Mar
25
La simetría CP y otros aspectos de la física
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (2)

.. “Nature publica una recreación del experimento E122 de hace 35 años,” LCMF, 06 Feb 2014; “Los quarks se mueven al otro lado del espejo,” Agencia SINC, …
Los quarks al otro lado del espejo. También un Equipo de Científicos del Laboratorio Nacional Jefferson Lab (EEUU) han verificado la rotura de la simetría de paridad (también llamada simetría del espejo) en los quarks mediante el bombardeo de núcleos de deuterio con electrones de alta energía. Los núcleos de deuterio están formados por un protón y un neutrón, es decir, por tres quarks arriba y tres quarks abajo. La dispersión inelástica entre un electrón y un quark, es decir, su colisión, está mediada por la interacción electrodébil, tanto por la fuerza electromagnética como por la fuerza débil. Esta última es la única interacción fundamental que viola la simetría de paridad.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar la coherencia matemática del modelo estándar. La idea de Higgs, y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes. Parece, con tantos parámetros imprecisos (19) que, el modelo estándar se mueve bajo nuestros pies.
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

La Física nos lleva de vez en cuando a realizar viajes alucinantes. Se ha conseguido relacionar y vibrar a dos diamantes en el proceso conocido como entrelazamiento cuántico. El misterioso proceso, al que el propio Eisntein no supo darle comprensión completa, supone el mayor avance la fecha y abre las puertas de la computación cuántica. que nos hagamos una idea del hallazgo, en 1935 Einstein lo llegó a denominar la “acción fantasmal a distancia”. Un efecto extraño en donde se conecta un objeto con otro de manera que incluso si están separados por grandes distancias, una acción realizada en uno de los objetos afecta al otro.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado! Pero se sigue hablando de partículas supersimétricas.

¿Quién puede ir a la longitud de Planck para verla? La longitud de una estas cuerdas es de 10-35 (longitud de Planck) algo tan extremadamente pequeño que sería complicado poder ver alguna vez.

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiper-espacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intento calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni la nueva capacidad energético del acelerador de partículas LHC . Ni sumando todos los aceleradores de partículas de nuestro mundo, podríamos lograr una energía de Planck (1019 GeV), que sería necesaria para poder llegar hasta las cuerdas vibrantes de la Teoría. Ni en las próximas generaciones seremos capaces de poder utilizar tal energía.
La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Sabemos sobre las partíoculas elementales que conforman la materia bariónica, es decir, los átomos que se juntan para formar moléculas, sustancias y cuerpos… ¡La materia! Pero, no sabemos si, pudiera haber algo más elemental aún más allá de los Quarks y, ese algo, pudieran ser esas cuerdas vibrantes que no tenemos capacidad de alcanzar.
![]()
¡Necesitamos algo más avanzado!
Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.


Con 7 TeV ha sido suficiente para encontrar la famosa partícula de Higgs pero…
Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.
Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.
Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.


Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs (podría ser el efecto frenado de Ramón Márquez).
La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pietez Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W–, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa -los W+, W–, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?
La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

En los alrededores de Ginebra (Suiza), en las entrañas de las montañas del Jura construyeron un túmel de 27 Km. de circunferencia. Es el Acelerador más grande del mundo, el LHC. Allí mismo se está planeando construir uno mayor aún con el que, utilizando energías inusitadas e impensables hasta hace unos pocos años, se tratará de buscar el origen de la masa.
Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.
La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.
¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs de masa a los objetos dondequiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

Basta con cambiar un quark tipo U a uno tipo D.
Pues justamente esto es lo que ocurre en la naturaleza cuando entra en acción la fuerza nuclear débil. Un quark tipo U cambia a uno tipo D por medio de la interacción débil así
Las otras dos partículas que salen son un anti-electrón y un neutrino. Este mismo proceso es el responsable del decaimiento radiactivo de algunos núcleos atómicos. Cuando un neutrón se convierte en un protón en el decaimiento radiactivo de un núcleo, aparece un electrón y un neutrino. Este es el origen de la radiación beta (electrónes).

La interacción débil, recordareis, fue “inventada” por E.Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.
Hay que responder montones de preguntas. ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? Como s su partícula, nos cabe esperar que la veamos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.
El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de lo que un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10′5grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.
Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W–, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.
De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que, algunos, han llegado a llamar, de manera un poco exagerada:
¡La partícula Divina! (Como la llamó Lederman en su libro).

¡Ya veremos en que termina todo esto! Y que explicación se nos ofrece desde el CERN en cuanto al auténtico escenario que según ellos, existe en el Universo para que sea posible que las partículas tomen su masa de ese oceáno de Higgs, en el que, según nuestro amigo Ramón Márquez, las partículas se frenan al interaccionar con el mismo y toman su masa, el lo llama el “efecto frenado”.
Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas. La utilizaron los teóricos steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0 de masa grande. Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft. También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta. Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

El maestro, allá donde se pueda encontrar, estará riendo al ver que, cuando los físicos manipulan las ecuaciones de campo de la teoría de cuerdas, como por arte de magia, sin que nadie las llame, allí aparecen las ecuaciones de campo de la Relatividad General… ¿Por qué será?
La verdad es que, casi siempre, han hecho falta muchos. Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todos, exponer su teoría relativista. (Mach, Maxwell, Lorentz… y otros).
Sobre la idea de la “materia oscura”, Veltman, premio Nobel de Física, dice que es una alfombra bajo la que barremos nuestra ignorancia. Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no tenemos la menor prueba experimental.


