo, 0’000000000000001 metros.
La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.
La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.
Una de las fuentes productoras de rayos cósmicos es el Sol
Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.
emilio silvera
Ago
23
¡La Naturaleza! Siempre misteriosa
por Emilio Silvera ~ Clasificado en Naturaleza misteriosa ~ Comments (3)
En unas minas de uranio en Oklo, Gabón, hace 1.700.000.000 años, se produjeron reacciones en cadena moderadas por agua, y de forma natural se formaron pequeños reactores nucleares. Estudiando este fenómeno podemos aprender algo sobre cómo almacenar residuos nucleares a larguísimo plazo. En relación a este hecho histórico se me ha ocurrido buscar más información y ponerla aquí para ustedes con el título de:
Un Reactor Nuclear Prehistórico
Habiendo leído uno de los libros de John D. Barrow, recordé que en él, por alguna parte, venía recogido un suceso muy interesante que paso a transcribiros corroborando así que, nunca llegamos a conocerlo todo y, en este caso, es la Tierra la que nos ha dado la sorpresa.
“El 12 de Junio de 1972 el doctor Bouzigues, hizo un descubrimiento preocupante, el tipo de descubrimiento que podía tener incalculables explicaciones políticas, científicas e incluso delictivas. Bouzigues trabaja en la planta de procesamiento de combustible nuclear de Pierrelatte, en Francia. Una de sus tantas rutinas consistía en medir la composión de menas procedentes de minas de Uranio próximas al río Oklo, en la antigua Colonia francesa ahora conocida como la República Africana Occidental de Gabón, a unos 440 km de la costa Atlántica.
Una y otra vez comprobaba la fracción de mineral natural que estaba en forma de isótopo de uranio-235 comparada con la fracción en forma de isótopo de Uranio-238, para lo que realizaba análisis de muestras de hexafluoruro de uranio gaseoso. La diferencia entre los dos isótopos es crucial. El Uranio que se da en forma natural y que extraemos del interior de la Tierra está casi todo en forma de Isótopo 238. Esta forma de Uranio no producirá una cadena de reacciones nucleares autosostenidas. Si lo hiciera, nuestro planeta habría explotado hace mucho tiempo.
Para hacer una bomba o una reacción en cadena productiva es necesario tener trazas del isótopo activo 235 de Uranio. En el Uranio Natural no más de una fracción de un 1 por 100 está en forma 235, mientras que se requiere aproximadamente un 20 por 100 para iniciar una cadena de reacciones nucleares. El Uranio “enriquecido” contiene realmente un 90 por 100 del isótopo 235. Estos números nos dejan conciliar un sueño profundo por la noche con la seguridad de que por debajo de nosotros no se va a iniciar espontáneamente una interminable cadena de reacciones nucleares que convierta la Tierra en una bomba gigantesca. Pero ¿quién sabe si en algún lugar habrá más 235 que la media?
Boziguez midió con gran precisión la razón de isótopo 235 frente a 238. Eran comprobaciones importantes de la calidad de los materiales que en última instancia se utilizarían en la industria nuclear francesa. El suyo era un trabajo rutinario, pero ese día de Junio de 1972 su atención a los detalles se vio recompensada. Advirtió que algunas muestras presentaban una razón 235 a 238 de 0,717 por 100 en lugar del valor normal de 0,720 por 100 que se encuentra normalmente en todas las muestras terrestres, en incluso en meteoritos y rocas lunares. Tan exactamente se conocía el valor “normal” a partir del experimento, y tan exactamente estaba reflejado en todas las muestras tomadas, que esta pequeña discrepancia hizo sonar los timbres de alarma. ¿Dónde estaba el 0,003 por 100 que faltaba de Uranio 235? Era como si el Uranio ya hubiese sido utilizado para alimentar un reactor nuclear de modo que la abundancia de 235 se había reducido antes de haber sido extraído de las minas.
La Comisión de Energía Atómica de Francia consideró todo tipo de posibilidades. ¿Quizá las muestras habían sido contaminadas por algún combustible ya utilizado procedente de la planta de procesamiento? Pero no había ninguna prueba de la intensa radiactividad que habría acompañado al combustible usado, y ningún hexafluoruro de Uranio reducido faltaba en el inventario de la Planta.
Pero a poco las investigaciones descubrieron que la fuente de la discrepancia estaba en los propios depósitos naturales del Uranio. Había una baja razón 235 a 238 en las vetas de la mina. Se estudio todo el proceso y recorrido del Uranio desde su extracción hasta su transporte al lugar de destino, y, todo era correcto, nada extraño podía influir en la discrepancia descubierta. El Uranio procedente de la Mina de Oklo era simplemente distinto del que se encontraba en cualquier otro lugar.
Cuando se investigó con detalle el emplazamiento de la Mina pronto quedó claro que el Uranio 235 que faltaba había sido destruido dentro de las vetas de la Mina. Una posibilidad era que algunas reacciones químicas lo hubiesen eliminado mientras dejaban intacto el 238. Por desgracia, las abundancias relativas de Uranio 235 y 238 no se ven afectadas de forma diferente por procesos químicos que hayan ocurrido en el interior de la Tierra. Tales procesos pueden hacer que algunas partes de la Tierra sean ricas en mineral de Uranio a expensas de otras partes al disolverlo y transportarlo, pero no alteran el balance de los dos isótopos que constituyen el mineral disuelto o en suspensión. Sólo las reacciones y desintegraciones nucleares pueden hacerlo.
Los subproductos de Oklo han sido usados para realizar varios experimentos científicos. Quizás el más famoso sea uno en que se intentó comprobar si las velocidades de desintegración de los isótopos hace 1.700 millones de años eran diferentes a las de ahora (parece que no, pero los resultados no fueron concluyentes).
Poco a poco, la insospechada verdad salió a la luz ante los investigadores. Las vetas bajas en Uranio-235 contenían las pautas características de otros 30 o más elementos atómicos que se forman como subproducto de las reacciones de fisión nuclear. Sus abundancias eran completamente diferentes de las que se dan en forma natural en rocas donde no hubieran ocurrido reacciones de fisión. La reveladora firma de los productos de fisión nuclear se conoce a partir de los experimentos en reactores construidos por el hombre. Seis de estas vetas características de la actividad de un Reactor Nuclear Natural fueron finalmente identificadas en Oklo. Algunos de los elementos presentes, como el neodimio, tienen muchos isótopos pero no todos son productos de la fisión. Los que no son productos de fisión proporcionan por consiguiente una calibración de la abundancia de todos los isótopos antes de que empezaran las reacciones naturales y de este modo nos permite determinar los efectos y tiempos característicos de dichas reacciones.
Sorprendentemente, parecía que la Naturaleza había conspirado para producir un Reactor Nuclear Natural que había generado reacciones nucleares espontáneas bajo la superficie de la Tierra hace dos mil millones de años. Fue este episodio de la historia geológica de Gabón lo que había llevado a la acumulación de productos de fisión en el emplazamiento actual de la misma.
Las primeras reacciones nucleares producidas por el hombre se produjeron el 2 de diciembre de 1942 como parte del famoso Proyectro Manhattan que culminó con la fabricación de las primeras bombas atómicas.”
Después de leer el relato histórico del suceso que, sin ninguna duda, nos revela la certeza y posibilidad de que, en cualquier momento, se pueda producir otro suceso similar de cuyas consecuencias nadie puede garantizar nada, uno se queda preocupado y puede pensar que, aquel suceso, no llegó a más debido a una serie de circunstancias que concurrieron y, desde luego “el ambiente oxidante necesario que aportase el agua requerida para concentrar el uranio fue originado por un importante cambio de la biosfera de la Tierra. Hace dos mil millones de años ocurrió un cambio en la atmósfera, producido por el crecimiento de algas azul-verdosas, los primeros organismos de producir fotosíntesis.”
Claro que eso, sería entrar en otras historias. Sin embargo, no debemos olvidar que, en nuestro planeta, todo está relacionado y por lo tanto, los cambios y mutaciones que se puedan producir en la Naturaleza de la misma, influyen, de manera irreversible, en todo lo demás.