Ahora, por fin la tenemos con el LHC, y ésta pega, se la traspasamos directamente a la teoría de supercuerdas y a la materia oscura que, de momento, están en la sombra y no brillan con luz propia, toda vez que ninguna de ellas ha podido ser verificada, es decir, no sabemos si el Universo atiende a lo que en ellas se predice.
El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, llego a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo pudo surgir el Universo no dependía de que se encontrara el el bosón de Higgs o se averigüe si realmente existe la materia oscura, Aunque sepamos llegar al fondo de la Teoría de Cuerdas y confirmarla, Poder crear esa Teoría cuántica de la Gravedad…Y, en fín, seguir descubriendo los muchos misterios que no nos dejan saber lo que el Universo es. Ahora, por fin, tenemos grandes aceleradores y Telescopios con la energía necesaria y las condiciones tecnológicas suficientes para que nos muestre todo eso que queremos saber y nos digan dónde reside esa verdad que incansables perseguimos. Sin embargo, siempre seguiremos haciendo preguntas y siempre, también, serán insuficientes, los aparatos que podamos construir para que nos digan como es el Universo y cómo funciona la Naturaleza. Saberlo todo, nunca sabremos.
¡La confianza en nosotros mismos, no tiene límites! Pero…, no siempre ha estado justificada.
emilio silvera
Mar
24
Charla entre dos Quarks
por Emilio Silvera ~
Clasificado en Física ~
Comments (4)
En el Blog Taringa, me encuentro este trabajo que tenía olvidado.
Como no sabemos a ciencia cierta, la verdadera naturaleza de muchas de las cosas que creemos conocer, se podría dar el caso de que, en el centro del núcleo atómico y dentro de un protón y un neutrón, dos Quarks, estuvieran entablando la conversación siguiente:

_ Oye, amigo up, ¿no te cansas de estar aquí confinado? ¿no te gustaría conocer qué mundo puede haber fuera de éste nuestro tan reducido en el que vivimos?
_ Pues, si te digo la verdad, estimado down, si que estoy un poco frustrado de que, los persistentes Gluones, no me dejen alejarme mucho de la demarcación estipulada por la libertad sintótica. Y, si te he de ser sincero, preferiría mirar el mundo que, según indicios que me han llegado, es mucho mayor de lo que nosotros podemos contemplar.
_ Llevas toda la razón, a veces me desespera este mar de gluones que nos agarra impidiéndonos salir al exterior misterioso. ¿Qué cosas podríamos contemplar ahí fuera?
_ ¡Os queréis callar! (Dijo un protón) Con vuestra charla me estáis distrayendo y no puedo solucionar el problema que me he planteado de sí, en realidad, uno de ustedes puede ser más masivo que yo. Teniendo en cuenta que estoy conformado de tres de ustedes, ¿cómo es posible que uno sólo pueda ser más masivo si estuviera en estado libre?
_ Que pregunta más tonta, amigo protón, a estas alturas deberías saber que, nadie sabe cuál es la masa de los quarks, ya que ningún quark puede ser observado de forma libre. Solo conocemos de forma precisa la masa del quark top (cima), ya que su gran masa hace que el error relativo en la medida permita un error absoluto pequeño. Sin embargo, muchos proclaman el descubrimiento de fórmulas matemáticas que permiten calcular la masa de todas (o casi todas) las partículas elementales (leptones y quarks). Pero, centrándonos en la pregunta que te atormenta, sí te puedo decir que, al menos en teoría, la masa del Quarks es mayor que la del Protón, toda vez que la energía potencial que se le atribuye si estuviera en estado libre, sería mayor que la tuya.

_ Sí, eso me temía. Hemos podido constatar que, ahí fuera, hay seres que se interesan por nosotros y últimamente, nos meten en máquinas enormes para hacernos chocar los unos contra los otros buscando qué puede haber dentro de nosotros. ¿Por qué lo harán? ¿Qué pueden conseguir con destruirnos?
_ Nuestra familia que está compuesta por tres generaciones, sabe que, esos extraños seres han llegado a conseguir, en sus estudios sobre nosotros que, los quarks, somos partículas elementales y que os formamos a vosotros los protones y neutrones, hasta ahora habíamos sido notablemente difíciles de detectar, y aún más de pesar. Un grupo de investigación ha calculado, con un pequeño margen de error, la masa (expresada en su valor energético) de tres de nosotros, los quarks más ligeros, y por tanto más escurridizos: Up, Down y Strange.

_ Según parece, el resultado obtenido por estos experimentos, es que, el quark up pesa aproximadamente 2 Megaelectronvoltios (MeV), el quark down pesa alrededor de 4,8 MeV, y el quark strange pesa cerca de 92 MeV.
_ Bueno, lo cierto es que, junto con los que ellos llaman electrones conformamos toda la materia conocida (según les he podido oír comentar) y, al parecer, carecen de las herramientas necesarias que les permita llegar más lejos de nosotros, y, por tal motivo, desconocen a las pequeñas briznas luminosas de las que, nosotros losquarks, estamos hechos, no tienen, en sus máquinas, la energía necesaria para llegar hasta ellas. Así que, están dando palos de ciego y teorizando no sin desbarrar en más de una ocasión pero, son tan persistentes que, terminarán conociendo la verdadera estructura del átomo y, en definitiva de la materia. ¡Qué gente tan extraña! Parece como si sólo supieran hacer preguntas.