Esperemos que ningún Reactor Nuclear Natural se vuelva a poner en marcha, ya que, de ser así, no sabemos si se darán las precisas condiciones necesarias para que no continúe indefinidamente su actividad y nos mande a todos al garete.
¡La Naturaleza! que no nos avisa con el tiempo suficiente de lo que piensa hacer mañana y, el ejemplo más cercano lo tenemos con el terrible terremoto acaecido en el territorio de los antiguos mayas.
emilio silvera
Jul
13
¿El Misterio? Persistirá, ¡como el Tiempo!
por Emilio Silvera ~ Clasificado en Naturaleza misteriosa ~ Comments (2)
Los habitantes de este mundo hemos, hemos conseguido construir un cuadro plausible del Universo, de la Naturaleza que tratamos de comprender. Hemos llegado a ser conscientes de que, en ella, en la Naturaleza, están todas las respuestas que buscamos y, nosotros mismos no hemos llegado a conocernos por ese mismo hecho de que formando parte de la Naturaleza, somos parte del enigma que tratamos de desvelar.
Parece que estamos entrando en la edad adulta, quiero significar que después de siglos y milenios de esporádicos esfuerzos, finalmente hemos llegado a comprender algunos de los hechos fundamentales del Universo, conocimiento que, presumiblemente, es un requisito de la más modesta pretensión de nuestra maduirez cosmológica.
Sabemos, por ejemplo, dónde estamos, que vivímos en un planeta que gira alrededor de una estrella situada en el borde de la Galaxia espiral a la que llamamos Vía Láctea, cuya posición ha sido determinada con respecto a varios cúmulos vecinos que, en conjunto, albergan a unas cuarenta mil galaxias extendidas a través de un billón de años-luz cúbicos de espacio.
También sabemos más o menos, cuando hemos entrado en escena, hace unos cinco mil millones de años que se formaron el Sol y los planetas de nuestro Sistema Solar , en un Universo en expansión que probablemente tiene una edad entre dos y cuatro veces mayor. Hemos determinado los mecanismos básicos de la evolución de la Tierra, hallado prueba también de evolución química a escala cósmica y hemos podido aprender suficiente física como para comprender e investigar la Naturaleza en una amplia gama de escalas los Quarks saltarines en el “mundo” microscópico hasta el vals de las galaxias.
El Tiempo inexorable nunca dejó de fluir y mientras eso pasaba, nuestra especie evolucionaba, aprendia al obervar los cielos y cómo y por qué pasaban las cosas. Hay realizaciones humanas de las que, en verdad, podemos sentirnos orgullosos. Aquellos habitantes de Sumer y Babilonia, de Egipto o China y también de la India y otros pueblos que dejaron una gran herencia de saber a los Griegos que pusieron al mundo occidental en el camino de la ciencia, nuestra medición del pasado se ha profundizado unos pocos miles de años a más de diez mil millones de años, y la del espacio se ha extendido desde un cielo de techo bajo no mucho mayor que la distancia que nos separa de la Luna hasta el radio de más de diez mil millones de años-luz del universo observable.
Tenemos razones para esperar que nuestra época sea recordada (si por ventura queda alguien para recordarlo) por sus contribuciones al supremo tesoro intelectual de toda la Humanidad unida al contexto del Universo en su conjunto por unos conocimientos que, aunque no suficiente, sí son los necesarios para saber dónde estamos y, , debemos buscar la respuesta a esa pregunta: ¿Hacia dónde vamos?
Claro que, el futuro es incierto
en la física, en el mundo y en nuestras vidas, también está presente el principio de incertidumbre y, de ninguna manera, podemos saber del mañana. Sin embargo, cuanto más sabemos del universo, tanto más claramente comprendemos lo poco que sabemos de él. La vastedad del Universo nos lleva a poder comprender algunas estructuras cósmicas y mecanismos que se producen y repiten como, el caso de la destrucción que nos lleva a la construcción. Es decir, una estrella masiva vieja explota y siembre el Caos y la destrucción en una extensa región del espacio, y, es precisamente ese hecho el que posibilita que, nuevas estrellas y nuevos mundos surgan a la vida. Sin embargo, la grandeza, la lejanía, esa inmensidad que se nos escapa a nuestra comprensión terrestre, nunca nos dejará comprender el universo en detalle y, siendo así, siempre tendremos secretos que desvelar y misterios que resolver.
Si añadimos a todo eso que, si poseyésemos un atlas de nuestra propia Galaxia y que dedicase una sóla página a sistema estelar de la Vía Láctea (de modo que el Sol y sus planetas estuviesen comprimidos en una página), tal atlas tendría más de dies mil millones de volúmenes de dies mil páginas cada uno. Se necesitaria una biblioteca del tamaño de la de Harvard para alojar el Atlas, y solamente ojearlo al ritmo de una página por segundo nos llevaría más de diez mil años. Añádance los detalles de la cartografía planetaria, la potencial biología extraterrestre, las sutilezas de los principios científicos involucrados y las dimensiones históricas del cambio, y se nos hará claro que nunca aprenderemos más que una diminuta fracción de la historia de nuestra Galaxia solamente, y hay cien mil millones de galaxias más.
Sabiendo todo todo esto, siendo consciente de que, realmente, es así, tendremos que convenir con el físico Lewis Thomas dijo: “El mayor de todos los logros de la ciencia del siglo XX ha sido el descubrimiento de la ignorancia humana”.
La ignorancia, como todo en el Universo, es relativa. Nuestra ignorancia, por supuesto, siempre ha con nosotros, y siempre seguirá estando, es una compañera con la que cargamos toda nuestra vida y que nos pesa. Algunos procuramos que pese lo menos posible para hacer más llevadero el viaje. Lo nuevo está en nuestras consciencias y de ellas, ha surgido nuestro despertar al comprender de sus abismales dimensiones, y es eso más que otro cosa, lo que señala la madurez de nuestra especie. El espacio puede tener un horizonte y el tiempo un final pero la aventura del aprendizaje siempre será interminable y eterno, quizá (no me he parado a pensarlo) pueda ser esa la única forma de eternidad que pueda existir.
La ciencia tiene límites. Foto CC-BY Galería de NASA Goddard and Video.
La dificultad de explicarlo todo no se debe a nuestra debilidad mental, sino a la estructura misma del universo. En los últimos siglos hemos descubierto que la trama del cosmos puede abordarse en varios niveles diferentes. Mientras no se descubre el siguiente nivel, lo que ocurre en el anterior no se puede explicar, sólo puede describirse. En consecuencia, para el último nivel que se conoce en cada momento nunca hay explicaciones, sólo puede haber descripciones.
La Ciencia es intrínsicamente abierta y exploratoria, y comete errores todos los días. En verdad, ese será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema demuestra que la plena validez de cualquier sistema, inclusive un sistema científico, no demostrarse dentro del sistema. Es decir, tiene que haber algo fuera del marco de cualquier teoría para poder comprobarla. La lección que podemos haber aprendido es que, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse.
No es que pertenezcamos al Universo, formamos de él
Y, a todo esto, debemos alegrarnos de que así sea, de que no podamos comprender el Universo en toda su inmensa dimensión y diversidad. Nuestras mentes necesitan que así sea y, tendrán, de esa manera, el escenario perfecto para seguir creciendo a medida que busca todas esas rrespuestas que nos faltan y, lo bueno del caso es que, respuesta que encontramos, viene acompañada de un montón de nuevas preguntas y, de esa manera, esa historia interminable de nuestra aventuira del saber…llegará hasta la etermindad de nuestro tiempo que, necesariamente, no tiene por que ser el tiempo del universo.
emilio silvera.
Jul
8
¡Extraña Naturaleza! No siempre la comprendemos
por Emilio Silvera ~ Clasificado en Naturaleza misteriosa ~ Comments (0)
En matemáticas se pueden trazar líneas precisas y concretas que dividan en dos clases entes de naturaleza matemática. Una estructura geométrica se suporponer o no a su imagen especular. Una estructura asimétrica tener una lateralidad a la derecha o bien a la izquierda. Immanuel Kant, el gran filósofo germano del siglo XVIII, fue el primer pensador eminente que encontró un significado filosófico profundo a las reflexiones especulares. A Kant le parcía enigmático y misterioso que un objeto asimétrico pueda existir en cualquiera de sus dos imágenes frente a un espejo. Parece magia que, poniendo algunas cosas ante un espejo y mirando esa imagen especular, las cosas puedan parecer tan diferentes y, sin embargo, así resultan ser.