_ Sí, eso parecen esos extraños seres que llaman humanos, ellos nos estudian a nosotros y no son conscientes de que nosotros, de la misma manera, podemos estudiarlos a través de las ondas electromagnéticas que emiten sus cerebros pensantes que4, están determinados a llegar hasta el fondo de los Quarks. Bueno, también de los protones y Neutrones lo quieren saber todo y, de hecho, han llegado a saber muchas de sus peculiaridades y de los parámetros que los conforman, los llaman bariones y lo clasifican en la familia de los hadrones, y, al mismo tiempo, dicen que son fermiones con unas características determinadas distintas a la de los mesones, y, además, como forman parte del núcleo del átomo, lo llaman también nucleones.
_ Sí, pero estos bariones, en realidad están supeditados a nosotros los Quarks. Según nos combinamos será un protón o un neutrón. Existe otra diferencia entre elprotón y el neutrón: dependiendo de qué combinación de quarks forma un hadrón, éste puede ser más o menos estable. Por ejemplo, ya dijimos que un protón libre podría no ser estable, pero de ser inestable su vida media probablemente es mucho mayor que la edad actual del Universo.

_ Sin embargo, debido a la combinación de quarks que forman el neutrón, un neutrón libre (no asociado al núcleo de un átomo) tiene una vida mucho más corta: unos 15 minutos. Ésa es la razón de que puedas encontrar muchos protones libres en el Universo (núcleos de hidrógeno sin el electrón), pero es muy difícil verneutrones libres más de unos minutos. Cuando un neutrón se desintegra, lo hace en un protón, un electrón y un antineutrino.
_ Debido a que un neutrón libre sólo permanece como tal durante un cuarto de hora, es difícil disponer de ellos (a diferencia de otras partículas): hay que generarlos según se necesitan. La mayor parte de ellos se obtienen de reacciones nucleares espontáneas de elementos radiactivos, que sufren la fisión de forma natural (como el polonio o el radio), emitiendo neutrones en el proceso.
_ ¡Y los neutrones libres son muy peligrosos! De hecho, es uno de los productos de la desintegración radiactiva más peligrosos que hay. Piensa que otras partículas emitidas en las reacciones nucleares, como los electrones, aunque son peligrosas, son fáciles de parar. Las partículas cargadas, en cuanto entran en contacto con un medio material más o menos denso, empiezan a desviarse (debido a la fuerza eléctrica), a ionizar átomos arrancando electrones que se llevan parte de la energía y se mueven en otra dirección. Es decir, la energía de esas partículas se disipa relativamente rápido.

_ Por eso, si vas a estar en un lugar en el que puede haber emisión de protones o electrones, un recubrimiento de plomo es una protección muy buena. De hecho, al ser un metal también absorbe muy bien los fotones, de modo que protege contra muchas clases de emisiones radiactivas (alfa, beta y gamma). Pero, ¿y los neutrones?
Al ser neutros, la única manera de que pierdan su energía es que choquen de cabeza con el núcleo de otro átomo. Por lo tanto, la protección contra neutrones requiere un espesor relativamente grande: y además, la masa atómica del núcleo de los átomos no influye mucho en su capacidad para pararlos, pues los núcleos son tan minúsculos comparados con el espacio entre ellos que un aumento de tamaño (por ejemplo, plomo en vez de hidrógeno) apenas influye. La mayor parte de los escudos contra neutrones son paredes espesas de cemento o parafina.

_ Por supuesto, la mayor parte de los neutrones que puedan llegar a tu cuerpo te atraviesan, pero tú también actúas de “escudo”: y cuando un neutrón golpea el núcleo de un átomo de una base nitrogenada de tu ADN…bueno, las consecuencias pueden ser muy desagradables, salvo que la dosis no sea muy intensa y sea breve, y además tengas suerte.

_ Es decir, que los neutrones son partículas algo anodinas cuando están en el núcleo de un átomo, pero si están libres tienen una vida relativamente corta y que puede ser peligrosa…y todo por tener un quark down en vez de uno up.
– Ellos, esos seres, hablan de los misterios de lo que llaman Mecánica Cuántica en la que nos tienen inmersos para comprender nuestros comportamientos e interacciones, así como nos desenvolvemos en situaciones distintas. Alguno de estos seres se ha llegado a preguntar por los misterios de la Mecánica Cuántica y se han preguntado si serán capaces de desvelarlos alguna vez.
_ La verdad es que está hechos un verdadero lío, y, no saben que la materia se construye sobre fundamentos frágiles. Sus grupos de los que ellos llaman los físicos, acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interior de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.
_ Hasta hace poco, los cálculos en lo que ellos llaman el enrejado QCD se concentraban en los gluones virtuales, e ignoraban otros componentes importantes del vacío como los pares de quarks y antiquarks virtuales.

¿Perdido pero interesado? Los quarks forman hadrones, que pueden ser bariones o mesones. Los bariones son partículas formadas por tres quarks de valencia rodeados de un océano de pares quark-antiquark y gluones virtuales. Los mesones están formados por un quark y un antiquark de valencia rodeados de un océano de pares quark-antiquark y gluones virtuales. Salvo el quark top (cuya vida media es demasiado corta para hadronizarse), todos los quarks pueden formar parte de los hadrones. LHCb es el detector de partículas del LHC especializado en los hadrones formados por quarks b (bottom o beauty) de valencia.
_ Los pares quark-antiquark pueden emerger y transformar momentáneamente un protón en una partícula diferente y más exótica. De hecho, el verdadero protón es la suma de todas estas posibilidades sucediendo al mismo tiempo.
_ Nuestros parientes del vacío, los quarks virtuales hacen mucho más complicados los cálculos, implicando la utilización de una matriz de más de 10.000 billones de números, comenta el Quark up.
_ Down le responde: “No existe ninguna computadora en la Tierra que pueda almacenar una matriz numérica tan enorme en su memoria”. Así que han tenido que hacer algunos trucos para evaluar la masa de un protón”. No, si ingenio no se les puede negar.
La verdad es que ese ingenio al que te refieres (dice Up), es lo que los ha llevado a los experimentos, que tratan de suplir su falta de energía para llegar más lejos y para ello tratan de aproximarse a los experimentos que no pueden realizar mediante simulaciones informáticas que, bien planteadas, pueden ser muy reveladoras de lo que pudiera ser.
_ Eso permitirá a los físicos someter a prueba a la QCD y buscar sus efectos más allá de la física conocida. Por ahora, sus cálculos demuestran que la QCD describe partículas basadas en nosotros los quarks de forma precisa, y que la mayor parte de nuestra masa viene de quarks virtuales y gluones que burbujean en el vacío cuántico.
_ Me parece casi imposible que, estemos aprendiendo tanto de nosotros a través de los estudios que hacen unos seres que están tan alejados de nosotros, hasta el punto de no poderlos ver y que, gracias a las señales electromagnéticas que nos envían, hemos podido contactar, es una maravilla.