Cualquier entero positivo es par o impar, y no hay ninguno de tales números el cual su situación a este respecto ofrezca la menor duda. Pero en el mundo, si exceptuamos el nivel subatómico de la teoría cuántica, las lineas divisortias son casi siempre difusas. El alquitrán, ¿es sólido o líquido?. Lo cierto es que, la mayoría de las propiedades físicas se “mueven” en un espectro continuo que hace que vayan cambiando de manera imperceptible de un extremo a otro del mismo.
La palabra quiral fue introducida por William Thomson (Lord Kelvin) en 1894 designar objetos que no son superponibles con su imagen especular. Aplicado a la química orgánica, podemos decir que una molécula es quiral ella y su imagen en un espejo no son superponibles.
La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación una molécula y su imagen especular no superponible es de enantiómeros.
En estos dibujos podemos ver la molécula de Bromocloroyodometano y su enantiómero reflejado en el espejo. Una vez la prueba, puse en encima de una mesa modelos tridimensionales de los poliedros enantiamorfos y delante de ellos puse un espejo que reflejaba la figura especular que de dicha puesta en escena resultaba. Las dos escenas (la real y la especualr) eran exactamente iguales en lo que referencia a sus propiedades geométricas. A una de las aristas de una de las figuras le corresponde una de la misma longitud en la otra. Todo ángulo de una estaba emparejado al duplicado suyo de la otra. Ninguna medida o inspección de cualquiera de ellas reveló ni una sola característica geométrica que no tuviera la otra. En ese sentido, son figuras congruentes idénticas. ¡Pero, evidentemente, no eran idénticas!
nos ponemos delante del espejo podemos comprobar que en él, aparecen cosas sorprendentes en cuanto a que no se pueden superponer las figuras del modelo con la figura especular. Una simple mano abierta y puesta delante del espejo resulta totalmente diferente en un lado y en el otro de la superficie especular. ponerte delante del espejo y levantar ambos brazos a media altura con las dos manos abiertas y, de manera sorprendente verás que, la figura que aparece en el espejo muestra tu mano y brazo derecho izquierdo y el izquierdo como derecho.
La propiedad de las manos, conocida por los químicos quiralidad, es una característica que poseen muchas moléculas cuya disposición de los átomos no es completamente simétrica. Una molécula quiral se presenta en dos formas que son más bien como un par de guantes. Dos guantes, uno diestro y otro zurdo, son esencialmente idénticos, con los mismos componentes básicos, cuatro dedos y un pulgar, y la misma función de mantener las manos cómodas y protegidas. Pero, evidentemente, no son exactamente iguales: no se puede girar o voltear un guante de un par que se superponga perfectamente en el otro. si lo miras en un espejo, un guante de la mano izquierda se convierte en uno de la mano derecha.
¿Por qué la biología utiliza sólo una de las dos formas especulares de la imagen en la que las moléculas más complejas pueden existir? La última respuesta dada a pregunta afecta al campo de la astrofísica, la física de partículas y la bioquímica. La conclusión del último estudio dice que las explosiones estelares conocidas como supernovas son las culpables de que se produzca el fenómeno.
La Naturaleza, siempre he dicho aquí, tiene muchos secretos que no hemos llegado a comprender. El paso del tiempo con el cambio de tempertaturas convierte en líquido, gas o sólido algunos materiales y, a otros, los deforma hasta perder su estructura original convertirlos en lo que no eran. Nada permanece, todo cambia. Sea cual fuere la línea de división, habrá algunos casos en los que no podamos definirla y, en otros, habrá objetos tan próximos a ella que el lenguaje ordinario no será lo suficientemente preciso como poder afirmar a qué lado pertenece. Y, la propiedad de la vida, está, precisamente, en uno de esos continuos.
Para probar esto basta que consideremos los virus: son las estructuras biológicas más pequeñas que se conocen con la propiedad de poder “comer” (absorber sustancias situadas en sus proximidades), crecer y fabricar copias exactas de sí mismas.
Son mucho más pequeños que una bacteria (en realidad, algunos virus infectan las bacterias) y pasan sin dificultad a través de un filtro de que, aunque a nosotros nos parezca que está completamente sellada y su superficie es totalmente hermética y lisa, ellos, tan “infinitamente” pequeños, ofrece miles de huecos por los que poder colarse.
Nuevas grabaciones en vídeo de un virus que infecta a las células sugiere que los virus se expanden mucho más rápido de lo que pensábamos. El descubrimiento de este mecanismo permitirá crear nuevos fármacos para frente a algunos virus. En la punta de un alfiler caben millones de ellos. De hecho, los virus tienen el tamaño de una décima de micrómetro (diezmillonésima del metro).
El mundo de lo muy pequeño es fascinante y, por ejemplo, si hablamos de átomos, se necesitarían aproximadamente una cantidad para nosotros inconmensurable de átomos (602.300.000.000.000.000.000.000) para lograr un gramo de materia. Fijáos que hablamos de lo pequeño que pueden llegar a ser los virus y, sin embargo, el Hidrógeno con un sólo protón es el átomo más ligero y su masa es 400.000 veces menor que la masa de un virus, dije, el organismo vivo más pequelo que se conoce. El virus más diminuto conocido mide o,00000002 m; su tamaño es 2.000 veces mayor que el del átomo. Y, en la punta del alfiler que antes mencionamos cabrían 60.000.000.000 (sesenta mil millones) de átomos.
Los virus son nanomáquinas enormemente dañinas que están formados por una sencillísima estructura. Tanto es así que se dice que son entidades biológicas a caballo la materia inerte y la materia viva. Básicamente constan de una envuelta externa llamada cápsida’, formada por proteínas, que se encarga de preservar el ADN en el interior. Los virus no presentan ninguna función metabólica, y consiguen reproducirse parasitando la maquinaria molecular de una célula huésped. El interés por estudiar en profundidad los virus no sólo proviene de la motivación por erradicar las enfermedades que estos producen, sino de su estudio materiales. Las cápsidas de los virus son extraordinariamente resistentes.
Como los virus son menores que la longitud de onda de la luz, no pueden observarse con un microscopio luminoso ordinario, los bioquímicos disponen de métodos ingeniosos que les permiten deducir su estructura, ya que pueden verlos mediante bombardeos con rayos X u otras partículas elementales.
En ralidad, es decir que un cristal “crece”, pero lo hace de un modo ciertamente trivial. Cuando se encuentra en una solución que contiene un compuesto semejante a él, dicho compuesto se irá depositando sobre su superficie; a medida que esto ocurre, el cristal se va haciendo mayor, pero el virus, igual que todos los seres vivos, crece de una manera más asombrosa: toma elementos de su entorno, los sintetiza en compuestos que no están presentes en el mismo y hace que se combinen unos con otros de tal manera que lleguen a dar una estructura compleja, réplica del propio virus.
Los virus sólo se multiplican en células vivientes. La célula huésped debe proporcionar la energía y la maquinaria de síntesis, también los precursores de bajo peso molecular la síntesis de las proteínas virales y de los ácidos nucleicos. El ácido nucleico viral transporta la especificidad genética para cifrar todas las macromoléculas específicas virales en una altamente organizada.
El poder que tienen los virus de infectar, e incluso matar, un organismo, se debe precisamente a esto. Invade las células del organismo anfitrión, detiene su funcionamiento y lo sustituye, por decirlo de alguna manera, por otros nuevos. Ordena a la célula que deje de lo que normalmente hace que comience a fabricar las sustancias necesarias para crear copias de sí mismo, es decir, del virus invasor.
El primer virus que se descubrió, y uno de los más estudiados, es el virus sencillo que produce la “enfermedad del mosaico” en la planta del tabaco. Cristaliza en de barras finas que pueden observarse a través del microsopio electrónico. Recientemente se ha descubierto que barra es, en realidad, una estructura helicoidal orientada a la derecha, formada por unas 2.000 moléculas idénticas de proteína, cada una de las cuales contiene más de 150 subunidades de aminoácidos.