_ Si, así es, y, además, creen que eso que ellos denominan el campo de Higgs hace también su pequeña contribución, dándonos masa a nosotros los quarks individuales, así como a los electrones y a otras varias partículas. Ese campo de Higgstambién crea masa a partir del vacío cuántico, en forma de bosones virtuales de Higgs. De modo que si el mostruo que han creado, al que llaman el LHC confirma la existencia del bosón de Higgs (que tan familiar nos resulta a nosotros), eso significará que toda la realidad es virtual.
_ Cuándo descubran la realidad del mundo en el que están inmersos, ¿crees amigo up que lo podrán soportar?
_ Bueno, estimado down, estos seres han demostrado que, pocas son las cosas que les arredran, su osadía no tiene límites y, desde luego, desde el llamado Demócrito, han podido avanzar en muy poco tiempo lo que nunca podríamos haber esperado.
_ En cualquier caso es muy difícil determinar el valor de nuestras masas (dice up), ya que a los quarks no se nos pueden tener aislados. Por otro lado, nuestra carga eléctrica es fraccionaria de la unidad fundamental de carga. Así, por ejemplo, yo tengo una carga igual a 2/3 de la unidad elemental, aunque no se pueden observar tampoco cargas fraccionadas aisladas, ya que los quarks siempre están combinados. Es decir, nosotros formamos partículas compuestas llamadas que denominan hadrones, una palabra (según dicen) derivada de la griega hadrys (fuerte); de modo que la suma de las cargas eléctricas de los quarks que constituyen un hadrón es siempre un número entero.

_ Los diversos quarks se pueden combinar entre sí para dar lugar a todas las partículas conocidas, salvo los leptones y los bosones, y con este modelo se puede llegar a una buena aproximación en el conocimiento de las partículas elementales. Sin embargo, esta concepción, basada principalmente en la carga eléctrica, deja sin explicar numerosas cuestiones. Por ejemplo, que no existan partículas formadas sólo por dos quarks ni tampoco quarks aislados. Para abordar éstas y otras cuestiones relativas a la estructura más íntima de la materia fue necesaria la introducción de un nuevo número cuántico, el color, cuyos tres valores caracterizan las partículas con mayor precisión.
_ Oye, amigo Down, la charla me está agotando y siento la necesidad estirarme y tratar de burlar la vigilancia de los 8 gluones que nos acechan y, aunque sé que mi paseo será muy limitado, lo intentaré. Hasta luego amigo.
_ Está bien, por mi parte haré lo mismo y me daré un paseo por la región contraria a la tuya, de esa manera trataré de dividir la fuerza atractiva que nos tiene confinado.
Claro que, el paseo de Up y Down fue de muy corto trayecto, ya que, la fuerza nuclear fuerte que intermedian los Gluones, trabaja de manera distinta a las otras fuerzas y, cuando más se alejan los Quarks los unos de los otros, más fuerte es la fuerza que los atrae.
Dejaremos aquí está simpática charla que han tenido estos dos minúsculos “personajillos” y, como alguien que sabía mucho más que yo, dijo alguna vez que: “todas las cosas son” y elevó la categoría de la materia (por muy pequeña que fuese) a la de SER, he confeccionado esta reunión de Up y Down con la breve intromisión de Protón, para que, dejaran aquí sus “pensamientos”.
El responsable de Taringa finalizaba así:
Hace un par de dias me encontré esta joya, al menos para mi, es una bonita forma de explicar cosas que son difíciles de entender. A mi me gustó espero que a alguno de vosotros también.
Por Emilio Silvera.
Mar
22
La maravilla de… ¡los cuantos!
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas producidas por las vibraciones de las partículas cargadas que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.
![]()
Ley de Planck para cuerpos a diferentes temperaturas.
Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Acero al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:
E = hv
Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.
El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.
Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.
Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.
Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.
No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?
Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.
Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.
Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.
Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.
Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos, incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!
La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecano-cuánticos.

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.
Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?
Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.
emilio silvera
Mar
20
¿Revoluciones científicas? ¡La Relatividad!
por Emilio Silvera ~
Clasificado en Física Relativista ~
Comments (0)
futuro: Siempre será incierto
![]()
La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…
El éxito alcanzado por la Física desde finales del siglo XIX hasta esta primera década del siglo XXI no sólo ha transformado nuestra concepción del espacio-tiempo, sino que ha llegado a poner en nuestras mentes una nueva percepción de la Naturaleza: la vieja posición central que asignábamos a la materia ha cedido su lugar a los principios de simetría, algunos de ellos ocultos a la vista en el estado actual del Universo.
Está claro que, los físicos, cada día más ambiciosos en su “querer saber” y su “querer descubrir”, buscan sin descanso nuevos caminos que les lleve a desvelar ocultas maravillas que tienen su hábitat natural en lo más profundo de la Naturaleza misma de la que no sabemos, aún, entender todas sus voces.
Rumores del saber del Mundo

Los pensadores del Renacimiento creían que todo el Universo era un modelo de la idea divina y que el hombre era un “creador” que venía después del creador divino. Esta concepción era el concepto de belleza, una de armonía que reflejaba las intenciones de la divinidad. ¡Cuánta ignorancia! que, por otra parte, debemos comprender en aquel contexto.

Los Pinceles de la Naturaleza construye cuadros que… ¿Ningún pintor puede igualar! Mientras que la mente humana discurre e imagina para construir modelos del Universo que asombran al mundo.

¿Revoluciones científicas? ¡La Relatividad!
Hemos tenido que construir máquinas inmensas para poder comprobar los efectos que se producen en un cuerpo cuando éste quiere ir más rápido que la luz. Lo predijo la teoría de la relatividad especial de Einstein y se ha comprobado despuès en los aceleradores de partículas: Nada va más rápido que la luz en nuestro Universo.
Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?
La única respuesta que podemos dar hoy es que así es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacío es una muestra.

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.
Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

En el futuro, grandes estaciones sumergidas en el océano y ciudades en otros mundos rodeadas de campos de fuerza que impedirán la radiación nosiva mientras tanto se va consiguiendo terraformar el planeta. La tecnología habrá avanzado tanto que nada de lo que hoy podamos imaginar estará fuera de nuestro alcance y, viajar a mundos situados a decenas de años-luz de la Tierra será para entonces, lo cotidiano

En el futuro podríamos ver extrañas instalaciones para ricos que, bajo el agua tendrán todas las comodidades imaginables, cuando la Tierra se vuelva casi inhabitable.
Eso es lo que imaginamos pero… ¿Qué maravillas tendremos dentro de 150 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Qué planetas habremos colonizado? ¿Habrá sucedido ya ese primer contacto del que tanto hablamos? ¿Cuántas “Tierras” habrán sido encontradas? ¿Qué ordenadores utilizaremos? ¿Será un hecho cotidiano el viaje espacial tripulado? ¿Estaremos explotando las reservas energéticas de Titán? ¿Qué habrá pasado con la Teoría de Cuerdas? Y, ¿Habrá, por fín aparecido la dichosa “materia oscura”? Haciendo todas estas preguntas de lo que será o podrá ser, nos viene a la memoria todo lo que fue y que nos posibilita hacer estas preguntas.

Una cosa nos debe quedar bien clara, nada dentro de 250 años será lo mismo que ahora. Todo habrá cambiado en los distintos ámbitos de nuestras vidas y, a excepción del Amor y los sentimientos que sentiremos de la misma manera (creo), todo lo demás, habrá dado lugar a nuevas situaciones, nuevas formas de vida, nuevas sociedades, nuevas maneras y, podríamos decir que una Humanidad nueva, con otra visión y otras perspectivas.

Nuevas maneras de sondear la Naturaleza y desvelar los secretos
Pero echemos una mirada al pasado. Dejando a un lado a los primeros pensadores y filósofos, como Tales, Demócrito, Empédocles, Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:
Nuestra Física actual está regida y dominada por dos explosiones cegadoras ocurridas en el pasado: Una fue aquel artículo de 8 páginas que escribiera Max Planck, en ese corto trabajo dejó sentados los parámetros que rigen la Ley de la distribución de la energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.
Un amigo físico me decía: cuando escribo un libro, procuro no poner ecuaciones, cada una de ellas me quita diez lectores. Siguiendo el ejemplo, procuro hacer lo mismo (aunque no siempre es posible) pero, en esta ocasión dejaremos el desarrollo de la energía de Planck del que tantas veces se habló aquí, y, ponernos ahora a dilucidar ecuaciones no parece lo más entretenido, aunque el lenguaje de la ciencia, no pocas veces es el de los números.
En cualquier evento de Ciencia, ahí aparecen esos galimatías de los números y letras que pocos pueden comprender, dicen que es el lenguaje que se debe utilizar cuando las palabras no pueden expresar lo que se quiere decir. Y, lo cierto es que, así resulta ser.
Después de lo de Planck y su radiación de cuerpo negro, cinco años más tarde, irrumpió en escena otra revolución de la Física se produjo en 1.905, cuando Albert Einstein formuló su teoría de la relatividadespecial y nos dio un golpecito en nuestras cabezas para despertar en ellas nuestra comprensión de las leyes que gobiernan el Universo.
Nos dijo que la velocidad de la luz es la máxima alcanzable en nuestro universo, que la masa y la energía son la misma cosa, que si se viaja a velocidades cercanas a la de la luz, el tiempo se ralentiza pero, el cuerpo aumentará su masa y se contraerá en el sentido de la misma…Y, todo eso, ha sido una y mil veces comprobado. Sin embargo, muchas son las pruebas que se realizan para descubrir los fallos de la teoría, veamos una:

“Las Explosiones de Rayos Gamma (Gamma Ray Bursts, GRB) producen emisiones repentinas de rayos gamma altamente energéticos que duran desde menos de un segundo hasta varios minutos; un abrir y cerrar de ojos en escalas de tiempo cosmológicas. Se sabe que ocurren a inmensas distancias de la Tierra, hacia los límites del Universo observable.
Tras la brusca emisión de rayos gamma suele seguir un resplandor de luz visible, y con el VLT se ha detectado el ejemplo más lejano conocido de este proceso. Con un desplazamiento al rojo calculado de 8,2, la luz de esta fuente astronómica tan remota ha tardado más de 13.000 millones de años en llegar a nosotros.” Imagen de la ESO.
Los científicos que estudian la radiación gamma de una explosión de rayos lejanos han encontrado que la velocidad de la luz no varía con la longitud de onda hasta escalas de distancia por debajo de la Longitud de Planck. Ellos dicen que esto desfavorece a algunas teorías de la gravedad cuántica que postulan la violación de la invariancia de Lorentz.
En la invariancia de Lorentz se estipula que las leyes de la física son las mismas para todos los observadores, independientemente de dónde se encuentren en el universo. El amigo Einstein utilizó este principio como un postulado de su teor´çia de la relatividad especial, en el supuesto de que la velocidad de la luz en el vacío, no depende de que se esté midiendo, siempre y cuando la persona esté en un sistema inercial de referencia. En más de 100 años la invariancia de Lorentz nunca ha sido insuficiente.



La Teoría de cuerdas nos habla de las vibraciones que éstas emiten y que son partículas cuánticas. En esta teoría, de manera natural, se encuentran las dos teorías más importantes del momento: La Gravedad y la Mecánica cuántica, allí, subyacen las ecuaciones de campo de la teoría de la relatividad general que, cuando los físicas de las “cuerdas” desarrollan su teoría, aparecen las ecuciones relativista, sin que nadie las llame, como por arte de magia. Y, tal aparición, es para los físicos una buena seña.
Sin embargo, los físicos siguen sometiendo a pruebas cada vez más rigurosas, incluyendo versiones modernas del famoso experimento interferométrico de Michelson y Morley. Esta dedicación a la precisión se explica principalmente por el deseo de los físicos para unir la mecánica cuántica con la relatividad general, dado que algunas teorías de la gravedad cuántica (incluyendo la teoría de cuerdas y la gravedad cuántica de bucles) implica que la invariancia Lorentz podría romperse.

Explosión cósmica de rayos Gamma
Granot y sus colegas estudiaron la radiación de una explosión de rayos gamma (asociada con una explosión de gran energía en una galaxia distante) que fue descubierto por la NASA con el Fermi Gamma-Ray Space Telescope. Se analizó la radiación en diferentes longitudes de onda para ver si había indicios de que los fotones con energías diferentes llegaron a los detectores del Fermi en diferentes momentos.
Tal difusión de los tiempos de llegada parece indicar que la invariancia Lorentz efectivamente había sido violada, es decir que la velocidad de la luz en el vacío depende de la energía de la luz y no es una constante universal. Cualquier dependencia de la energía sería mínima, pero aún podría resultar en una diferencia mensurable en los tiempos de llegada de fotones debido a los miles de millones de años luz de a la que se encuentran las explosiones de rayos gamma en una galaxia lejana.
Cuando nos acercamos a la vida privada del genio… ¡también, como todos, era humano!
De la calidad de Einstein como persona nos habla un detalle: Cuando el Presidente Chaim Weizmann de Israel murió en 1952, a Einstein se le ofreció la presidencia, pero se negó, diciendo que no tenía “ni la habilidad natural ni la experiencia para tratar con seres humanos.” Luego escribió que se sentía muy honrado por el ofrecimiento del estado de Israel, pero a la vez triste y avergonzado de no poder aceptarla.
Pero sigamos con la segunda revolución de su teoría que se dio en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad que incluía la Gravedad, es decir la llamada relatividad general que varió por completo el concepto del Cosmos y nos llevó a conocer de manera más profunda y exacta cómo funcionaba la Gravedad, esa fuerza descrita por primera vez por Newton.

Einstein nos decía que el espacio se curva en presencia de grandes masas
En la Teoría Especial de la Relatividad, Einstein se refirió a sistemas de referencias inerciales (no acelerados). Asume que las leyes de la física son idénticas en todos los sitemas de referencia y que la velocidad de la luz en el vacío, c, es constante en el todo el Universo y es independiente de la velocidad del obervador.
La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una de las conclusiones de la teoría es que la masa de un cuerpo, aumenta con la velocidad (hay una ecuación quer así lo demuestra), y, tal hecho, ha sido sobradamente comprobado en los aceleradores de partículas donde un muón, ha aumentado más de diez veces su masa al circular a velocidades cercanas a la de la luz. Y el muón que tiene una vida de dos millonésimas de segundo, además, al desplazarse a velocidades relativistas, también ven incrementado el tiempo de su vida media.

El Acelerador de Partículas LHC es una Obra inmensa que ha construido el SER Humano para saber sobre la Naturaleza de la materia y…
Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura
La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación; es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto que incluye, en cada experimento, los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías, el resultado finalmente obtenido. Es un proceso largo y muy complejo, la consecuencia de muchos años de investigación de muchos equipos diferentes.


Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. En la teoría de Einstein se generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).
Otras de las conclusiones de la teoría relativista en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.
Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.

Todo lo grande está hecho de cosas pequeñas
Fue Max Planck, el Editor de la Revista que publicó el artículo de Albert Einstein de la relatividad quien al leerlo se dió cuenta de la enorme importancia de lo que allí se decía. A partir de aquel momento, se convirtió en su valedor, y, Einstein, mucho más tarde reconoció públicamente tal ayuda.
En la segunda parte de su teoría, la Relatividad General, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.
![]()

¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia. La gravedad presente en un agujero negro gigante hace que en ese lugar, el tiempo deje de existir, se paralice y el espacio, se curve en una distorsión infinita. Es decir, ni espacio ni tiempo tienen lugar en la llamada singularidad.
Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann ) sobre la distorsión del espaciotiempo.
Un Agujero Negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de esta teoría relativista: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia de un agujero negro y lo que se denomina una singularidad. De hecho, el Big Bang, se cree que surgió de una singularidad.


Las ecuaciones de campo de la teoría de Einstein ¡Nos dicen tantas cosas!
Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m.: л = 3,14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿ Cómo puede ser esto ? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados, en la figura de arriba de S. Torres se puede ver que el diámetro es enorme.


De esa Teoría surgió la geometría del Espacio, las lentes gravitacionales, los agujeros negros y llegó la cosmología moderna, otra manera de mirar el Universo
Con esta teoría de la Relatividad General, entre otros pasos importantes, está el hecho de que dió lugar al nacimiento de la Cosmología que, de alguna manera, era como mirar con nueva visión a lo que l Universo podía significar, Después de Einstein el Universo no fue el mismo.
El análisis de la Gravitación que aquí se muestra interpreta el Universo como un continuo espacio-tiempo de cuatro dimensiones en el el que la presencia de una masa (como decía antes) curva el espacio para crear un campo gravitacional.


De la veracidad y comprobación de las predicciones de ésta segunda parte de la Teoría Relativista, tampoco, a estas alturas cabe duda alguna, y, lo más curioso del caso es que, después de casi un siglo (1.915), aún los físicos están sacando partido de las ecuaciones de campo de la teoría relativista en su versión general o de la Gravedad.
Tan importante es el trabajo de Einstein que, en las nuevas teorías, en las más avanzadas, como la Teoría M (que engloba las cinco versiones de la Teoría de Cuerdas), cuando la están desarrollando, como por arte de magía y sin que nadie las llame, surgen, emergen, las ecuaciones de Einstein de la Relatividad General.

La luz se propaga en cualquier medio pero en el vacío, mantiene la mayor velocidad posible en nuestro Universo, y, hasta el momento, que se sepa, nada ha corrido más que la luz en ese medio. Algunos han publicado ésta o aquella noticia queriendo romper la estabilidad de la teoría de la relatividad y publican sucesos sobre neutrinos o taquiones que van más rápidos que la luz. Sin embargo, todo se quedó en eso, en una noticia sin demostración para captar la atención del momento.
La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:
3×1010 × 3×1010, ó 9×1020.
Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.
El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s, y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías. Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco si lo comparamos con la vida media de un hombre.
Emilio Silvera
Mar
19
No siempre hablamos de lo que comprendemos
por Emilio Silvera ~
Clasificado en Física ~
Comments (1)
¡La Física! Lo que busca la física fundamental es reducir las leyes de la Naturaleza a una teoría final sencilla que lo explique todo. El físico y premio Nobel Steven Weinberg señala que las reglas fundamentales son lo más satisfactorio (al menos para él). Las leyes básicas de Isaac Newton, que predicen el comportamiento de los planetas, son más satisfactorias, por ejemplo, que un almanaque en el que se indique la posición de todos los planetas en cada momento. Weinberg nos dice que la Física no puede explicarlo todo, matizando que sólo puede explicar los sucesos relacionándolos con otros sucesos y con las reglas existentes.

Por ejemplo, las órbitas de los planetas son el resultado de unas reglas, pero las distancias de los planetas al Sol son accidentales, y no son consecuencia de ley fundamental alguna. Claro que, también las leyes podrían ser fruto de casualidades. Lo que sí es cierto es que los físicos están más interesados por descubrir las reglas que por los sucesos que dichas reglas determinan, y más por los hechos que son independientes del tiempo; por ejemplo, les interesa más la masa del electrón que un tornado que se pueda producir en un lugar determinado.
La ciencia, como nos dice Weinberg, no puede explicarlo todo y, sin embargo, algunos físicos tienen la sensación de que nos estamos acercando a “una explicación del mundo” y, algún día, aunando todos los esfuerzos de muchos, las ideas de las mejores mentes que han sido, y las nuevas que llegarán, podremos, al fín, construir esa Teoría final tan largamente soñada que, para que sea convincente, deberá también, incluirnos a nosotros. Pero, paradogicamente y a pesar de estos pensamientos, existen hechos que los contradicen, por ejemplo, conocemos toda la física fundamental de la molécula de agua desde hace 7 decenas de años, pero todavía no hay nadie que pueda explicar por qué el agua hierve a los 100 ºC. ¿Qué ocurre? ¿Somos acaso demasiado tontos? Bueno, me atrevería a pronosticar que seguiremos siendo “demasiado tontos” incluso cuando los físicos consigan (por fin) esa teoría final que nos pueda dar una “explicación del mundo”. Siempre seguiremos siendo aprendices de la Naturaleza que, sabia ella, nos esconde sus secretos para que persista el misterio.
¿Qué sería de nosotros si lo supiéramos todo?
Lo sabemos todo, nada llama nuestra atención, la curiosidad desaparece y nos embarga el hastío y hasta la depresión. Nuestra condición como especie es querer saber cosas nuevas, buscar respuestas, preguntarnos
La explicación que dan los físicos actualmente sobre la subestructura de la materia se llama “el modelo estándar”. En este modelo están incluídas las doce partículas elementales y las tres fuerzas que, cuando se mezclan y se encajan, sirven para construir todo lo que hay en el universo, desde un redondo pan de pueblo hecho en un horno de leña, hasta las más complejas galaxias, y puede explicar todos los mecanismos de acción, es decir, la mecánica del mundo.
Entre las partículas figuran los seis Quarks famosos: arriba, abajo, extraño, encanto, fondo y cima. Las otras seis partículas son Leptones: el electrón y sus dos parientes más pesados, el muón y el tau y los tres neutrinos a ellos asociados. Las tres fuerzas son la electromagnética, la fuerza nuclear fuerte (que mantiene unidos a los quarks) y la fuerza nuclear débil (responsable de la radioactividasd). Hay una cuarta fuerza: la Gravedad que, aunque tan importante como las demás, nadie ha sabido como encajarla en el modelo estándar. Todas las partículas y fuerzas de este modelo son cuánticas; es decir, siguen las reglas de la mecánica cuántica. Aún no existe una teoría de la gravedad cuántica.

En realidad, la región que denominamos Gravedad cuántica nos lleva y comprende preguntas sobre el origen del universo observable que nadie ha sabido contestar. Nos lleva a complejos procesos cuánticos situados en las épocas más cercanas imaginables en un espacio-tiempo clásico, es decir, en lo que se conoce como Tiempo de Planck a 10-43 segundos del supuesto big bang, cuando reinaba una temperatura del orden de 10 x 1031 K. Pero, como hemos dicho, al no existir una teoría autoconsistente de la Gravedad cuántica, lo único que podemos hacer (como en tantas otras áreas de la Ciencia) es especular.
El Modelo Estándar no es, ni mucho menos, satisfactorio. Los científicos piensan que no sólo es incompleto, sino que es demasiado complicado y, desde hace mucho tiempo, buscan, incansables, otro modelo más sencillo y completo que explique mejor las cosas y que, además, no tenga (como tiene el modelo actual) una veintena de parámetros aleatorios y necesarios para que cuadren las cuentas…, un ejemplo: el bosón de Higgs necesario para dar masa a las partículas.
¡La masa! ese gran problema. Todas las partículas tienen masa diferentes pero nadie sabe de donde salen sus valores. No existe fórmula alguna que diga, por ejemplo, que el quark extraño debería pesar el doble (o lo que sea) del quark arriba, o que el electrón deba tener 1/200 (u otra proporción) de la masa del muón. Las masas son de todo tipo y es preciso “ponerlas a mano”, como se suele decir: cada una ha de ser medida experimental e individualmente. En realidad, ¿por qué han de tener masa las partículas? ¿de dónde viene la masa?

No puedo evitarlo ni tampoco me puedo quedar callado, cuando he asistido a alguna conferencia sobre la materia y, el ponente de turno se agarra a la “materia oscura” para justificar lo que no sabe, si al final hay debate, entro en escena para discutir sobre la existencia de esa “materia fantasma” que quiere tapar nuestra enorme ignorancia.
Pero, sigamos con el problema de la masa. Para resolverlo, muchos expertos en física de partículas creen actualmente en algo que llaman “campo de Higgs”. Se trata de un campo misterioso, invisible y etéreo que está permeando todo el espacio (¿habrán vuelto al antiguo éter pero cambiándole el nombre?). Hace que la materia parezca pesada, como cuando tratamos de correr por el fondo de la piscina llena de agua pero que el agua no se pudiera ver. Si pudiéramos encontrar ese campo, o más bien la partícula la partícula que se cree es la manifestación de ese campo (llamada el bosón de Higgs), avanzaríamos un largo trecho hacia el conocimiento del universo.
Aquí, en este imponente artilugio inventiva de nuestras mentes, se quiere dar respuesta a una serie de interrogantes que se espera solucionar con este experimento:
• Qué es la masa.
• El origen de la masa de las partículas
• El origen de la masa para los bariones.
• El número exacto de partículas del átomo.


Claro que, si no fuera tan largo de contar, os diría que, en realidad, el Campo de Higgs se descubrió hace ya muchos siglos en la antigua India, con el nombre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material. Pocos conocen que, los hindúes fueron los que más se acercaron a las ideas modernas sobre el átomo, la física cuántica y otras teorías actuales. Ellos desarrollaron muy temprano sólidas teorías atomistas sobre la materia. Posiblemente, el pensamiento atomista griega recibió las influencias del pensamiento de los hindúes a través de las civilizaciones persas. El Rig-Veda, que data de alguna fecha situada entre el 2000 y el 1500 a. C., es el primer texto hindú en el que se exponen unas ideas que pueden considerarse leyes naturales universales. La ley cósmica está relacionada con la luz cósmica.

Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas, visiones poéticas y espirituales en las que la imaginación humana ve la Naturaleza y la expresa en creación poética, y después va avanzando hacia unidades más intensamente reales que espirituales hasta llegar al Brahmán único de los Upanishads.
Hacia la época de Buda (500 a, C.), los Upanishad, escritos durante un período de varios siglos, mencionaban el concepto de svabhava, definido como “la naturaleza inherente de los distintos materiales”; es decir, su eficacia causal única, , tal como la combustión en el caso del fuego, o el hecho de fluir hacia abajo en el caso dela agua. El pensador Jainí Bunaratna nos dijo: “Todo lo que existe ha llegado a existir por acción de la svabhava. Así… la tierra se transforma en una vasija y no en paño… A partir de los hilos se produce el paño y no la vasija”.

También aquellos pensadores, manejaron el concepto de yadrccha, o azar desde tiempos muy remotos. Implicaba la falta de orden y la aleatoriedad de la causalidad. Ambos conceptos se sumaron a la afirmación del griego Demócrito medio siglo más tarde: “Todo lo que hay en el universo es fruto del azar y la necesidad”. El ejemplo que que dio Demócrito -similar al de los hilos del paño- fue que, toda la materia que existe, está formada por a-tomos o átomos.
Bueno, no lo puedo evitar, mi imaginación se desboca y corre rápida por los diversos pensamientos que por la mente pasan, de uno se traslada a otros y, al final, todo resulta un conglomerado de ideas que, en realidad, quieren explicar, dentro de esa diversidad, la misma cosa.
emilio silvera
















Totales: 83.512.839
Conectados: 32























